camel-ai 0.2.16__py3-none-any.whl → 0.2.17__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/chat_agent.py +18 -4
- camel/agents/multi_hop_generator_agent.py +85 -0
- camel/agents/programmed_agent_instruction.py +148 -0
- camel/benchmarks/__init__.py +2 -0
- camel/benchmarks/apibank.py +5 -0
- camel/benchmarks/apibench.py +8 -4
- camel/benchmarks/gaia.py +2 -2
- camel/benchmarks/ragbench.py +333 -0
- camel/bots/__init__.py +1 -1
- camel/bots/discord/__init__.py +26 -0
- camel/bots/discord/discord_app.py +384 -0
- camel/bots/discord/discord_installation.py +64 -0
- camel/bots/discord/discord_store.py +160 -0
- camel/configs/__init__.py +3 -0
- camel/configs/anthropic_config.py +17 -15
- camel/configs/internlm_config.py +60 -0
- camel/data_collector/base.py +5 -5
- camel/data_collector/sharegpt_collector.py +2 -2
- camel/datagen/self_instruct/self_instruct.py +1 -1
- camel/datagen/self_instruct/templates.py +12 -14
- camel/loaders/__init__.py +2 -0
- camel/loaders/panda_reader.py +337 -0
- camel/messages/__init__.py +10 -4
- camel/messages/conversion/conversation_models.py +5 -0
- camel/messages/func_message.py +30 -22
- camel/models/__init__.py +2 -0
- camel/models/anthropic_model.py +1 -22
- camel/models/cohere_model.py +8 -0
- camel/models/gemini_model.py +10 -1
- camel/models/internlm_model.py +143 -0
- camel/models/mistral_model.py +14 -7
- camel/models/model_factory.py +3 -0
- camel/models/reward/__init__.py +2 -0
- camel/models/reward/skywork_model.py +88 -0
- camel/synthetic_datagen/source2synth/data_processor.py +373 -0
- camel/synthetic_datagen/source2synth/models.py +68 -0
- camel/synthetic_datagen/source2synth/user_data_processor_config.py +73 -0
- camel/toolkits/google_scholar_toolkit.py +9 -0
- camel/types/__init__.py +4 -2
- camel/types/enums.py +34 -1
- camel/types/openai_types.py +6 -4
- camel/types/unified_model_type.py +5 -0
- camel/utils/token_counting.py +3 -3
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/METADATA +158 -187
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/RECORD +48 -35
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/WHEEL +1 -1
- camel/bots/discord_app.py +0 -138
- {camel_ai-0.2.16.dist-info → camel_ai-0.2.17.dist-info}/LICENSE +0 -0
|
@@ -0,0 +1,333 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
|
|
15
|
+
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
from datasets import Dataset, load_dataset
|
|
19
|
+
|
|
20
|
+
from camel.agents import ChatAgent
|
|
21
|
+
from camel.benchmarks import BaseBenchmark
|
|
22
|
+
from camel.logger import get_logger
|
|
23
|
+
from camel.retrievers import AutoRetriever
|
|
24
|
+
|
|
25
|
+
logger = get_logger(__name__)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class RagasFields:
|
|
29
|
+
r"""Constants for RAGAS evaluation field names."""
|
|
30
|
+
|
|
31
|
+
INPUT_CONTEXT = "contexts"
|
|
32
|
+
INPUT_QUESTION = "question"
|
|
33
|
+
INPUT_ANSWER = "answer"
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def annotate_dataset(
|
|
37
|
+
dataset: Dataset,
|
|
38
|
+
context_call: Optional[Callable[[Dict[str, Any]], List[str]]],
|
|
39
|
+
answer_call: Optional[Callable[[Dict[str, Any]], str]],
|
|
40
|
+
) -> Dataset:
|
|
41
|
+
r"""Annotate the dataset by adding context and answers using the provided
|
|
42
|
+
functions.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
dataset (Dataset): The input dataset to annotate.
|
|
46
|
+
context_call (Optional[Callable[[Dict[str, Any]], List[str]]]):
|
|
47
|
+
Function to generate context for each example.
|
|
48
|
+
answer_call (Optional[Callable[[Dict[str, Any]], str]]): Function to
|
|
49
|
+
generate answer for each example.
|
|
50
|
+
|
|
51
|
+
Returns:
|
|
52
|
+
Dataset: The annotated dataset with added contexts and/or answers.
