careamics 0.0.4.2__py3-none-any.whl → 0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (118) hide show
  1. careamics/__init__.py +17 -2
  2. careamics/careamist.py +239 -28
  3. careamics/cli/conf.py +19 -31
  4. careamics/cli/main.py +112 -12
  5. careamics/cli/utils.py +29 -0
  6. careamics/config/__init__.py +48 -24
  7. careamics/config/algorithms/__init__.py +15 -0
  8. careamics/config/algorithms/care_algorithm_model.py +50 -0
  9. careamics/config/algorithms/n2n_algorithm_model.py +42 -0
  10. careamics/config/algorithms/n2v_algorithm_model.py +35 -0
  11. careamics/config/algorithms/unet_algorithm_model.py +88 -0
  12. careamics/config/{vae_algorithm_model.py → algorithms/vae_algorithm_model.py} +26 -23
  13. careamics/config/architectures/__init__.py +1 -11
  14. careamics/config/architectures/architecture_model.py +3 -3
  15. careamics/config/architectures/lvae_model.py +109 -21
  16. careamics/config/architectures/unet_model.py +1 -0
  17. careamics/config/care_configuration.py +100 -0
  18. careamics/config/configuration.py +354 -0
  19. careamics/config/{configuration_factory.py → configuration_factories.py} +152 -81
  20. careamics/config/configuration_io.py +85 -0
  21. careamics/config/data/__init__.py +10 -0
  22. careamics/config/{data_model.py → data/data_model.py} +58 -198
  23. careamics/config/data/n2v_data_model.py +193 -0
  24. careamics/config/likelihood_model.py +8 -8
  25. careamics/config/loss_model.py +56 -0
  26. careamics/config/n2n_configuration.py +101 -0
  27. careamics/config/n2v_configuration.py +266 -0
  28. careamics/config/nm_model.py +24 -25
  29. careamics/config/support/__init__.py +7 -7
  30. careamics/config/support/supported_algorithms.py +0 -3
  31. careamics/config/support/supported_architectures.py +0 -4
  32. careamics/config/transformations/__init__.py +10 -4
  33. careamics/config/transformations/transform_model.py +3 -3
  34. careamics/config/transformations/transform_unions.py +42 -0
  35. careamics/config/validators/validator_utils.py +3 -3
  36. careamics/dataset/__init__.py +2 -2
  37. careamics/dataset/dataset_utils/__init__.py +3 -3
  38. careamics/dataset/dataset_utils/dataset_utils.py +4 -6
  39. careamics/dataset/dataset_utils/file_utils.py +9 -9
  40. careamics/dataset/dataset_utils/iterate_over_files.py +4 -3
  41. careamics/dataset/dataset_utils/running_stats.py +22 -23
  42. careamics/dataset/in_memory_dataset.py +11 -12
  43. careamics/dataset/iterable_dataset.py +4 -4
  44. careamics/dataset/iterable_pred_dataset.py +2 -1
  45. careamics/dataset/iterable_tiled_pred_dataset.py +2 -1
  46. careamics/dataset/patching/random_patching.py +11 -10
  47. careamics/dataset/patching/sequential_patching.py +26 -26
  48. careamics/dataset/patching/validate_patch_dimension.py +3 -3
  49. careamics/dataset/tiling/__init__.py +2 -2
  50. careamics/dataset/tiling/collate_tiles.py +3 -3
  51. careamics/dataset/tiling/lvae_tiled_patching.py +2 -1
  52. careamics/dataset/tiling/tiled_patching.py +11 -10
  53. careamics/file_io/__init__.py +5 -5
  54. careamics/file_io/read/__init__.py +1 -1
  55. careamics/file_io/read/get_func.py +2 -2
  56. careamics/file_io/write/__init__.py +2 -2
  57. careamics/lightning/__init__.py +5 -5
  58. careamics/lightning/callbacks/__init__.py +1 -1
  59. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +3 -3
  60. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +2 -1
  61. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +2 -1
  62. careamics/lightning/callbacks/progress_bar_callback.py +2 -2
  63. careamics/lightning/lightning_module.py +69 -34
  64. careamics/lightning/train_data_module.py +41 -27
  65. careamics/losses/__init__.py +3 -3
  66. careamics/losses/loss_factory.py +1 -85
  67. careamics/losses/lvae/losses.py +223 -164
  68. careamics/lvae_training/calibration.py +184 -0
  69. careamics/lvae_training/dataset/config.py +2 -2
  70. careamics/lvae_training/dataset/multich_dataset.py +11 -19
  71. careamics/lvae_training/dataset/multifile_dataset.py +3 -2
  72. careamics/lvae_training/dataset/types.py +15 -26
  73. careamics/lvae_training/dataset/utils/index_manager.py +4 -4
  74. careamics/lvae_training/eval_utils.py +125 -213
  75. careamics/model_io/__init__.py +1 -1
  76. careamics/model_io/bioimage/__init__.py +1 -1
  77. careamics/model_io/bioimage/_readme_factory.py +26 -34
  78. careamics/model_io/bioimage/cover_factory.py +171 -0
  79. careamics/model_io/bioimage/model_description.py +56 -34
  80. careamics/model_io/bmz_io.py +42 -42
  81. careamics/model_io/model_io_utils.py +9 -9
  82. careamics/models/layers.py +22 -20
  83. careamics/models/lvae/layers.py +348 -975
  84. careamics/models/lvae/likelihoods.py +10 -8
  85. careamics/models/lvae/lvae.py +214 -275
  86. careamics/models/lvae/noise_models.py +179 -112
  87. careamics/models/lvae/stochastic.py +393 -0
  88. careamics/models/lvae/utils.py +82 -73
