careamics 0.0.4.2__py3-none-any.whl → 0.0.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/__init__.py +17 -2
- careamics/careamist.py +239 -28
- careamics/cli/conf.py +19 -31
- careamics/cli/main.py +112 -12
- careamics/cli/utils.py +29 -0
- careamics/config/__init__.py +48 -24
- careamics/config/algorithms/__init__.py +15 -0
- careamics/config/algorithms/care_algorithm_model.py +50 -0
- careamics/config/algorithms/n2n_algorithm_model.py +42 -0
- careamics/config/algorithms/n2v_algorithm_model.py +35 -0
- careamics/config/algorithms/unet_algorithm_model.py +88 -0
- careamics/config/{vae_algorithm_model.py → algorithms/vae_algorithm_model.py} +26 -23
- careamics/config/architectures/__init__.py +1 -11
- careamics/config/architectures/architecture_model.py +3 -3
- careamics/config/architectures/lvae_model.py +109 -21
- careamics/config/architectures/unet_model.py +1 -0
- careamics/config/care_configuration.py +100 -0
- careamics/config/configuration.py +354 -0
- careamics/config/{configuration_factory.py → configuration_factories.py} +152 -81
- careamics/config/configuration_io.py +85 -0
- careamics/config/data/__init__.py +10 -0
- careamics/config/{data_model.py → data/data_model.py} +58 -198
- careamics/config/data/n2v_data_model.py +193 -0
- careamics/config/likelihood_model.py +8 -8
- careamics/config/loss_model.py +56 -0
- careamics/config/n2n_configuration.py +101 -0
- careamics/config/n2v_configuration.py +266 -0
- careamics/config/nm_model.py +24 -25
- careamics/config/support/__init__.py +7 -7
- careamics/config/support/supported_algorithms.py +0 -3
- careamics/config/support/supported_architectures.py +0 -4
- careamics/config/transformations/__init__.py +10 -4
- careamics/config/transformations/transform_model.py +3 -3
- careamics/config/transformations/transform_unions.py +42 -0
- careamics/config/validators/validator_utils.py +3 -3
- careamics/dataset/__init__.py +2 -2
- careamics/dataset/dataset_utils/__init__.py +3 -3
- careamics/dataset/dataset_utils/dataset_utils.py +4 -6
- careamics/dataset/dataset_utils/file_utils.py +9 -9
- careamics/dataset/dataset_utils/iterate_over_files.py +4 -3
- careamics/dataset/dataset_utils/running_stats.py +22 -23
- careamics/dataset/in_memory_dataset.py +11 -12
- careamics/dataset/iterable_dataset.py +4 -4
- careamics/dataset/iterable_pred_dataset.py +2 -1
- careamics/dataset/iterable_tiled_pred_dataset.py +2 -1
- careamics/dataset/patching/random_patching.py +11 -10
- careamics/dataset/patching/sequential_patching.py +26 -26
- careamics/dataset/patching/validate_patch_dimension.py +3 -3
- careamics/dataset/tiling/__init__.py +2 -2
- careamics/dataset/tiling/collate_tiles.py +3 -3
- careamics/dataset/tiling/lvae_tiled_patching.py +2 -1
- careamics/dataset/tiling/tiled_patching.py +11 -10
- careamics/file_io/__init__.py +5 -5
- careamics/file_io/read/__init__.py +1 -1
- careamics/file_io/read/get_func.py +2 -2
- careamics/file_io/write/__init__.py +2 -2
- careamics/lightning/__init__.py +5 -5
- careamics/lightning/callbacks/__init__.py +1 -1
- careamics/lightning/callbacks/prediction_writer_callback/__init__.py +3 -3
- careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +2 -1
- careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +2 -1
- careamics/lightning/callbacks/progress_bar_callback.py +2 -2
- careamics/lightning/lightning_module.py +69 -34
- careamics/lightning/train_data_module.py +41 -27
- careamics/losses/__init__.py +3 -3
- careamics/losses/loss_factory.py +1 -85
- careamics/losses/lvae/losses.py +223 -164
- careamics/lvae_training/calibration.py +184 -0
- careamics/lvae_training/dataset/config.py +2 -2
- careamics/lvae_training/dataset/multich_dataset.py +11 -19
- careamics/lvae_training/dataset/multifile_dataset.py +3 -2
- careamics/lvae_training/dataset/types.py +15 -26
- careamics/lvae_training/dataset/utils/index_manager.py +4 -4
- careamics/lvae_training/eval_utils.py +125 -213