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
def process_example(example: Dict[str, Any]) -> Dict[str, Any]:
|
|
56
|
+
if context_call:
|
|
57
|
+
example["contexts"] = context_call(example)
|
|
58
|
+
if answer_call:
|
|
59
|
+
example["answer"] = answer_call(example)
|
|
60
|
+
return example
|
|
61
|
+
|
|
62
|
+
return dataset.map(process_example)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def rmse(
|
|
66
|
+
input_trues: Sequence[float],
|
|
67
|
+
input_preds: Sequence[float],
|
|
68
|
+
) -> Optional[float]:
|
|
69
|
+
r"""Calculate Root Mean Squared Error (RMSE).
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
input_trues (Sequence[float]): Ground truth values.
|
|
73
|
+
input_preds (Sequence[float]): Predicted values.
|
|
74
|
+
|
|
75
|
+
Returns:
|
|
76
|
+
Optional[float]: RMSE value, or None if inputs have different lengths.
|
|
77
|
+
"""
|
|
78
|
+
if len(input_trues) != len(input_preds):
|
|
79
|
+
logger.warning("Input lengths mismatch in RMSE calculation")
|
|
80
|
+
return None
|
|
81
|
+
|
|
82
|
+
trues = np.array(input_trues)
|
|
83
|
+
preds = np.array(input_preds, dtype=float)
|
|
84
|
+
|
|
85
|
+
# Ignore NaN values in predictions
|
|
86
|
+
eval_idx = ~np.isnan(preds)
|
|
87
|
+
if not np.any(eval_idx):
|
|
88
|
+
logger.warning("No valid predictions for RMSE calculation")
|
|
89
|
+
return None
|
|
90
|
+
|
|
91
|
+
trues = trues[eval_idx]
|
|
92
|
+
preds = preds[eval_idx]
|
|
93
|
+
|
|
94
|
+
return float(np.sqrt(np.mean((preds - trues) ** 2)))
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def auroc(trues: Sequence[bool], preds: Sequence[float]) -> float:
|
|
98
|
+
r"""Calculate Area Under Receiver Operating Characteristic Curve (AUROC).
|
|
99
|
+
|
|
100
|
+
Args:
|
|
101
|
+
trues (Sequence[bool]): Ground truth binary values.
|
|
102
|
+
preds (Sequence[float]): Predicted probability values.
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
float: AUROC score.
|
|
106
|
+
"""
|
|
107
|
+
from sklearn.metrics import roc_auc_score # type: ignore[import-untyped]
|
|
108
|
+
|
|
109
|
+
eval_idx = ~np.isnan(preds)
|
|
110
|
+
if not np.any(eval_idx):
|
|
111
|
+
logger.warning("No valid predictions for AUROC calculation")
|
|
112
|
+
return 0.5 # Return random classifier score
|
|
113
|
+
|
|
114
|
+
return float(
|
|
115
|
+
roc_auc_score(np.array(trues)[eval_idx], np.array(preds)[eval_idx])
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def ragas_calculate_metrics(
|
|
120
|
+
dataset: Dataset,
|
|
121
|
+
pred_context_relevance_field: Optional[str],
|
|
122
|
+
pred_faithfulness_field: Optional[str],
|
|
123
|
+
metrics_to_evaluate: Optional[List[str]] = None,
|
|
124
|
+
ground_truth_context_relevance_field: str = "relevance_score",
|
|
125
|
+
ground_truth_faithfulness_field: str = "adherence_score",
|
|
126
|
+
) -> Dict[str, Optional[float]]:
|
|
127
|
+
r"""Calculate RAGAS evaluation metrics.