  89. careamics/models/model_factory.py +2 -15
  90. careamics/models/unet.py +8 -8
  91. careamics/prediction_utils/__init__.py +1 -1
  92. careamics/prediction_utils/prediction_outputs.py +15 -15
  93. careamics/prediction_utils/stitch_prediction.py +6 -6
  94. careamics/transforms/__init__.py +5 -5
  95. careamics/transforms/compose.py +13 -13
  96. careamics/transforms/n2v_manipulate.py +3 -3
  97. careamics/transforms/pixel_manipulation.py +9 -9
  98. careamics/transforms/xy_random_rotate90.py +4 -4
  99. careamics/utils/__init__.py +5 -5
  100. careamics/utils/context.py +2 -1
  101. careamics/utils/lightning_utils.py +57 -0
  102. careamics/utils/logging.py +11 -10
  103. careamics/utils/serializers.py +2 -0
  104. careamics/utils/torch_utils.py +8 -8
  105. {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/METADATA +16 -13
  106. careamics-0.0.6.dist-info/RECORD +176 -0
  107. {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/WHEEL +1 -1
  108. careamics/config/architectures/custom_model.py +0 -162
  109. careamics/config/architectures/register_model.py +0 -103
  110. careamics/config/configuration_model.py +0 -603
  111. careamics/config/fcn_algorithm_model.py +0 -152
  112. careamics/config/references/__init__.py +0 -45
  113. careamics/config/references/algorithm_descriptions.py +0 -132
  114. careamics/config/references/references.py +0 -39
  115. careamics/config/transformations/transform_union.py +0 -20
  116. careamics-0.0.4.2.dist-info/RECORD +0 -165
  117. {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/entry_points.txt +0 -0
  118. {careamics-0.0.4.2.dist-info → careamics-0.0.6.dist-info}/licenses/LICENSE +0 -0
@@ -1,152 +0,0 @@
1
- """Module containing `FCNAlgorithmConfig` class."""
2
-
3
- from pprint import pformat
4
- from typing import Literal, Union
5
-
6
- from pydantic import BaseModel, ConfigDict, Field, model_validator
7
- from typing_extensions import Self
8
-
9
- from careamics.config.architectures import CustomModel, UNetModel
10
- from careamics.config.optimizer_models import LrSchedulerModel, OptimizerModel
11
-
12
-
13
- class FCNAlgorithmConfig(BaseModel):
14
- """Algorithm configuration.
15
-
16
- This Pydantic model validates the parameters governing the components of the
17
- training algorithm: which algorithm, loss function, model architecture, optimizer,
18
- and learning rate scheduler to use.
19
-
20
- Currently, we only support N2V, CARE, N2N and custom models. The `n2v` algorithm is
21
- only compatible with `n2v` loss and `UNet` architecture. The `custom` algorithm
22
- allows you to register your own architecture and select it using its name as
23
- `name` in the custom pydantic model.
24
-
25
- Attributes
26
- ----------
27
- algorithm : {"n2v", "care", "n2n", "custom"}
28
- Algorithm to use.
29
- loss : {"n2v", "mae", "mse"}
30
- Loss function to use.
31
- model : UNetModel or CustomModel
32
- Model architecture to use.
33
- optimizer : OptimizerModel, optional
34
- Optimizer to use.
35
- lr_scheduler : LrSchedulerModel, optional
36
- Learning rate scheduler to use.
37
-
38
- Raises
39
- ------
40
- ValueError
41
- Algorithm parameter type validation errors.
42
- ValueError
43
- If the algorithm, loss and model are not compatible.
44
-
45
- Examples
46
- --------
47
- Minimum example:
48
- >>> from careamics.config import FCNAlgorithmConfig
49
- >>> config_dict = {
50
- ... "algorithm": "n2v",
51
- ... "loss": "n2v",
52
- ... "model": {
53
- ... "architecture": "UNet",
54
- ... }
55
- ... }
56
- >>> config = FCNAlgorithmConfig(**config_dict)
57
- """
58
-
59
- # Pydantic class configuration
60
- model_config = ConfigDict(
61
- protected_namespaces=(), # allows to use model_* as a field name
62
- validate_assignment=True,
63
- extra="allow",
64
- )
65
-
66
- # Mandatory fields
67
- algorithm: Literal["n2v", "care", "n2n", "custom"]
68
- """Name of the algorithm, as defined in SupportedAlgorithm. Use `custom` for custom
69
- model architecture."""
70
-
71
- loss: Literal["n2v", "mae", "mse"]
72
- """Loss function to use, as defined in SupportedLoss."""
73
-
74
- model: Union[UNetModel, CustomModel] = Field(discriminator="architecture")
75
- """Model architecture to use, along with its parameters. Compatible architectures
76
- are defined in SupportedArchitecture, and their Pydantic models in
77
- `careamics.config.architectures`."""
78
- # TODO supported architectures are now all the architectures but does not warn users
79
- # of the compatibility with the algorithm
80
-
81
- # Optional fields
82
- optimizer: OptimizerModel = OptimizerModel()
83
- """Optimizer to use, defined in SupportedOptimizer."""
84
-
85
- lr_scheduler: LrSchedulerModel = LrSchedulerModel()
86
- """Learning rate scheduler to use, defined in SupportedLrScheduler."""
87
-
88
- @model_validator(mode="after")
89
- def algorithm_cross_validation(self: Self) -> Self:
90
- """Validate the algorithm model based on `algorithm`.
