camel-ai 0.2.16__py3-none-any.whl → 0.2.17__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/chat_agent.py +18 -4
- camel/agents/multi_hop_generator_agent.py +85 -0
- camel/agents/programmed_agent_instruction.py +148 -0
- camel/benchmarks/__init__.py +2 -0
- camel/benchmarks/apibank.py +5 -0
- camel/benchmarks/apibench.py +8 -4
- camel/benchmarks/gaia.py +2 -2
- camel/benchmarks/ragbench.py +333 -0
- camel/bots/__init__.py +1 -1
- camel/bots/discord/__init__.py +26 -0
- camel/bots/discord/discord_app.py +384 -0
- camel/bots/discord/discord_installation.py +64 -0
- camel/bots/discord/discord_store.py +160 -0
- camel/configs/__init__.py +3 -0
- camel/configs/anthropic_config.py +17 -15
- camel/configs/internlm_config.py +60 -0
- camel/data_collector/base.py +5 -5
- camel/data_collector/sharegpt_collector.py +2 -2
- camel/datagen/self_instruct/self_instruct.py +1 -1
- camel/datagen/self_instruct/templates.py +12 -14
- camel/loaders/__init__.py +2 -0
- camel/loaders/panda_reader.py +337 -0
- camel/messages/__init__.py +10 -4
- camel/messages/conversion/conversation_models.py +5 -0
- camel/messages/func_message.py +30 -22
- camel/models/__init__.py +2 -0
- camel/models/anthropic_model.py +1 -22
- camel/models/cohere_model.py +8 -0
- camel/models/gemini_model.py +10 -1
- camel/models/internlm_model.py +143 -0
- camel/models/mistral_model.py +14 -7
- camel/models/model_factory.py +3 -0
- camel/models/reward/__init__.py +2 -0
- camel/models/reward/skywork_model.py +88 -0
- camel/synthetic_datagen/source2synth/data_processor.py +373 -0
- camel/synthetic_datagen/source2synth/models.py +68 -0
- camel/synthetic_datagen/source2synth/user_data_processor_config.py +73 -0
- camel/toolkits/google_scholar_toolkit.py +9 -0
- camel/types/__init__.py +4 -2
- camel/types/enums.py +34 -1
- camel/types/openai_types.py +6 -4
- camel/types/unified_model_type.py +5 -0
- camel/utils/token_counting.py +3 -3
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/METADATA +158 -187
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/RECORD +48 -35
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/WHEEL +1 -1
- camel/bots/discord_app.py +0 -138
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/LICENSE +0 -0
camel/models/__init__.py
CHANGED
|
@@ -19,6 +19,7 @@ from .deepseek_model import DeepSeekModel
|
|
|
19
19
|
from .fish_audio_model import FishAudioModel
|
|
20
20
|
from .gemini_model import GeminiModel
|
|
21
21
|
from .groq_model import GroqModel
|
|
22
|
+
from .internlm_model import InternLMModel
|
|
22
23
|
from .litellm_model import LiteLLMModel
|
|
23
24
|
from .mistral_model import MistralModel
|
|
24
25
|
from .model_factory import ModelFactory
|
|
@@ -68,4 +69,5 @@ __all__ = [
|
|
|
68
69
|
'ModelProcessingError',
|
|
69
70
|
'DeepSeekModel',
|
|
70
71
|
'FishAudioModel',
|
|
72
|
+
'InternLMModel',
|
|
71
73
|
]
|
camel/models/anthropic_model.py
CHANGED
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# limitations under the License.
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
14
|
import os
|
|
15
|
-
from typing import Any, Dict, List,
|
|
15
|
+
from typing import Any, Dict, List, Optional, Union
|
|
16
16
|
|
|
17
17
|
from camel.configs import ANTHROPIC_API_PARAMS, AnthropicConfig
|
|
18
18
|
from camel.messages import OpenAIMessage
|
|
@@ -102,27 +102,6 @@ class AnthropicModel(BaseModelBackend):
|
|
|
102
102
|
self._token_counter = AnthropicTokenCounter(self.model_type)
|
|
103
103
|
return self._token_counter
|
|
104
104
|
|
|
105
|
-
@dependencies_required('anthropic')
|
|
106
|
-
def count_tokens_from_prompt(
|
|
107
|
-
self, prompt: str, role: Literal["user", "assistant"]
|
|
108
|
-
) -> int:
|
|
109
|
-
r"""Count the number of tokens from a prompt.