- careamics/model_io/__init__.py +1 -1
- careamics/model_io/bioimage/__init__.py +1 -1
- careamics/model_io/bioimage/_readme_factory.py +26 -34
- careamics/model_io/bioimage/cover_factory.py +171 -0
- careamics/model_io/bioimage/model_description.py +56 -34
- careamics/model_io/bmz_io.py +42 -42
- careamics/model_io/model_io_utils.py +9 -9
- careamics/models/layers.py +22 -20
- careamics/models/lvae/layers.py +348 -975
- careamics/models/lvae/likelihoods.py +10 -8
- careamics/models/lvae/lvae.py +214 -275
- careamics/models/lvae/noise_models.py +179 -112
- careamics/models/lvae/stochastic.py +393 -0
- careamics/models/lvae/utils.py +82 -73
- careamics/models/model_factory.py +2 -15
- careamics/models/unet.py +8 -8
- careamics/prediction_utils/__init__.py +1 -1
- careamics/prediction_utils/prediction_outputs.py +15 -15
- careamics/prediction_utils/stitch_prediction.py +6 -6
- careamics/transforms/__init__.py +5 -5
- careamics/transforms/compose.py +13 -13
- careamics/transforms/n2v_manipulate.py +3 -3
- careamics/transforms/pixel_manipulation.py +9 -9
- careamics/transforms/xy_random_rotate90.py +4 -4
- careamics/utils/__init__.py +5 -5
- careamics/utils/context.py +2 -1
- careamics/utils/lightning_utils.py +57 -0
- careamics/utils/logging.py +11 -10
- careamics/utils/serializers.py +2 -0
- careamics/utils/torch_utils.py +8 -8
- {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/METADATA +16 -13
- careamics-0.0.6.dist-info/RECORD +176 -0
- {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/WHEEL +1 -1
- careamics/config/architectures/custom_model.py +0 -162
- careamics/config/architectures/register_model.py +0 -103
- careamics/config/configuration_model.py +0 -603
- careamics/config/fcn_algorithm_model.py +0 -152
- careamics/config/references/__init__.py +0 -45
- careamics/config/references/algorithm_descriptions.py +0 -132
- careamics/config/references/references.py +0 -39
- careamics/config/transformations/transform_union.py +0 -20
- careamics-0.0.4.2.dist-info/RECORD +0 -165
- {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/entry_points.txt +0 -0
- {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/licenses/LICENSE +0 -0
|
@@ -2,8 +2,9 @@
|
|
|
2
2
|
|
|
3
3
|
from __future__ import annotations
|
|
4
4
|
|
|
5
|
+
from collections.abc import Sequence
|
|
5
6
|
from pprint import pformat
|
|
6
|
-
from typing import Any, Literal, Optional, Union
|
|
7
|
+
from typing import Annotated, Any, Literal, Optional, Union
|
|
7
8
|
|
|
8
9
|
import numpy as np
|
|
9
10
|
from numpy.typing import NDArray
|
|
@@ -15,11 +16,10 @@ from pydantic import (
|
|
|
15
16
|
field_validator,
|
|
16
17
|
model_validator,
|
|
17
18
|
)
|
|
18
|
-
from typing_extensions import
|
|
19
|
+
from typing_extensions import Self
|
|
19
20
|
|
|
20
|
-
from
|
|
21
|
-
from
|
|
22
|
-
from .validators import check_axes_validity, patch_size_ge_than_8_power_of_2
|
|
21
|
+
from ..transformations import N2V_TRANSFORMS_UNION, XYFlipModel, XYRandomRotate90Model
|
|
22
|
+
from ..validators import check_axes_validity, patch_size_ge_than_8_power_of_2
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
def np_float_to_scientific_str(x: float) -> str:
|
|
@@ -45,47 +45,8 @@ Float = Annotated[float, PlainSerializer(np_float_to_scientific_str, return_type
|
|
|
45
45
|
"""Annotated float type, used to serialize floats to strings."""
|
|
46
46
|
|
|
47
47
|
|
|
48
|
-
class
|
|
49
|
-
"""
|
|
50
|
-
Data configuration.
|
|
51
|
-
|
|
52
|
-
If std is specified, mean must be specified as well. Note that setting the std first
|
|
53
|
-
and then the mean (if they were both `None` before) will raise a validation error.
|
|
54
|
-
Prefer instead `set_mean_and_std` to set both at once. Means and stds are expected
|
|
55
|
-
to be lists of floats, one for each channel. For supervised tasks, the mean and std
|
|
56
|
-
of the target could be different from the input data.