91
-
92
- N2V:
93
- - loss must be n2v
94
- - model must be a `UNetModel`
95
-
96
- Returns
97
- -------
98
- Self
99
- The validated model.
100
- """
101
- # N2V
102
- if self.algorithm == "n2v":
103
- # n2v is only compatible with the n2v loss
104
- if self.loss != "n2v":
105
- raise ValueError(
106
- f"Algorithm {self.algorithm} only supports loss `n2v`."
107
- )
108
-
109
- # n2v is only compatible with the UNet model
110
- if not isinstance(self.model, UNetModel):
111
- raise ValueError(
112
- f"Model for algorithm {self.algorithm} must be a `UNetModel`."
113
- )
114
-
115
- # n2v requires the number of input and output channels to be the same
116
- if self.model.in_channels != self.model.num_classes:
117
- raise ValueError(
118
- "N2V requires the same number of input and output channels. Make "
119
- "sure that `in_channels` and `num_classes` are the same."
120
- )
121
-
122
- if self.algorithm == "care" or self.algorithm == "n2n":
123
- if self.loss == "n2v":
124
- raise ValueError("Supervised algorithms do not support loss `n2v`.")
125
-
126
- if (self.algorithm == "custom") != (self.model.architecture == "custom"):
127
- raise ValueError(
128
- "Algorithm and model architecture must be both `custom` or not."
129
- )
130
-
131
- return self
132
-
133
- def __str__(self) -> str:
134
- """Pretty string representing the configuration.
135
-
136
- Returns
137
- -------
138
- str
139
- Pretty string.
140
- """
141
- return pformat(self.model_dump())
142
-
143
- @classmethod
144
- def get_compatible_algorithms(cls) -> list[str]:
145
- """Get the list of compatible algorithms.
146
-
147
- Returns
148
- -------
149
- list of str
150
- List of compatible algorithms.
151
- """
152
- return ["n2v", "care", "n2n"]
@@ -1,45 +0,0 @@
1
- """Module containing references to the algorithm used in CAREamics."""
2
-
3
- __all__ = [
4
- "N2V2Ref",
5
- "N2VRef",
6
- "StructN2VRef",
7
- "N2VDescription",
8
- "N2V2Description",
9
- "StructN2VDescription",
10
- "StructN2V2Description",
11
- "N2V",
12
- "N2V2",
13
- "STRUCT_N2V",
14
- "STRUCT_N2V2",
15
- "CUSTOM",
16
- "N2N",
17
- "CARE",
18
- "CAREDescription",
19
- "N2NDescription",
20
- "CARERef",
21
- "N2NRef",
22
- ]
23
-
24
- from .algorithm_descriptions import (
25
- CARE,
26
- CUSTOM,
27
- N2N,
28
- N2V,
29
- N2V2,
30
- STRUCT_N2V,
31
- STRUCT_N2V2,
32
- CAREDescription,
33
- N2NDescription,
34
- N2V2Description,
35
- N2VDescription,
36
- StructN2V2Description,
37
- StructN2VDescription,
38
- )
39
- from .references import (
40
- CARERef,
41
- N2NRef,
42
- N2V2Ref,
43
- N2VRef,
44
- StructN2VRef,
45
- )
@@ -1,132 +0,0 @@
1
- """Descriptions of the algorithms used in CAREmics."""
2
-
3
- from pydantic import BaseModel
4
-
5
- CUSTOM = "Custom"
6
- N2V = "Noise2Void"
7
- N2V2 = "N2V2"
8
- STRUCT_N2V = "StructN2V"
9
- STRUCT_N2V2 = "StructN2V2"
10
- N2N = "Noise2Noise"
11
- CARE = "CARE"
12
-
13
-
14
- N2V_DESCRIPTION = (
15
- "Noise2Void is a UNet-based self-supervised algorithm that "
16
- "uses blind-spot training to denoise images. In short, in every "
17
- "patches during training, random pixels are selected and their "
18
- "value replaced by a neighboring pixel value. The network is then "
19
- "trained to predict the original pixel value. The algorithm "
20
- "relies on the continuity of the signal (neighboring pixels have "
21
- "similar values) and the pixel-wise independence of the noise "
22
- "(the noise in a pixel is not correlated with the noise in "
23
- "neighboring pixels)."
24
- )
25
-
26
-
27
- class AlgorithmDescription(BaseModel):
28
- """Description of an algorithm.
29
-
30
- Attributes
31
- ----------
32
- description : str
33
- Description of the algorithm.
34
- """
35
-
36
- description: str
37
-
38
-
39
- class N2VDescription(AlgorithmDescription):
40
- """Description of Noise2Void.
41
-
42
- Attributes
43
- ----------
44
- description : str
45
- Description of Noise2Void.
46
- """
47
-
48
- description: str = N2V_DESCRIPTION
49
-
50
-
51
- class N2V2Description(AlgorithmDescription):
52
- """Description of N2V2.
53
-
54
- Attributes
55
- ----------
56
- description : str
57
- Description of N2V2.
58
- """
59
-
60
- description: str = (
61
- "N2V2 is a variant of Noise2Void. "
62
- + N2V_DESCRIPTION
63
- + "\nN2V2 introduces blur-pool layers and removed skip "
64
- "connections in the UNet architecture to remove checkboard "
65
- "artefacts, a common artefacts ocurring in Noise2Void."
66
- )
67
-
68
-
69
- class StructN2VDescription(AlgorithmDescription):
70
- """Description of StructN2V.