|
|
110
|
-
|
|
111
|
-
Args:
|
|
112
|
-
prompt (str): The prompt string.
|
|
113
|
-
role (Literal["user", "assistant"]): The role of the message
|
|
114
|
-
sender, either "user" or "assistant".
|
|
115
|
-
|
|
116
|
-
Returns:
|
|
117
|
-
int: The number of tokens in the prompt.
|
|
118
|
-
"""
|
|
119
|
-
from anthropic.types.beta import BetaMessageParam
|
|
120
|
-
|
|
121
|
-
return self.client.beta.messages.count_tokens(
|
|
122
|
-
messages=[BetaMessageParam(content=prompt, role=role)],
|
|
123
|
-
model=self.model_type,
|
|
124
|
-
).input_tokens
|
|
125
|
-
|
|
126
105
|
def run(
|
|
127
106
|
self,
|
|
128
107
|
messages: List[OpenAIMessage],
|
camel/models/cohere_model.py
CHANGED
|
@@ -228,6 +228,14 @@ class CohereModel(BaseModelBackend):
|
|
|
228
228
|
|
|
229
229
|
cohere_messages = self._to_cohere_chatmessage(messages)
|
|
230
230
|
|
|
231
|
+
# Removing 'strict': True from the dictionary for
|
|
232
|
+
# cohere client
|
|
233
|
+
if self.model_config_dict.get('tools') is not None:
|
|
234
|
+
for tool in self.model_config_dict.get('tools', []):
|
|
235
|
+
function_dict = tool.get('function', {})
|
|
236
|
+
if 'strict' in function_dict:
|
|
237
|
+
del function_dict['strict']
|
|
238
|
+
|
|
231
239
|
try:
|
|
232
240
|
response = self._client.chat(
|
|
233
241
|
messages=cohere_messages,
|
camel/models/gemini_model.py
CHANGED
|
@@ -97,8 +97,17 @@ class GeminiModel(BaseModelBackend):
|
|
|
97
97
|
`ChatCompletion` in the non-stream mode, or
|
|
98
98
|
`Stream[ChatCompletionChunk]` in the stream mode.
|
|
99
99
|
"""
|
|
100
|
+
# Process messages to ensure no empty content, it's not accepeted by
|
|
101
|
+
# Gemini
|
|
102
|
+
processed_messages = []
|
|
103
|
+
for msg in messages:
|
|
104
|
+
msg_copy = msg.copy()
|
|
105
|
+
if 'content' in msg_copy and msg_copy['content'] == '':
|
|
106
|
+
msg_copy['content'] = 'null'
|
|
107
|
+
processed_messages.append(msg_copy)
|
|
108
|
+
|
|
100
109
|
response = self._client.chat.completions.create(
|
|
101
|
-
messages=
|
|
110
|
+
messages=processed_messages,
|
|
102
111
|
model=self.model_type,
|
|
103
112
|
**self.model_config_dict,
|
|
104
113
|
)
|
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
|
|
15
|
+
import os
|
|
16
|
+
from typing import Any, Dict, List, Optional, Union
|
|
17
|
+
|
|
18
|
+
from openai import OpenAI, Stream
|
|
19
|
+
|
|
20
|
+
from camel.configs import INTERNLM_API_PARAMS, InternLMConfig
|
|
21
|
+
from camel.messages import OpenAIMessage
|
|
22
|
+
from camel.models import BaseModelBackend
|
|
23
|
+
from camel.types import (
|
|
24
|
+
ChatCompletion,
|
|
25
|
+
ChatCompletionChunk,
|
|
26
|
+
ModelType,
|
|
27
|
+
)
|
|
28
|
+
from camel.utils import (
|
|
29
|
+
BaseTokenCounter,
|
|
30
|
+
OpenAITokenCounter,
|
|
31
|
+
api_keys_required,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class InternLMModel(BaseModelBackend):
|
|
36
|
+
r"""InternLM API in a unified BaseModelBackend interface.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
model_type (Union[ModelType, str]): Model for which a backend is
|
|
40
|
+
created, one of InternLM series.