|
|
57
|
-
|
|
58
|
-
All supported transforms are defined in the SupportedTransform enum.
|
|
59
|
-
|
|
60
|
-
Examples
|
|
61
|
-
--------
|
|
62
|
-
Minimum example:
|
|
63
|
-
|
|
64
|
-
>>> data = DataConfig(
|
|
65
|
-
... data_type="array", # defined in SupportedData
|
|
66
|
-
... patch_size=[128, 128],
|
|
67
|
-
... batch_size=4,
|
|
68
|
-
... axes="YX"
|
|
69
|
-
... )
|
|
70
|
-
|
|
71
|
-
To change the image_means and image_stds of the data:
|
|
72
|
-
>>> data.set_means_and_stds(image_means=[214.3], image_stds=[84.5])
|
|
73
|
-
|
|
74
|
-
One can pass also a list of transformations, by keyword, using the
|
|
75
|
-
SupportedTransform value:
|
|
76
|
-
>>> from careamics.config.support import SupportedTransform
|
|
77
|
-
>>> data = DataConfig(
|
|
78
|
-
... data_type="tiff",
|
|
79
|
-
... patch_size=[128, 128],
|
|
80
|
-
... batch_size=4,
|
|
81
|
-
... axes="YX",
|
|
82
|
-
... transforms=[
|
|
83
|
-
... {
|
|
84
|
-
... "name": "XYFlip",
|
|
85
|
-
... }
|
|
86
|
-
... ]
|
|
87
|
-
... )
|
|
88
|
-
"""
|
|
48
|
+
class GeneralDataConfig(BaseModel):
|
|
49
|
+
"""General data configuration."""
|
|
89
50
|
|
|
90
51
|
# Pydantic class configuration
|
|
91
52
|
model_config = ConfigDict(
|
|
@@ -126,22 +87,18 @@ class DataConfig(BaseModel):
|
|
|
126
87
|
"""Standard deviations of the target data across channels, used for
|
|
127
88
|
normalization."""
|
|
128
89
|
|
|
129
|
-
|
|
90
|
+
# defining as Sequence allows assigning subclasses of TransformModel without mypy
|
|
91
|
+
# complaining, this is important for instance to differentiate N2VDataConfig and
|
|
92
|
+
# DataConfig
|
|
93
|
+
transforms: Sequence[N2V_TRANSFORMS_UNION] = Field(
|
|
130
94
|
default=[
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
},
|
|
134
|
-
{
|
|
135
|
-
"name": SupportedTransform.XY_RANDOM_ROTATE90.value,
|
|
136
|
-
},
|
|
137
|
-
{
|
|
138
|
-
"name": SupportedTransform.N2V_MANIPULATE.value,
|
|
139
|
-
},
|
|
95
|
+
XYFlipModel(),
|
|
96
|
+
XYRandomRotate90Model(),
|
|
140
97
|
],
|
|
141
98
|
validate_default=True,
|
|
142
99
|
)
|
|
143
100
|
"""List of transformations to apply to the data, available transforms are defined
|
|
144
|
-
in SupportedTransform.
|
|
101
|
+
in SupportedTransform."""
|
|
145
102
|
|
|
146
103
|
dataloader_params: Optional[dict] = None
|
|
147
104
|
"""Dictionary of PyTorch dataloader parameters."""
|
|
@@ -210,48 +167,6 @@ class DataConfig(BaseModel):
|
|
|
210
167
|
|
|
211
168
|
return axes
|
|
212
169
|
|
|
213
|
-
@field_validator("transforms")
|
|
214
|
-
@classmethod
|
|
215
|
-
def validate_prediction_transforms(
|
|
216
|
-
cls, transforms: list[TRANSFORMS_UNION]
|
|
217
|
-
) -> list[TRANSFORMS_UNION]:
|
|
218
|
-
"""
|
|
219
|
-
Validate N2VManipulate transform position in the transform list.
|
|
220
|
-
|
|
221
|
-
Parameters
|
|
222
|
-
----------
|
|
223
|
-
transforms : list[Transformations_Union]
|
|
224
|
-
Transforms.
|
|
225
|
-
|
|
226
|
-
Returns
|
|
227
|
-
-------
|
|
228
|
-
list of transforms
|
|
229
|
-
Validated transforms.
|
|
230
|
-
|
|
231
|
-
Raises
|
|
232
|
-
------
|
|
233
|
-
ValueError
|
|
234
|
-
If multiple instances of N2VManipulate are found.