71
-
72
- Attributes
73
- ----------
74
- description : str
75
- Description of StructN2V.
76
- """
77
-
78
- description: str = (
79
- "StructN2V is a variant of Noise2Void. "
80
- + N2V_DESCRIPTION
81
- + "\nStructN2V uses a linear mask (horizontal or vertical) to replace "
82
- "the pixel values of neighbors of the masked pixels by a random "
83
- "value. Such masking allows removing 1D structured noise from the "
84
- "the images, the main failure case of the original N2V."
85
- )
86
-
87
-
88
- class StructN2V2Description(AlgorithmDescription):
89
- """Description of StructN2V2.
90
-
91
- Attributes
92
- ----------
93
- description : str
94
- Description of StructN2V2.
95
- """
96
-
97
- description: str = (
98
- "StructN2V2 is a a variant of Noise2Void that uses both "
99
- "structN2V and N2V2. "
100
- + N2V_DESCRIPTION
101
- + "\nStructN2V2 uses a linear mask (horizontal or vertical) to replace "
102
- "the pixel values of neighbors of the masked pixels by a random "
103
- "value. Such masking allows removing 1D structured noise from the "
104
- "the images, the main failure case of the original N2V."
105
- "\nN2V2 introduces blur-pool layers and removed skip connections in "
106
- "the UNet architecture to remove checkboard artefacts, a common "
107
- "artefacts ocurring in Noise2Void."
108
- )
109
-
110
-
111
- class N2NDescription(AlgorithmDescription):
112
- """Description of Noise2Noise.
113
-
114
- Attributes
115
- ----------
116
- description : str
117
- Description of Noise2Noise.
118
- """
119
-
120
- description: str = "Noise2Noise" # TODO
121
-
122
-
123
- class CAREDescription(AlgorithmDescription):
124
- """Description of CARE.
125
-
126
- Attributes
127
- ----------
128
- description : str
129
- Description of CARE.
130
- """
131
-
132
- description: str = "CARE" # TODO
@@ -1,39 +0,0 @@
1
- """References for the CAREamics algorithms."""
2
-
3
- from bioimageio.spec.generic.v0_3 import CiteEntry
4
-
5
- N2VRef = CiteEntry(
6
- text='Krull, A., Buchholz, T.O. and Jug, F., 2019. "Noise2Void - Learning '
7
- 'denoising from single noisy images". In Proceedings of the IEEE/CVF '
8
- "conference on computer vision and pattern recognition (pp. 2129-2137).",
9
- doi="10.1109/cvpr.2019.00223",
10
- )
11
-
12
- N2V2Ref = CiteEntry(
13
- text="Höck, E., Buchholz, T.O., Brachmann, A., Jug, F. and Freytag, A., "
14
- '2022. "N2V2 - Fixing Noise2Void checkerboard artifacts with modified '
15
- 'sampling strategies and a tweaked network architecture". In European '
16
- "Conference on Computer Vision (pp. 503-518).",
17
- doi="10.1007/978-3-031-25069-9_33",
18
- )
19
-
20
- StructN2VRef = CiteEntry(
21
- text="Broaddus, C., Krull, A., Weigert, M., Schmidt, U. and Myers, G., 2020."
22
- '"Removing structured noise with self-supervised blind-spot '
23
- 'networks". In 2020 IEEE 17th International Symposium on Biomedical '
24
- "Imaging (ISBI) (pp. 159-163).",
25
- doi="10.1109/isbi45749.2020.9098336",
26
- )
27
-
28
- N2NRef = CiteEntry(
29
- text="Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., "
30
- 'Aittala, M. and Aila, T., 2018. "Noise2Noise: Learning image restoration '
31
- 'without clean data". arXiv preprint arXiv:1803.04189.',
32
- doi="10.48550/arXiv.1803.04189",
33
- )
34
-
35
- CARERef = CiteEntry(
36
- text='Weigert, Martin, et al. "Content-aware image restoration: pushing the '
37
- 'limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.',
38
- doi="10.1038/s41592-018-0216-7",
39
- )
@@ -1,20 +0,0 @@
1
- """Type used to represent all transformations users can create."""
2
-
3
- from typing import Union
4
-
5
- from pydantic import Discriminator
6
- from typing_extensions import Annotated
7
-
8
- from .n2v_manipulate_model import N2VManipulateModel
9
- from .xy_flip_model import XYFlipModel
10
- from .xy_random_rotate90_model import XYRandomRotate90Model
11
-
12
- TRANSFORMS_UNION = Annotated[
13
- Union[
14
- XYFlipModel,
15
- XYRandomRotate90Model,
16
- N2VManipulateModel,
17
- ],
18
- Discriminator("name"), # used to tell the different transform models apart
19
- ]
20
- """Available transforms in CAREamics."""