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
dataset (Dataset): The dataset containing predictions and ground truth.
|
|
131
|
+
pred_context_relevance_field (Optional[str]): Field name for predicted
|
|
132
|
+
context relevance.
|
|
133
|
+
pred_faithfulness_field (Optional[str]): Field name for predicted
|
|
134
|
+
faithfulness.
|
|
135
|
+
metrics_to_evaluate (Optional[List[str]]): List of metrics to evaluate.
|
|
136
|
+
ground_truth_context_relevance_field (str): Field name for ground truth
|
|
137
|
+
relevance.
|
|
138
|
+
ground_truth_faithfulness_field (str): Field name for ground truth
|
|
139
|
+
adherence.
|
|
140
|
+
|
|
141
|
+
Returns:
|
|
142
|
+
Dict[str, Optional[float]]: Dictionary of calculated metrics.
|
|
143
|
+
"""
|
|
144
|
+
metrics_to_evaluate = metrics_to_evaluate or [
|
|
145
|
+
"context_relevancy",
|
|
146
|
+
"faithfulness",
|
|
147
|
+
]
|
|
148
|
+
calculated_metrics: Dict[str, Optional[float]] = {}
|
|
149
|
+
|
|
150
|
+
if (
|
|
151
|
+
"context_relevancy" in metrics_to_evaluate
|
|
152
|
+
and pred_context_relevance_field
|
|
153
|
+
):
|
|
154
|
+
trues_relevance = dataset[ground_truth_context_relevance_field]
|
|
155
|
+
preds_relevance = dataset[pred_context_relevance_field]
|
|
156
|
+
calculated_metrics["relevance_rmse"] = rmse(
|
|
157
|
+
trues_relevance, preds_relevance
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
if "faithfulness" in metrics_to_evaluate and pred_faithfulness_field:
|
|
161
|
+
trues_hallucination = ~np.array(
|
|
162
|
+
dataset[ground_truth_faithfulness_field]
|
|
163
|
+
)
|
|
164
|
+
preds_hallucination = 1 - np.array(
|
|
165
|
+
dataset[pred_faithfulness_field], dtype=float
|
|
166
|
+
)
|
|
167
|
+
calculated_metrics["hallucination_auroc"] = auroc(
|
|
168
|
+
trues_hallucination.tolist(), preds_hallucination.tolist()
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
return calculated_metrics
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def ragas_evaluate_dataset(
|
|
175
|
+
dataset: Dataset,
|
|
176
|
+
contexts_field_name: Optional[str],
|
|
177
|
+
answer_field_name: Optional[str],
|
|
178
|
+
metrics_to_evaluate: Optional[List[str]] = None,
|
|
179
|
+
) -> Dataset:
|
|
180
|
+
r"""Evaluate the dataset using RAGAS metrics.
|
|
181
|
+
|
|
182
|
+
Args:
|
|
183
|
+
dataset (Dataset): Input dataset to evaluate.
|
|
184
|
+
contexts_field_name (Optional[str]): Field name containing contexts.
|
|
185
|
+
answer_field_name (Optional[str]): Field name containing answers.
|
|
186
|
+
metrics_to_evaluate (Optional[List[str]]): List of metrics to evaluate.
|
|
187
|
+
|
|
188
|
+
Returns:
|
|
189
|
+
Dataset: Dataset with added evaluation metrics.