|
|
41
|
+
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
|
|
42
|
+
that will be fed into:obj:`openai.ChatCompletion.create()`. If
|
|
43
|
+
:obj:`None`, :obj:`InternLMConfig().as_dict()` will be used.
|
|
44
|
+
(default: :obj:`None`)
|
|
45
|
+
api_key (Optional[str], optional): The API key for authenticating with
|
|
46
|
+
the InternLM service. (default: :obj:`None`)
|
|
47
|
+
url (Optional[str], optional): The url to the InternLM service.
|
|
48
|
+
(default: :obj:`https://internlm-chat.intern-ai.org.cn/puyu/api/v1`)
|
|
49
|
+
token_counter (Optional[BaseTokenCounter], optional): Token counter to
|
|
50
|
+
use for the model. If not provided, :obj:`OpenAITokenCounter(
|
|
51
|
+
ModelType.GPT_4O_MINI)` will be used.
|
|
52
|
+
(default: :obj:`None`)
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
@api_keys_required(
|
|
56
|
+
[
|
|
57
|
+
("api_key", "INTERNLM_API_KEY"),
|
|
58
|
+
]
|
|
59
|
+
)
|
|
60
|
+
def __init__(
|
|
61
|
+
self,
|
|
62
|
+
model_type: Union[ModelType, str],
|
|
63
|
+
model_config_dict: Optional[Dict[str, Any]] = None,
|
|
64
|
+
api_key: Optional[str] = None,
|
|
65
|
+
url: Optional[str] = None,
|
|
66
|
+
token_counter: Optional[BaseTokenCounter] = None,
|
|
67
|
+
) -> None:
|
|
68
|
+
if model_config_dict is None:
|
|
69
|
+
model_config_dict = InternLMConfig().as_dict()
|
|
70
|
+
api_key = api_key or os.environ.get("INTERNLM_API_KEY")
|
|
71
|
+
url = url or os.environ.get(
|
|
72
|
+
"INTERNLM_API_BASE_URL",
|
|
73
|
+
"https://internlm-chat.intern-ai.org.cn/puyu/api/v1",
|
|
74
|
+
)
|
|
75
|
+
super().__init__(
|
|
76
|
+
model_type, model_config_dict, api_key, url, token_counter
|
|
77
|
+
)
|
|
78
|
+
self._client = OpenAI(
|
|
79
|
+
timeout=180,
|
|
80
|
+
max_retries=3,
|
|
81
|
+
api_key=self._api_key,
|
|
82
|
+
base_url=self._url,
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
def run(
|
|
86
|
+
self,
|
|
87
|
+
messages: List[OpenAIMessage],
|
|
88
|
+
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
|
|
89
|
+
r"""Runs inference of InternLM chat completion.
|
|
90
|
+
|
|
91
|
+
Args:
|
|
92
|
+
messages (List[OpenAIMessage]): Message list with the chat history
|
|
93
|
+
in OpenAI API format.
|
|
94
|
+
|
|
95
|
+
Returns:
|
|
96
|
+
Union[ChatCompletion, Stream[ChatCompletionChunk]]:
|
|
97
|
+
`ChatCompletion` in the non-stream mode, or
|
|
98
|
+
`Stream[ChatCompletionChunk]` in the stream mode.
|
|
99
|
+
"""
|
|
100
|
+
response = self._client.chat.completions.create(
|
|
101
|
+
messages=messages,
|
|
102
|
+
model=self.model_type,
|
|
103
|
+
**self.model_config_dict,
|
|
104
|
+
)
|
|
105
|
+
return response
|
|
106
|
+
|
|
107
|
+
@property
|
|
108
|
+
def token_counter(self) -> BaseTokenCounter:
|
|
109
|
+
r"""Initialize the token counter for the model backend.
|
|
110
|
+
|
|
111
|
+
Returns:
|
|
112
|
+
OpenAITokenCounter: The token counter following the model's
|
|
113
|
+
tokenization style.
|
|
114
|
+
"""
|
|
115
|
+
|
|
116
|
+
if not self._token_counter:
|
|
117
|
+
self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
|
|
118
|
+
return self._token_counter
|
|
119
|
+
|
|
120
|
+
def check_model_config(self):
|
|
121
|
+
r"""Check whether the model configuration contains any
|
|
122
|
+
unexpected arguments to InternLM API.
|
|
123
|
+
|
|
124
|
+
Raises:
|
|
125
|
+
ValueError: If the model configuration dictionary contains any
|
|
126
|
+
unexpected arguments to InternLM API.
|
|
127
|
+
"""
|
|
128
|
+
for param in self.model_config_dict:
|
|
129
|
+
if param not in INTERNLM_API_PARAMS:
|
|
130
|
+
raise ValueError(
|
|
131
|
+
f"Unexpected argument `{param}` is "
|
|
132
|
+
"input into InternLM model backend."