|
|
235
|
-
"""
|
|
236
|
-
transform_list = [t.name for t in transforms]
|
|
237
|
-
|
|
238
|
-
if SupportedTransform.N2V_MANIPULATE in transform_list:
|
|
239
|
-
# multiple N2V_MANIPULATE
|
|
240
|
-
if transform_list.count(SupportedTransform.N2V_MANIPULATE.value) > 1:
|
|
241
|
-
raise ValueError(
|
|
242
|
-
f"Multiple instances of "
|
|
243
|
-
f"{SupportedTransform.N2V_MANIPULATE} transforms "
|
|
244
|
-
f"are not allowed."
|
|
245
|
-
)
|
|
246
|
-
|
|
247
|
-
# N2V_MANIPULATE not the last transform
|
|
248
|
-
elif transform_list[-1] != SupportedTransform.N2V_MANIPULATE:
|
|
249
|
-
index = transform_list.index(SupportedTransform.N2V_MANIPULATE.value)
|
|
250
|
-
transform = transforms.pop(index)
|
|
251
|
-
transforms.append(transform)
|
|
252
|
-
|
|
253
|
-
return transforms
|
|
254
|
-
|
|
255
170
|
@model_validator(mode="after")
|
|
256
171
|
def std_only_with_mean(self: Self) -> Self:
|
|
257
172
|
"""
|
|
@@ -350,32 +265,6 @@ class DataConfig(BaseModel):
|
|
|
350
265
|
self.__dict__.update(kwargs)
|
|
351
266
|
self.__class__.model_validate(self.__dict__)
|
|
352
267
|
|
|
353
|
-
def has_n2v_manipulate(self) -> bool:
|
|
354
|
-
"""
|
|
355
|
-
Check if the transforms contain N2VManipulate.
|
|
356
|
-
|
|
357
|
-
Returns
|
|
358
|
-
-------
|
|
359
|
-
bool
|
|
360
|
-
True if the transforms contain N2VManipulate, False otherwise.
|
|
361
|
-
"""
|
|
362
|
-
return any(
|
|
363
|
-
transform.name == SupportedTransform.N2V_MANIPULATE.value
|
|
364
|
-
for transform in self.transforms
|
|
365
|
-
)
|
|
366
|
-
|
|
367
|
-
def add_n2v_manipulate(self) -> None:
|
|
368
|
-
"""Add N2VManipulate to the transforms."""
|
|
369
|
-
if not self.has_n2v_manipulate():
|
|
370
|
-
self.transforms.append(
|
|
371
|
-
N2VManipulateModel(name=SupportedTransform.N2V_MANIPULATE.value)
|
|
372
|
-
)
|
|
373
|
-
|
|
374
|
-
def remove_n2v_manipulate(self) -> None:
|
|
375
|
-
"""Remove N2VManipulate from the transforms."""
|
|
376
|
-
if self.has_n2v_manipulate():
|
|
377
|
-
self.transforms.pop(-1)
|
|
378
|
-
|
|
379
268
|
def set_means_and_stds(
|
|
380
269
|
self,
|
|
381
270
|
image_means: Union[NDArray, tuple, list, None],
|
|
@@ -430,84 +319,55 @@ class DataConfig(BaseModel):
|
|
|
430
319
|
"""
|
|
431
320
|
self._update(axes=axes, patch_size=patch_size)
|
|
432
321
|
|
|
433
|
-
def set_N2V2(self, use_n2v2: bool) -> None:
|
|
434
|
-
"""
|
|
435
|
-
Set N2V2.
|
|
436
|
-
|
|
437
|
-
Parameters
|
|
438
|
-
----------
|
|
439
|
-
use_n2v2 : bool
|
|
440
|
-
Whether to use N2V2.
|
|
441
|
-
|
|
442
|
-
Raises
|
|
443
|
-
------
|
|
444
|
-
ValueError
|
|
445
|
-
If the N2V pixel manipulate transform is not found in the transforms.
|
|
446
|
-
"""
|
|
447
|
-
if use_n2v2:
|
|
448
|
-
self.set_N2V2_strategy("median")
|
|
449
|
-
else:
|
|
450
|
-
self.set_N2V2_strategy("uniform")
|
|
451
|
-
|
|
452
|
-
def set_N2V2_strategy(self, strategy: Literal["uniform", "median"]) -> None:
|
|
453
|
-
"""
|
|
454
|
-
Set N2V2 strategy.
|
|
455
|
-
|
|
456
|
-
Parameters
|
|
457
|
-
----------
|
|
458
|
-
strategy : Literal["uniform", "median"]
|
|
459
|
-
Strategy to use for N2V2.