|
|
190
|
+
"""
|
|
191
|
+
from ragas import evaluate
|
|
192
|
+
from ragas.metrics import ( # type: ignore[import-untyped]
|
|
193
|
+
context_relevancy,
|
|
194
|
+
faithfulness,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
metrics_to_evaluate = metrics_to_evaluate or [
|
|
198
|
+
"context_relevancy",
|
|
199
|
+
"faithfulness",
|
|
200
|
+
]
|
|
201
|
+
|
|
202
|
+
# Rename fields if necessary
|
|
203
|
+
if (
|
|
204
|
+
contexts_field_name
|
|
205
|
+
and contexts_field_name != RagasFields.INPUT_CONTEXT
|
|
206
|
+
):
|
|
207
|
+
dataset = dataset.rename_column(
|
|
208
|
+
contexts_field_name, RagasFields.INPUT_CONTEXT
|
|
209
|
+
)
|
|
210
|
+
if answer_field_name and answer_field_name != RagasFields.INPUT_ANSWER:
|
|
211
|
+
dataset = dataset.rename_column(
|
|
212
|
+
answer_field_name, RagasFields.INPUT_ANSWER
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
metrics = []
|
|
216
|
+
if "context_relevancy" in metrics_to_evaluate:
|
|
217
|
+
metrics.append(context_relevancy)
|
|
218
|
+
if "faithfulness" in metrics_to_evaluate:
|
|
219
|
+
metrics.append(faithfulness)
|
|
220
|
+
|
|
221
|
+
ragas_result = evaluate(dataset, metrics=metrics)
|
|
222
|
+
return Dataset.from_pandas(ragas_result.to_pandas())
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
class RAGBenchBenchmark(BaseBenchmark):
|
|
226
|
+
r"""RAGBench Benchmark for evaluating RAG performance.
|
|
227
|
+
|
|
228
|
+
This benchmark uses the rungalileo/ragbench dataset to evaluate
|
|
229
|
+
retrieval-augmented generation (RAG) systems. It measures context
|
|
230
|
+
relevancy and faithfulness metrics as described in
|
|
231
|
+
https://arxiv.org/abs/2407.11005.
|
|
232
|
+
|
|
233
|
+
Args:
|
|
234
|
+
processes (int, optional): Number of processes for parallel processing.
|
|
235
|
+
subset (str, optional): Dataset subset to use (e.g., "hotpotqa").
|
|
236
|
+
split (str, optional): Dataset split to use (e.g., "test").
|
|
237
|
+
"""
|
|
238
|
+
|
|
239
|
+
def __init__(
|
|
240
|
+
self,
|
|
241
|
+
processes: int = 1,
|
|
242
|
+
subset: Literal[
|
|
243
|
+
"covidqa",
|
|
244
|
+
"cuad",
|
|
245
|
+
"delucionqa",
|
|
246
|
+
"emanual",
|
|
247
|
+
"expertqa",
|
|
248
|
+
"finqa",
|
|
249
|
+
"hagrid",
|
|
250
|
+
"hotpotqa",
|
|
251
|
+
"msmarco",
|
|
252
|
+
"pubmedqa",
|
|
253
|
+
"tatqa",
|
|
254
|
+
"techqa",
|
|
255
|
+
] = "hotpotqa",
|
|
256
|
+
split: Literal["train", "test", "validation"] = "test",
|
|
257
|
+
) -> None:
|
|
258
|
+
super().__init__("ragbench", "rag_bench", "", processes)
|
|
259
|
+
self.subset = subset
|
|
260
|
+
self.split = split
|
|
261
|
+
self.dataset: Optional[Dataset] = None
|
|
262
|
+
|
|
263
|
+
def download(self):
|
|
264
|
+
r"""Download the RAGBench dataset."""
|
|
265
|
+
try:
|
|
266
|
+
self.dataset = load_dataset(
|
|
267
|
+
"rungalileo/ragbench", self.subset, split=self.split
|
|
268
|
+
)
|
|
269
|
+
except Exception as e:
|
|
270
|
+
logger.error(f"Failed to download dataset: {e}")
|
|
271
|
+
raise
|
|
272
|
+
|
|
273
|
+
def load(self, force_download: bool = False):
|
|
274
|
+
r"""Load the RAGBench dataset.