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
@property
|
|
136
|
+
def stream(self) -> bool:
|
|
137
|
+
r"""Returns whether the model is in stream mode, which sends partial
|
|
138
|
+
results each time.
|
|
139
|
+
|
|
140
|
+
Returns:
|
|
141
|
+
bool: Whether the model is in stream mode.
|
|
142
|
+
"""
|
|
143
|
+
return self.model_config_dict.get('stream', False)
|
camel/models/mistral_model.py
CHANGED
|
@@ -147,18 +147,25 @@ class MistralModel(BaseModelBackend):
|
|
|
147
147
|
new_messages = []
|
|
148
148
|
for msg in messages:
|
|
149
149
|
tool_id = uuid.uuid4().hex[:9]
|
|
150
|
-
tool_call_id = uuid.uuid4().hex[:9]
|
|
150
|
+
tool_call_id = msg.get("tool_call_id") or uuid.uuid4().hex[:9]
|
|
151
151
|
|
|
152
152
|
role = msg.get("role")
|
|
153
|
-
|
|
153
|
+
tool_calls = msg.get("tool_calls")
|
|
154
154
|
content = msg.get("content")
|
|
155
155
|
|
|
156
156
|
mistral_function_call = None
|
|
157
|
-
if
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
157
|
+
if tool_calls:
|
|
158
|
+
# Ensure tool_calls is treated as a list
|
|
159
|
+
tool_calls_list = (
|
|
160
|
+
tool_calls
|
|
161
|
+
if isinstance(tool_calls, list)
|
|
162
|
+
else [tool_calls]
|
|
161
163
|
)
|
|
164
|
+
for tool_call in tool_calls_list:
|
|
165
|
+
mistral_function_call = FunctionCall(
|
|
166
|
+
name=tool_call["function"].get("name"), # type: ignore[attr-defined]
|
|
167
|
+
arguments=tool_call["function"].get("arguments"), # type: ignore[attr-defined]
|
|
168
|
+
)
|
|
162
169
|
|
|
163
170
|
tool_calls = None
|
|
164
171
|
if mistral_function_call:
|
|
@@ -178,7 +185,7 @@ class MistralModel(BaseModelBackend):
|
|
|
178
185
|
new_messages.append(
|
|
179
186
|
ToolMessage(
|
|
180
187
|
content=content, # type: ignore[arg-type]
|
|
181
|
-
tool_call_id=tool_call_id,
|
|
188
|
+
tool_call_id=tool_call_id, # type: ignore[arg-type]
|
|
182
189
|
name=msg.get("name"), # type: ignore[arg-type]
|
|
183
190
|
)
|
|
184
191
|
)
|
camel/models/model_factory.py
CHANGED
|
@@ -20,6 +20,7 @@ from camel.models.cohere_model import CohereModel
|
|
|
20
20
|
from camel.models.deepseek_model import DeepSeekModel
|
|
21
21
|
from camel.models.gemini_model import GeminiModel
|
|
22
22
|
from camel.models.groq_model import GroqModel
|
|
23
|
+
from camel.models.internlm_model import InternLMModel
|
|
23
24
|
from camel.models.litellm_model import LiteLLMModel
|
|
24
25
|
from camel.models.mistral_model import MistralModel
|
|
25
26
|
from camel.models.nvidia_model import NvidiaModel
|
|
@@ -124,6 +125,8 @@ class ModelFactory:
|
|
|
124
125
|
model_class = QwenModel
|
|
125
126
|
elif model_platform.is_deepseek:
|
|
126
127
|
model_class = DeepSeekModel
|
|
128
|
+
elif model_platform.is_internlm and model_type.is_internlm:
|
|
129
|
+
model_class = InternLMModel
|
|
127
130
|
elif model_type == ModelType.STUB:
|
|
128
131
|
model_class = StubModel
|
|
129
132
|
|
camel/models/reward/__init__.py
CHANGED
|
@@ -14,9 +14,11 @@
|
|
|
14
14
|
from .base_reward_model import BaseRewardModel
|
|
15
15
|
from .evaluator import Evaluator
|
|
16
16
|
from .nemotron_model import NemotronRewardModel
|
|
17
|
+
from .skywork_model import SkyworkRewardModel
|
|
17
18
|
|
|
18
19
|
__all__ = [
|
|
19
20
|
'BaseRewardModel',
|
|
20
21
|
'NemotronRewardModel',
|
|
21
22
|
'Evaluator',
|
|
23
|
+
'SkyworkRewardModel',
|
|
22
24
|
]
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
from typing import Dict, List, Optional, Union
|
|
15
|
+
|
|
16
|
+
import torch
|
|
17
|
+
|
|
18
|
+
from camel.models.reward import BaseRewardModel
|
|
19
|
+
from camel.types import ModelType
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class SkyworkRewardModel(BaseRewardModel):
|
|
23
|
+
r"""Reward model based on the transformers, it will download the model
|
|
24
|
+
from huggingface.