|
|
460
322
|
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
If the N2V pixel manipulate transform is not found in the transforms.
|
|
465
|
-
"""
|
|
466
|
-
found_n2v = False
|
|
467
|
-
|
|
468
|
-
for transform in self.transforms:
|
|
469
|
-
if transform.name == SupportedTransform.N2V_MANIPULATE.value:
|
|
470
|
-
transform.strategy = strategy
|
|
471
|
-
found_n2v = True
|
|
323
|
+
class DataConfig(GeneralDataConfig):
|
|
324
|
+
"""
|
|
325
|
+
Data configuration.
|
|
472
326
|
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
)
|
|
327
|
+
If std is specified, mean must be specified as well. Note that setting the std first
|
|
328
|
+
and then the mean (if they were both `None` before) will raise a validation error.
|
|
329
|
+
Prefer instead `set_mean_and_std` to set both at once. Means and stds are expected
|
|
330
|
+
to be lists of floats, one for each channel. For supervised tasks, the mean and std
|
|
331
|
+
of the target could be different from the input data.
|
|
479
332
|
|
|
480
|
-
|
|
481
|
-
self, mask_axis: Literal["horizontal", "vertical", "none"], mask_span: int
|
|
482
|
-
) -> None:
|
|
483
|
-
"""
|
|
484
|
-
Set structN2V mask parameters.
|
|
333
|
+
All supported transforms are defined in the SupportedTransform enum.
|
|
485
334
|
|
|
486
|
-
|
|
335
|
+
Examples
|
|
336
|
+
--------
|
|
337
|
+
Minimum example:
|
|
487
338
|
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
339
|
+
>>> data = DataConfig(
|
|
340
|
+
... data_type="array", # defined in SupportedData
|
|
341
|
+
... patch_size=[128, 128],
|
|
342
|
+
... batch_size=4,
|
|
343
|
+
... axes="YX"
|
|
344
|
+
... )
|
|
494
345
|
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
ValueError
|
|
498
|
-
If the N2V pixel manipulate transform is not found in the transforms.
|
|
499
|
-
"""
|
|
500
|
-
found_n2v = False
|
|
346
|
+
To change the image_means and image_stds of the data:
|
|
347
|
+
>>> data.set_means_and_stds(image_means=[214.3], image_stds=[84.5])
|
|
501
348
|
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
349
|
+
One can pass also a list of transformations, by keyword, using the
|
|
350
|
+
SupportedTransform value:
|
|
351
|
+
>>> from careamics.config.support import SupportedTransform
|
|
352
|
+
>>> data = DataConfig(
|
|
353
|
+
... data_type="tiff",
|
|
354
|
+
... patch_size=[128, 128],
|
|
355
|
+
... batch_size=4,
|
|
356
|
+
... axes="YX",
|
|
357
|
+
... transforms=[
|
|
358
|
+
... {
|
|
359
|
+
... "name": "XYFlip",
|
|
360
|
+
... }
|
|
361
|
+
... ]
|
|
362
|
+
... )
|
|
363
|
+
"""
|
|
507
364
|
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
365
|
+
transforms: Sequence[Union[XYFlipModel, XYRandomRotate90Model]] = Field(
|
|
366
|
+
default=[
|
|
367
|
+
XYFlipModel(),
|
|
368
|
+
XYRandomRotate90Model(),
|
|
369
|
+
],
|
|
370
|
+
validate_default=True,
|
|
371
|
+
)
|
|
372
|
+
"""List of transformations to apply to the data, available transforms are defined
|
|
373
|
+
in SupportedTransform. This excludes N2V specific transformations."""
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
"""Noise2Void specific data configuration model."""
|
|
2
|
+
|
|
3
|
+
from collections.abc import Sequence
|
|
4
|
+
from typing import Literal
|
|
5
|
+
|
|
6
|
+
from pydantic import Field, field_validator
|
|
7
|
+
|
|
8
|
+
from careamics.config.data.data_model import GeneralDataConfig
|
|
9
|
+
from careamics.config.support import SupportedTransform
|
|
10
|
+
from careamics.config.transformations import (
|
|
11
|
+
N2V_TRANSFORMS_UNION,
|
|
12
|
+
N2VManipulateModel,
|
|
13
|
+
XYFlipModel,
|
|
14
|
+
XYRandomRotate90Model,
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class N2VDataConfig(GeneralDataConfig):
|
|
19
|
+
"""N2V specific data configuration model."""