@@ -1,165 +0,0 @@
1
- careamics/__init__.py,sha256=xBCerWN66hv3T7dRGiUYLflmbJtJt1HqbSg9JCWp8pY,391
2
- careamics/careamist.py,sha256=eZttleBmhu649kkVj7spfBw7DLUuGjx58S2fTPem7g4,28351
3
- careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
- careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
- careamics/cli/__init__.py,sha256=LbM9bVtU1dy-khmdiIDXwvKy2v8wPBCEUuWqV_8rosA,106
6
- careamics/cli/conf.py,sha256=1MRSzKcIL--IbYiNixW2aA58GC0ptQHWbBtp7b5eRwQ,13370
7
- careamics/cli/main.py,sha256=EAWBQoCxcNv-4t3h8_YLCXNjWWU08cOzFj5DYam5e6g,3441
8
- careamics/config/__init__.py,sha256=M_Y0sGIVr1lQF4IpDeVkWkspbUNlbdH-iDjapMSGOoc,1127
9
- careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
10
- careamics/config/configuration_factory.py,sha256=vHwRuYasELdZQv0KpX3fxPPUBbJfguBOOtPgqQJ3oks,30193
11
- careamics/config/configuration_model.py,sha256=pvANQOkWpA-bB60bzI40z_tTnk1zt1l8pfXg7KsDsRs,18843
12
- careamics/config/data_model.py,sha256=MOXnX6dmI-08b4H_43xOrnSlwdbCtO1UuI9YqOT8djA,15370
13
- careamics/config/fcn_algorithm_model.py,sha256=eBBjkoyavhvDJFTrjJDkNrWSP_-YaK0cy7qo0lCdBQ0,5105
14
- careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
15
- careamics/config/likelihood_model.py,sha256=CZtkaMqwGZLW5PWModv-tDDjjLxqGhhTkWpk27V3ERU,2274
16
- careamics/config/nm_model.py,sha256=lscJb31g3w2H_AY-PL2nL06KuknbaLAftZsVNYNDmxA,4742
17
- careamics/config/optimizer_models.py,sha256=OWpTydRBBR8wt_af1mZHNNwvL_RtnRFopAOdgjzLo30,5750
18
- careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
19
- careamics/config/training_model.py,sha256=67_ipo_-LxhT4-WqAs40Sg8PjU--my43Qn3BhjvlXxM,3212
20
- careamics/config/vae_algorithm_model.py,sha256=p4OSLCDokw2ADYKP6LvUy9eAHfapqKpcO5LE2RMkiT4,4678
21
- careamics/config/architectures/__init__.py,sha256=VyuBIopbqpR0KPq6cAeX3qPCrlbY8ZB_rGXwa2ApNvc,447
22
- careamics/config/architectures/architecture_model.py,sha256=qqPpmkNLwTBC3nwOmXpl33UAvpDFsAxFRBw9MIsQgws,921
23
- careamics/config/architectures/custom_model.py,sha256=-ROcKn_Ai7SZqzQLoEUc2BLAalgjyvoOnyDKUiY_cp0,4876
24
- careamics/config/architectures/lvae_model.py,sha256=erySFyLStHX-jUXPLYAEZ2q9bPhWzsMRdU6VFLZobpE,4585
25
- careamics/config/architectures/register_model.py,sha256=lHH0aUPmXtI3Bq_76zkhg07_Yb_nOJZkZJLCC_G-rZM,2434
26
- careamics/config/architectures/unet_model.py,sha256=8F2KosNkrXUP2bxlm-D1mowS9x3GOjyXjsEo1Kf-05k,3497
27
- careamics/config/references/__init__.py,sha256=rZAQzmrciX5cNICcXaBH6sbE6N6L7_qYQUkasNy9y-c,763
28
- careamics/config/references/algorithm_descriptions.py,sha256=wR3hIoeg5eiUEPbwTxMpQYLTKQyRl_5naSDbBZOZESU,3541
29
- careamics/config/references/references.py,sha256=AXx08FJQxHb7SYOluCr_eQn_mbOris5dXqhKrCnhBTE,1573
30
- careamics/config/support/__init__.py,sha256=pKqk76kyBraiSC1SQos-cyiQwsfOLLkLuWj6Hw60LZ4,1041
31
- careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
32
- careamics/config/support/supported_algorithms.py,sha256=Tt5PaV1mwSZdrc4XpW9M4-ofExoHnMgfebCSN6ns0AQ,953
33
- careamics/config/support/supported_architectures.py,sha256=f93cRyeBOu5rYzvYrvWPVpjyK54GhyVTzCT1GNSdhI8,494
34
- careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
35
- careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
36
- careamics/config/support/supported_losses.py,sha256=2x5sZuxRbWJzodoL35I1mMYUUDMzk8UFiFdbyPwbJ4E,583
37
- careamics/config/support/supported_optimizers.py,sha256=_2XmwzYENB6xpTedyWHUdWuGcDzdlfEAJjzm_qI3yRM,1392
38
- careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
39
- careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
40
- careamics/config/support/supported_transforms.py,sha256=ODvmoTywvJWG_5-SJJZu-X1FNtKGhkNWQc-t26IFZWI,311
41
- careamics/config/transformations/__init__.py,sha256=lW9DcsCfemnlcmECyw5Id28nIuwg1YPKWhGgdfzcv5s,493
42
- careamics/config/transformations/n2v_manipulate_model.py,sha256=Mdxc4J3vxe_dM2CIhmTwwGOIirQvrQXLoa2vRsTzoYI,1855
43