|
|
25
|
+
|
|
26
|
+
Args:
|
|
27
|
+
model_type (Union[ModelType, str]): Model for which a backend is
|
|
28
|
+
created.
|
|
29
|
+
api_key (Optional[str], optional): Not used. (default: :obj:`None`)
|
|
30
|
+
url (Optional[str], optional): Not used. (default: :obj:`None`)
|
|
31
|
+
device_map (Optional[str], optional): choose the device map.
|
|
32
|
+
(default: :obj:`auto`)
|
|
33
|
+
attn_implementation (Optional[str], optional): choose the attention
|
|
34
|
+
implementation. (default: :obj:`flash_attention_2`)
|
|
35
|
+
offload_folder (Optional[str], optional): choose the offload folder.
|
|
36
|
+
(default: :obj:`offload`)
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(
|
|
40
|
+
self,
|
|
41
|
+
model_type: Union[ModelType, str],
|
|
42
|
+
api_key: Optional[str] = None,
|
|
43
|
+
url: Optional[str] = None,
|
|
44
|
+
device_map: Optional[str] = "auto",
|
|
45
|
+
attn_implementation: Optional[str] = "flash_attention_2",
|
|
46
|
+
offload_folder: Optional[str] = "offload",
|
|
47
|
+
) -> None:
|
|
48
|
+
from transformers import (
|
|
49
|
+
AutoModelForSequenceClassification,
|
|
50
|
+
AutoTokenizer,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
super().__init__(model_type, api_key, url)
|
|
54
|
+
self._client = AutoModelForSequenceClassification.from_pretrained(
|
|
55
|
+
model_type,
|
|
56
|
+
torch_dtype=torch.bfloat16,
|
|
57
|
+
device_map=device_map,
|
|
58
|
+
attn_implementation=attn_implementation,
|
|
59
|
+
offload_folder=offload_folder,
|
|
60
|
+
num_labels=1,
|
|
61
|
+
)
|
|
62
|
+
self._tokenizer = AutoTokenizer.from_pretrained(model_type)
|
|
63
|
+
|
|
64
|
+
def evaluate(self, messages: List[Dict[str, str]]) -> Dict[str, float]:
|
|
65
|
+
r"""Evaluate the messages using the Skywork model.
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
messages (List[Dict[str, str]]): A list of messages.
|
|
69
|
+
|
|
70
|
+
Returns:
|
|
71
|
+
ChatCompletion: A ChatCompletion object with the scores.
|
|
72
|
+
"""
|
|
73
|
+
inputs = self._tokenizer.apply_chat_template(
|
|
74
|
+
messages,
|
|
75
|
+
tokenize=True,
|
|
76
|
+
return_tensors="pt",
|
|
77
|
+
)
|
|
78
|
+
with torch.no_grad():
|
|
79
|
+
score = self._client(inputs).logits[0][0].item()
|
|
80
|
+
return {"Score": score}
|
|
81
|
+
|
|
82
|
+
def get_scores_types(self) -> List[str]:
|
|
83
|
+
r"""get the scores types
|
|
84
|
+
|
|
85
|
+
Returns:
|
|
86
|
+
List[str]: list of scores types
|
|
87
|
+
"""
|
|
88
|
+
return ["Score"]
|