|
|
20
|
+
|
|
21
|
+
transforms: Sequence[N2V_TRANSFORMS_UNION] = Field(
|
|
22
|
+
default=[XYFlipModel(), XYRandomRotate90Model(), N2VManipulateModel()],
|
|
23
|
+
validate_default=True,
|
|
24
|
+
)
|
|
25
|
+
"""N2V compatible transforms. N2VManpulate should be the last transform."""
|
|
26
|
+
|
|
27
|
+
@field_validator("transforms")
|
|
28
|
+
@classmethod
|
|
29
|
+
def validate_transforms(
|
|
30
|
+
cls, transforms: list[N2V_TRANSFORMS_UNION]
|
|
31
|
+
) -> list[N2V_TRANSFORMS_UNION]:
|
|
32
|
+
"""
|
|
33
|
+
Validate N2VManipulate transform position in the transform list.
|
|
34
|
+
|
|
35
|
+
Parameters
|
|
36
|
+
----------
|
|
37
|
+
transforms : list of transforms compatible with N2V
|
|
38
|
+
Transforms.
|
|
39
|
+
|
|
40
|
+
Returns
|
|
41
|
+
-------
|
|
42
|
+
list of transforms
|
|
43
|
+
Validated transforms.
|
|
44
|
+
|
|
45
|
+
Raises
|
|
46
|
+
------
|
|
47
|
+
ValueError
|
|
48
|
+
If multiple instances of N2VManipulate are found or if it is not the last
|
|
49
|
+
transform.
|
|
50
|
+
"""
|
|
51
|
+
transform_list = [t.name for t in transforms]
|
|
52
|
+
|
|
53
|
+
if SupportedTransform.N2V_MANIPULATE in transform_list:
|
|
54
|
+
# multiple N2V_MANIPULATE
|
|
55
|
+
if transform_list.count(SupportedTransform.N2V_MANIPULATE.value) > 1:
|
|
56
|
+
raise ValueError(
|
|
57
|
+
f"Multiple instances of "
|
|
58
|
+
f"{SupportedTransform.N2V_MANIPULATE} transforms "
|
|
59
|
+
f"are not allowed."
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
# N2V_MANIPULATE not the last transform
|
|
63
|
+
elif transform_list[-1] != SupportedTransform.N2V_MANIPULATE:
|
|
64
|
+
raise ValueError(
|
|
65
|
+
f"{SupportedTransform.N2V_MANIPULATE} transform "
|
|
66
|
+
f"should be the last transform."
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
else:
|
|
70
|
+
raise ValueError(
|
|
71
|
+
f"{SupportedTransform.N2V_MANIPULATE} transform "
|
|
72
|
+
f"is required for N2V training."
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
return transforms
|
|
76
|
+
|
|
77
|
+
def set_n2v2(self, use_n2v2: bool) -> None:
|
|
78
|
+
"""
|
|
79
|
+
Set the N2V transform to the N2V2 version.
|
|
80
|
+
|
|
81
|
+
Parameters
|
|
82
|
+
----------
|
|
83
|
+
use_n2v2 : bool
|
|
84
|
+
Whether to use N2V2.
|
|
85
|
+
|
|
86
|
+
Raises
|
|
87
|
+
------
|
|
88
|
+
ValueError
|
|
89
|
+
If the N2V pixel manipulate transform is not found in the transforms.
|
|
90
|
+
"""
|
|
91
|
+
if use_n2v2:
|
|
92
|
+
self.set_masking_strategy("median")
|
|
93
|
+
else:
|
|
94
|
+
self.set_masking_strategy("uniform")
|
|
95
|
+
|
|
96
|
+
def set_masking_strategy(self, strategy: Literal["uniform", "median"]) -> None:
|
|
97
|
+
"""
|
|
98
|
+
Set masking strategy.
|
|
99
|
+
|
|
100
|
+
Parameters
|
|
101
|
+
----------
|
|
102
|
+
strategy : "uniform" or "median"
|
|
103
|
+
Strategy to use for N2V2.
|
|
104
|
+
|
|
105
|
+
Raises
|
|
106
|
+
------
|
|
107
|
+
ValueError
|
|
108
|
+
If the N2V pixel manipulate transform is not found in the transforms.
|
|
109
|
+
"""
|
|
110
|
+
found_n2v = False
|
|
111
|
+
|
|
112
|
+
for transform in self.transforms:
|
|
113
|
+
if transform.name == SupportedTransform.N2V_MANIPULATE.value:
|
|
114
|
+
transform.strategy = strategy
|
|
115
|
+
found_n2v = True
|
|
116
|
+
|
|
117
|
+
if not found_n2v:
|
|
118
|
+
transforms = [t.name for t in self.transforms]
|
|
119
|
+
raise ValueError(
|
|
120
|
+
f"N2V_Manipulate transform not found in the transforms list "
|
|
121
|
+
f"({transforms})."