- careamics/config/transformations/normalize_model.py,sha256=1Rkk6IkF-7ytGU6HSzP-TpOi4RRWiQJ6fOd8zammXcg,1936
44
- careamics/config/transformations/transform_model.py,sha256=i7KAtSv4nah2H7uyJFKqg7RdKF68OHIPMNNvDo0HxGY,1000
45
- careamics/config/transformations/transform_union.py,sha256=3PnzsWlD2ymIgRPrUDZzPT9vMOVLVDtUcEorZTYx_-I,574
46
- careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
47
- careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
48
- careamics/config/validators/__init__.py,sha256=iv0nVI0W7j9DxFPwh0DjRCzM9P8oLQn4Gwi5rfuFrrI,180
49
- careamics/config/validators/validator_utils.py,sha256=aNFzpBVbef3BZIt6MiNMVc2kW6MJDWqQgdYkFM8Gjig,2621
50
- careamics/dataset/__init__.py,sha256=NQSWdpQu6BhqGGHUYuOt1hXJrGUN1LPNCP1A8duMY84,547
51
- careamics/dataset/in_memory_dataset.py,sha256=7YRpbKg6nqrECDhaA88HNlstyTObQxTN9jPcNlE_aWE,9906
52
- careamics/dataset/in_memory_pred_dataset.py,sha256=VvwW5D8TjgO_kR8eZinP-9qepSiI6ZsUN7FZ0Rvc8Bs,2161
53
- careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=DANmlnlV1ysXKdwGvmJoOYKcjlgoMhnSGSDRpeK79ZA,3552
54
- careamics/dataset/iterable_dataset.py,sha256=vHwkzoQs-CvbGHcGtvYMF52dO6zLau89A13xDOWSGUU,9770
55
- careamics/dataset/iterable_pred_dataset.py,sha256=2KC9C2hpZmhWSmo6w9Fhz0wjmbcsBlRy8QsYfO4dN2w,3740
56
- careamics/dataset/iterable_tiled_pred_dataset.py,sha256=uNpc_13vo9REvGYOLu7lBNDh813b_UqZ9x5c4Q_udDE,4533
57
- careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
58
- careamics/dataset/dataset_utils/__init__.py,sha256=b9r_2BcrXoHNq9chXfZvgINGwZRpWfUZ_p6vikB_Kxw,507
59
- careamics/dataset/dataset_utils/dataset_utils.py,sha256=zYNglet5lYKxIhTeOGG2K24oujC-m5zyYlwJcQcleVA,2662
60
- careamics/dataset/dataset_utils/file_utils.py,sha256=4Aq92wz9M7esrujDbOxw1WNoYLlEjBRa4sOzf2Aw61c,4070
61
- careamics/dataset/dataset_utils/iterate_over_files.py,sha256=TcX24NRt2cdM9gmmQV2f5ziwXxRne2-zePzz3DDFSMA,2871
62
- careamics/dataset/dataset_utils/running_stats.py,sha256=0uOLaXpNwmY4lIElsHg4Ezf1YRbHy9An8GHXGYOaYmg,5565
63
- careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
64
- careamics/dataset/patching/patching.py,sha256=deAxY34Iz-mguBlHQ-5EO4vRhPpR9I3LQ9onV1K_KqA,8858
65
- careamics/dataset/patching/random_patching.py,sha256=61sLxA4eJN5TIWBVIDZdJahS_CkclpM7Kc_VdPj91dU,6486
66
- careamics/dataset/patching/sequential_patching.py,sha256=_l3Q2uYIhjMJMaxDdSbHC9_2kRF9eLz-Xs3r9i7j3Nc,5903
67
- careamics/dataset/patching/validate_patch_dimension.py,sha256=sQQ0-4b4uu60MNKkoWv95KxQ80J7Ku0CEk0-kAXlKeI,2134
68
- careamics/dataset/tiling/__init__.py,sha256=XynyAz85hVfkLtrG0lrMr_aBQm_YEwfu5uFcXMGHlOA,190
69
- careamics/dataset/tiling/collate_tiles.py,sha256=OrPZ-n-V3uGOc_7CcPnyEJqdbEVDlTfJfWmZnyBZ-HA,978
70
- careamics/dataset/tiling/lvae_tiled_patching.py,sha256=AOS_1m1q74YhfLgWeUx1xkRNvgw1dq6Vi7yJhmMR-A0,12992
71
- careamics/dataset/tiling/tiled_patching.py,sha256=ouxUWvttzmTY310CuiR25IGNVWgksVQAXoN4IXSi_G0,5942
72
- careamics/file_io/__init__.py,sha256=vdIx5JV3JwoyOeWnY_0tY6aekwPFy_8hBqe0Yj-aOH8,334
73
- careamics/file_io/read/__init__.py,sha256=I2Ios3fOoe_7f1nYT88qt2hcl0107aJCvA8yPfdpVIA,259
74
- careamics/file_io/read/get_func.py,sha256=yGXD0rTFD7u70FR0axrQtWies0aYW3iQ6f0Wfcd8z-8,1394
75
- careamics/file_io/read/tiff.py,sha256=UMofW33rvByK9B1zYGhSrWAiAA3uQUV3OVK7cq9d0gQ,1359
76
- careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
77
- careamics/file_io/write/__init__.py,sha256=syy-e55OKPqa2Fn7G6szJrAmmJ4JUJyr4Y4ZSnKK0zg,283
78
- careamics/file_io/write/get_func.py,sha256=hyGHe1RX-lfa9QFAnwRCz_gS0NRiRnXEtg4Bdeh2Esc,1627
79
- careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KAE8,1050
80
- careamics/lightning/__init__.py,sha256=iS9dYpYrkjyeZfodcohc25rBTPzxj9l50iTb5Jv0j0o,588
81
- careamics/lightning/lightning_module.py,sha256=afQVpEqVeug_hyy28yljPGajtTLLSOZbQB4UkgJQDT8,21846
82
- careamics/lightning/predict_data_module.py,sha256=JNwujK6QwObSx6P25ghpGl2f2gGT3KVgYMTlonZzH20,12745