|
|
275
|
+
|
|
276
|
+
Args:
|
|
277
|
+
force_download (bool, optional): Whether to force download the
|
|
278
|
+
data.
|
|
279
|
+
"""
|
|
280
|
+
if force_download or self.dataset is None:
|
|
281
|
+
logger.info(
|
|
282
|
+
"%s dataset",
|
|
283
|
+
"Force downloading" if force_download else "Loading",
|
|
284
|
+
)
|
|
285
|
+
self.download()
|
|
286
|
+
|
|
287
|
+
def run( # type: ignore[override, return]
|
|
288
|
+
self,
|
|
289
|
+
agent: ChatAgent,
|
|
290
|
+
auto_retriever: AutoRetriever,
|
|
291
|
+
) -> Dict[str, Optional[float]]:
|
|
292
|
+
r"""Run the benchmark evaluation.
|
|
293
|
+
|
|
294
|
+
Args:
|
|
295
|
+
agent (ChatAgent): Chat agent for generating answers.
|
|
296
|
+
auto_retriever (AutoRetriever): Retriever for finding relevant
|
|
297
|
+
contexts.
|
|
298
|
+
|
|
299
|
+
Returns:
|
|
300
|
+
Dict[str, Optional[float]]: Dictionary of evaluation metrics.
|
|
301
|
+
"""
|
|
302
|
+
|
|
303
|
+
def context_call(example):
|
|
304
|
+
retrieved_info = auto_retriever.run_vector_retriever(
|
|
305
|
+
query=example['question'],
|
|
306
|
+
contents=example['documents'],
|
|
307
|
+
top_k=1,
|
|
308
|
+
return_detailed_info=True,
|
|
309
|
+
similarity_threshold=0.5,
|
|
310
|
+
)
|
|
311
|
+
return [c['text'] for c in retrieved_info['Retrieved Context']]
|
|
312
|
+
|
|
313
|
+
def answer_call(example: Dict[str, Any]) -> str:
|
|
314
|
+
user_msg = str(example)
|
|
315
|
+
assistant_response = agent.step(user_msg)
|
|
316
|
+
return assistant_response.msg.content
|
|
317
|
+
|
|
318
|
+
# Annotate the dataset
|
|
319
|
+
annotated_ds = annotate_dataset(
|
|
320
|
+
self.dataset, context_call, answer_call
|
|
321
|
+
)
|
|
322
|
+
evaluated_ds = ragas_evaluate_dataset(
|
|
323
|
+
annotated_ds,
|
|
324
|
+
contexts_field_name="contexts",
|
|
325
|
+
answer_field_name="answer",
|
|
326
|
+
metrics_to_evaluate=["context_relevancy", "faithfulness"],
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
return ragas_calculate_metrics(
|
|
330
|
+
evaluated_ds,
|
|
331
|
+
pred_context_relevance_field="context_relevancy",
|
|
332
|
+
pred_faithfulness_field="faithfulness",
|
|
333
|
+
)
|
camel/bots/__init__.py
CHANGED
|
@@ -11,7 +11,7 @@
|
|
|
11
11
|
# See the License for the specific language governing permissions and
|
|
12
12
|
# limitations under the License.
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
-
from .
|
|
14
|
+
from .discord import DiscordApp
|
|
15
15
|
from .slack.models import (
|
|
16
16
|
SlackAppMentionEventBody,
|
|
17
17
|
SlackAppMentionEventProfile,
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
from .discord_app import DiscordApp
|
|
15
|
+
from .discord_installation import DiscordInstallation
|
|
16
|
+
from .discord_store import (
|
|
17
|
+
DiscordBaseInstallationStore,
|
|
18
|
+
DiscordSQLiteInstallationStore,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
__all__ = [
|
|
22
|
+
"DiscordApp",
|
|
23
|
+
"DiscordInstallation",
|
|
24
|
+
"DiscordSQLiteInstallationStore",
|
|
25
|
+
"DiscordBaseInstallationStore",
|
|
26
|
+
]
|