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
def get_masking_strategy(self) -> Literal["uniform", "median"]:
|
|
125
|
+
"""
|
|
126
|
+
Get N2V2 strategy.
|
|
127
|
+
|
|
128
|
+
Returns
|
|
129
|
+
-------
|
|
130
|
+
"uniform" or "median"
|
|
131
|
+
Strategy used for N2V2.
|
|
132
|
+
"""
|
|
133
|
+
for transform in self.transforms:
|
|
134
|
+
if transform.name == SupportedTransform.N2V_MANIPULATE.value:
|
|
135
|
+
return transform.strategy
|
|
136
|
+
|
|
137
|
+
raise ValueError(
|
|
138
|
+
f"{SupportedTransform.N2V_MANIPULATE} transform "
|
|
139
|
+
f"is required for N2V training."
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
def set_structN2V_mask(
|
|
143
|
+
self, mask_axis: Literal["horizontal", "vertical", "none"], mask_span: int
|
|
144
|
+
) -> None:
|
|
145
|
+
"""
|
|
146
|
+
Set structN2V mask parameters.
|
|
147
|
+
|
|
148
|
+
Setting `mask_axis` to `none` will disable structN2V.
|
|
149
|
+
|
|
150
|
+
Parameters
|
|
151
|
+
----------
|
|
152
|
+
mask_axis : Literal["horizontal", "vertical", "none"]
|
|
153
|
+
Axis along which to apply the mask. `none` will disable structN2V.
|
|
154
|
+
mask_span : int
|
|
155
|
+
Total span of the mask in pixels.
|
|
156
|
+
|
|
157
|
+
Raises
|
|
158
|
+
------
|
|
159
|
+
ValueError
|
|
160
|
+
If the N2V pixel manipulate transform is not found in the transforms.
|
|
161
|
+
"""
|
|
162
|
+
found_n2v = False
|
|
163
|
+
|
|
164
|
+
for transform in self.transforms:
|
|
165
|
+
if transform.name == SupportedTransform.N2V_MANIPULATE.value:
|
|
166
|
+
transform.struct_mask_axis = mask_axis
|
|
167
|
+
transform.struct_mask_span = mask_span
|
|
168
|
+
found_n2v = True
|
|
169
|
+
|
|
170
|
+
if not found_n2v:
|
|
171
|
+
transforms = [t.name for t in self.transforms]
|
|
172
|
+
raise ValueError(
|
|
173
|
+
f"N2V pixel manipulate transform not found in the transforms "
|
|
174
|
+
f"({transforms})."
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
def is_using_struct_n2v(self) -> bool:
|
|
178
|
+
"""
|
|
179
|
+
Check if structN2V is enabled.
|
|
180
|
+
|
|
181
|
+
Returns
|
|
182
|
+
-------
|
|
183
|
+
bool
|
|
184
|
+
Whether structN2V is enabled or not.
|
|
185
|
+
"""
|
|
186
|
+
for transform in self.transforms:
|
|
187
|
+
if transform.name == SupportedTransform.N2V_MANIPULATE.value:
|
|
188
|
+
return transform.struct_mask_axis != "none"
|
|
189
|
+
|
|
190
|
+
raise ValueError(
|
|
191
|
+
f"N2V pixel manipulate transform not found in the transforms "
|
|
192
|
+
f"({self.transforms})."
|
|
193
|
+
)
|
|
@@ -1,11 +1,10 @@
|
|
|
1
1
|
"""Likelihood model."""
|
|
2
2
|
|
|
3
|
-
from typing import Literal, Optional, Union
|
|
3
|
+
from typing import Annotated, Literal, Optional, Union
|
|
4
4
|
|
|
5
5
|
import numpy as np
|
|
6
6
|
import torch
|
|
7
|
-
from pydantic import BaseModel, ConfigDict,
|
|
8
|
-
from typing_extensions import Annotated
|
|
7
|
+
from pydantic import BaseModel, ConfigDict, PlainSerializer, PlainValidator
|
|
9
8
|
|
|
10
9
|
from careamics.models.lvae.noise_models import (
|
|
11
10
|
GaussianMixtureNoiseModel,
|
|
@@ -41,7 +40,12 @@ class GaussianLikelihoodConfig(BaseModel):
|
|
|
41
40
|
|
|
42
41
|
|
|
43
42
|
class NMLikelihoodConfig(BaseModel):
|
|
44
|
-
"""Noise model likelihood configuration.