83
- careamics/lightning/train_data_module.py,sha256=x532RUaB6lN8ojUevE0Kgv-MYCVRwkaLZaq-M6wnA6E,27896
84
- careamics/lightning/callbacks/__init__.py,sha256=neTWqF6EbBRVf0FqtBkPHeGIR3j1yTk0OASraEVN0Pg,312
85
- careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
86
- careamics/lightning/callbacks/progress_bar_callback.py,sha256=8HvNSWZldixd6pjz0dLDo0apIbzTovv5smKmZ6tZQ8U,2444
87
- careamics/lightning/callbacks/prediction_writer_callback/__init__.py,sha256=tATV4kFZ8h4ZpN866URsf2vbEfY9HlHN4VALJcDySCY,548
88
- careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py,sha256=i4vGGiVLslafi-5iuvkAKzBgZ0BpwTTxSTo31oViFz4,1480
89
- careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py,sha256=HGDyYLSak9puGEs42cI_08peAuOMaFyZaRkcpv_n0iY,8183
90
- careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py,sha256=aqc6DDewD4n3tbLfqS4y-FfNKV9zy3-CZ0K2Mu16Mms,12567
91
- careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py,sha256=F1IpbNNgkv5eK8Xpqp7wqv2lsqEdP1wMRlBL7RBn93U,7114
92
- careamics/losses/__init__.py,sha256=4s73OlMCGJdNCVfOteJPyaPwflgIiu_fj3zpKLx7j6o,351
93
- careamics/losses/loss_factory.py,sha256=MlhcU5KI9sXWuYUBBmIZtXj4TLi7r6hgiqZQQ3jg5_E,4378
94
- careamics/losses/fcn/__init__.py,sha256=kf92MKFGHr6upiztZVgWwtGPf734DZyub92Rn8uEq8o,18
95
- careamics/losses/fcn/losses.py,sha256=NdOz29hzJ7D26p13q-g0NWoYwNauIWrP2xWww6YPbB8,2360
96
- careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5jq5uw,19
97
- careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
98
- careamics/losses/lvae/losses.py,sha256=lLwfuxGPqgkKj25jCONx0Mkx6iBrHSFavgCSazmyRUo,16076
99
- careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
- careamics/lvae_training/eval_utils.py,sha256=_YxERlXdvITFkCa3P6jkzMDGkUaKn95KrAofmwomG9o,34486
101
- careamics/lvae_training/get_config.py,sha256=dwVfaQS7nzjQss0E1gGLUpQpjPcOWwLgIhbu3Z0I1rg,3068
102
- careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
103
- careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
104
- careamics/lvae_training/train_lvae.py,sha256=lJEBlBGdISVkZBcEnPNRYgJ7VbapYzZHRaFOrZ0xYGE,11080
105
- careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
106
- careamics/lvae_training/dataset/__init__.py,sha256=dvdHHaRA9ZfOt_uOnXkYyra2_b0Wsxs8qmrze6zxJAE,377
107
- careamics/lvae_training/dataset/config.py,sha256=SeCHjyxwqP2Oa9oE1rQxThBs6I4PxY40zXhRp7oPE08,4294
108
- careamics/lvae_training/dataset/lc_dataset.py,sha256=xErygllUu6Q-PfPZ24sHf5_NP7YGHD2NVyzmDZgDd2U,10697
109
- careamics/lvae_training/dataset/multich_dataset.py,sha256=iNkCv9ohahhp8A0c5m6auVrvubbAGbyRBC_VxCNyeYM,41707
110
- careamics/lvae_training/dataset/multifile_dataset.py,sha256=bbEyAZ8_ODDANXsJWn7tTr59VovEnbjGSSUI_PlwrQM,10246
111
- careamics/lvae_training/dataset/types.py,sha256=ww89Fj9w85CVGxPkLhuWiBV7ZXaVeCb0lanZSJ__PvQ,821
112
- careamics/lvae_training/dataset/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- careamics/lvae_training/dataset/utils/data_utils.py,sha256=8PvRPqSbYHPCl87cycZHxXIFOT_EoBV-8XCt3ZLh36s,3125
114
- careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFULJsF5tnoByhEhE8aLHujFToU_yyqMCP4,2266
115
- careamics/lvae_training/dataset/utils/index_manager.py,sha256=mmj1p-Ez5Qeiu99WdsFq8aCr6WaVUgn_bQ2INqNpuI4,9978
116
- careamics/lvae_training/dataset/utils/index_switcher.py,sha256=ZoMi8LsaIkm8MFqIFaxN4oQGyzCcwOlCom8SYNus15E,6716
117
- careamics/model_io/__init__.py,sha256=HITzjiuZQwo-rQ2_Ma3bz9l7PDANv1_S489E-tffV9s,155
118
- careamics/model_io/bmz_io.py,sha256=tt21GHO2UD_jV7fGSnKhMSNK6iRRyCON5w9SPcxqW3I,7646
119
- careamics/model_io/model_io_utils.py,sha256=Dc_0YmcUfS3HuEVgN7KFfbDH8SGywT_eUCIJDVpEUHc,2755
120
- careamics/model_io/bioimage/__init__.py,sha256=r94nu8WDAvj0Fbu4C-iJXdOhfSQXeZBvN3UKsLG0RNI,298
121
- careamics/model_io/bioimage/_readme_factory.py,sha256=LZAuEiWNBTPaD8KrLPMq16yJuOPKDZiGQuTMHKLvoT4,3514
122