|
|
43
|
+
"""Noise model likelihood configuration.
|
|
44
|
+
|
|
45
|
+
NOTE: we need to define the data mean and std here because the noise model
|
|
46
|
+
is trained on not-normalized data. Hence, we need to unnormalize the model
|
|
47
|
+
output to compute the noise model likelihood.
|
|
48
|
+
"""
|
|
45
49
|
|
|
46
50
|
model_config = ConfigDict(validate_assignment=True, arbitrary_types_allowed=True)
|
|
47
51
|
|
|
@@ -54,7 +58,3 @@ class NMLikelihoodConfig(BaseModel):
|
|
|
54
58
|
data_std: Tensor = torch.ones(1)
|
|
55
59
|
"""The standard deviation of the data, used to unnormalize data for noise
|
|
56
60
|
model evaluation. Shape is (target_ch,) (or (1, target_ch, [1], 1, 1))."""
|
|
57
|
-
|
|
58
|
-
# TODO: serialization/deserialization for this
|
|
59
|
-
noise_model: Optional[NoiseModel] = Field(default=None, exclude=True)
|
|
60
|
-
"""The noise model instance used to compute the likelihood."""
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
"""Configuration classes for LVAE losses."""
|
|
2
|
+
|
|
3
|
+
from typing import Literal
|
|
4
|
+
|
|
5
|
+
from pydantic import BaseModel, ConfigDict
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class KLLossConfig(BaseModel):
|
|
9
|
+
"""KL loss configuration."""
|
|
10
|
+
|
|
11
|
+
model_config = ConfigDict(validate_assignment=True, validate_default=True)
|
|
12
|
+
|
|
13
|
+
loss_type: Literal["kl", "kl_restricted"] = "kl"
|
|
14
|
+
"""Type of KL divergence used as KL loss."""
|
|
15
|
+
rescaling: Literal["latent_dim", "image_dim"] = "latent_dim"
|
|
16
|
+
"""Rescaling of the KL loss."""
|
|
17
|
+
aggregation: Literal["sum", "mean"] = "mean"
|
|
18
|
+
"""Aggregation of the KL loss across different layers."""
|
|
19
|
+
free_bits_coeff: float = 0.0
|
|
20
|
+
"""Free bits coefficient for the KL loss."""
|
|
21
|
+
annealing: bool = False
|
|
22
|
+
"""Whether to apply KL loss annealing."""
|
|
23
|
+
start: int = -1
|
|
24
|
+
"""Epoch at which KL loss annealing starts."""
|
|
25
|
+
annealtime: int = 10
|
|
26
|
+
"""Number of epochs for which KL loss annealing is applied."""
|
|
27
|
+
current_epoch: int = 0
|
|
28
|
+
"""Current epoch in the training loop."""
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class LVAELossConfig(BaseModel):
|
|
32
|
+
"""LVAE loss configuration."""
|
|
33
|
+
|
|
34
|
+
model_config = ConfigDict(
|
|
35
|
+
validate_assignment=True, validate_default=True, arbitrary_types_allowed=True
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
loss_type: Literal["musplit", "denoisplit", "denoisplit_musplit"]
|
|
39
|
+
"""Type of loss to use for LVAE."""
|
|
40
|
+
|
|
41
|
+
reconstruction_weight: float = 1.0
|
|
42
|
+
"""Weight for the reconstruction loss in the total net loss
|
|
43
|
+
(i.e., `net_loss = reconstruction_weight * rec_loss + kl_weight * kl_loss`)."""
|
|
44
|
+
kl_weight: float = 1.0
|
|
45
|
+
"""Weight for the KL loss in the total net loss.
|
|
46
|
+
(i.e., `net_loss = reconstruction_weight * rec_loss + kl_weight * kl_loss`)."""
|
|
47
|
+
musplit_weight: float = 0.1
|
|
48
|
+
"""Weight for the muSplit loss (used in the muSplit-denoiSplit loss)."""
|
|
49
|
+
denoisplit_weight: float = 0.9
|
|
50
|
+
"""Weight for the denoiSplit loss (used in the muSplit-deonoiSplit loss)."""
|
|
51
|
+
kl_params: KLLossConfig = KLLossConfig()
|
|
52
|
+
"""KL loss configuration."""
|
|
53
|
+
|
|
54
|
+
# TODO: remove?
|
|
55
|
+
non_stochastic: bool = False
|
|
56
|
+
"""Whether to sample latents and compute KL."""
|