- careamics/model_io/bioimage/bioimage_utils.py,sha256=YVr75SDfafOiuYGonPbcsO-xVS0wI1WkmWQQZx6DXYQ,1246
123
- careamics/model_io/bioimage/model_description.py,sha256=LsX5U_KtcxBp4Xb5WTv2iVhJQc-hoCmY6Tb5oOq67Ic,9297
124
- careamics/models/__init__.py,sha256=Xui2BLJd1I2r_E3Sj24fJALFTi2FGtfNscUWj_0c9Hk,93
125
- careamics/models/activation.py,sha256=nu3sDgd7Lsyw8rvmUwxNN-7SM09cEMfxZ9DRDzdSKns,1049
126
- careamics/models/layers.py,sha256=oWzpq8OdHFEJqPWC9X8IRPNe0XqAnesSqwoT6V3t1Mw,13712
127
- careamics/models/model_factory.py,sha256=hqhV8sDq1JBLKt_7Vrw4wJSugKmBt2FIWyO7ePnJSTo,1759
128
- careamics/models/unet.py,sha256=3pXpiCIw7WUaDV0Jmczkxi99C5-Zu3NpQpWxgRkeGL8,14321
129
- careamics/models/lvae/__init__.py,sha256=6dT6uqgT__V08EjoTGxXguTbTkySZmByS9J2Bj6WWLM,53
130
- careamics/models/lvae/layers.py,sha256=zRHlIHaFp4nMZwTKdzhKNKGPdarefaITTqNWO8YrkMM,85022
131
- careamics/models/lvae/likelihoods.py,sha256=yTlIjhMpGPNJrdgbsvTLEKmtfjboiG_DsUcyBaqDgDs,11940
132
- careamics/models/lvae/lvae.py,sha256=YCC_te_s-l-GV0iwuYSv8OYb2PJmc-39p6Jop5kp4Zc,36335
133
- careamics/models/lvae/noise_models.py,sha256=RxIv_QdmBR2cMzGlhNZWY23ZAAeRc3C3-8MHYk2Rh6A,19709
134
- careamics/models/lvae/utils.py,sha256=4b6VKB8brg3yjv2mMb6I2KnT6HxnD5ZrfGcxGYKauHQ,11542
135
- careamics/prediction_utils/__init__.py,sha256=uYKzirlF-unFL9GbDPxFnYgOwSjGAtik9fonU7DfuEY,270
136
- careamics/prediction_utils/lvae_prediction.py,sha256=ZwPFCSeUGsULIMoMQWRYKHfLFaDm7UKyGaUMVfSUqfs,6210
137
- careamics/prediction_utils/lvae_tiling_manager.py,sha256=SI-JaJvLrKWBSHdm-FjcqWdbhlcflTRiKxYF7CSGzvA,13736
138
- careamics/prediction_utils/prediction_outputs.py,sha256=p3Nbw9wRLU_M5uixPbzj_DmfxcSL7Y8rAQ_aTx70KQI,4082
139
- careamics/prediction_utils/stitch_prediction.py,sha256=HlfkJDirzbmil6Db-kFzlmhUREmGEZ2Ag8g-URbdIb0,3899
140
- careamics/transforms/__init__.py,sha256=VIHIsC8sMAh1TCm67ifB816Zp-LRo6rAONPuT2Qs3bs,483
141
- careamics/transforms/compose.py,sha256=EOEsga7oGNZZW8zerOz7TgirbLpGyaLf1WEnTXlRjoo,5677
142
- careamics/transforms/n2v_manipulate.py,sha256=op-BT3LJaHgHULuqRRqTI6e45FtvvUZ0y-Smzbrh2WU,5693
143
- careamics/transforms/normalize.py,sha256=fxs813ydCWrIzrxFzkbk1gW8OGSr0esQSrNUFSJuGL0,7715
144
- careamics/transforms/pixel_manipulation.py,sha256=sMR3A1GrgL5AactzZYzvvtz7L13sA34ckVEoNTBmDqM,13362
145
- careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
146
- careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
147
- careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
148
- careamics/transforms/xy_flip.py,sha256=64BDo8bmAEwO1TNhbIYcUJPzzVmY5ZyNaSNmmGLkn0U,3842
149
- careamics/transforms/xy_random_rotate90.py,sha256=0SsCTPGlpt-VCJvmr55KRULp3dwFMBN8fTDboJcEbWg,3192
150
- careamics/utils/__init__.py,sha256=rG_dnqX7rdyNTFWlDkIdNtDwwMQBpg_ym14ZFeYrWfs,402
151
- careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVMeu_Bs,945
152
- careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
153
- careamics/utils/context.py,sha256=Ljf70OR1FcYpsVpxb5Sr2fzmPVIZgDS1uZob_3BcELg,1409
154
- careamics/utils/logging.py,sha256=coIscjkDYpqcsGnsONuYOdIYd6_gHxdnYIZ-e9Y2Ybg,10322
155
- careamics/utils/metrics.py,sha256=yAoCvrZ1kQx-kT9xdTBYz-oh0I52ef6uBnw8qgzpwn8,10318
156
- careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
157
- careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
158
- careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
159
- careamics/utils/serializers.py,sha256=tovAjYoYjM26FbwjKuMD4xiyiISgqROs7aiCPa_rbVs,1379
160
- careamics/utils/torch_utils.py,sha256=g1zxdlM7_BA7mMLcCzmrxZX4LmH__KXlJibC95muVaA,3014
161
- careamics-0.0.4.2.dist-info/METADATA,sha256=LNNuoE3sWn7_GHyH0XqWtMoRvbrFsNx7Y5b9xpWbVc0,3662
162
- careamics-0.0.4.2.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
163
- careamics-0.0.4.2.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
164
- careamics-0.0.4.2.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
165
- careamics-0.0.4.2.dist-info/RECORD,,