braindecode 1.3.0.dev181065563__py3-none-any.whl → 1.3.0.dev183667303__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (56) hide show
  1. braindecode/augmentation/base.py +1 -1
  2. braindecode/augmentation/functional.py +154 -54
  3. braindecode/augmentation/transforms.py +2 -2
  4. braindecode/datasets/__init__.py +10 -2
  5. braindecode/datasets/base.py +116 -152
  6. braindecode/datasets/bcicomp.py +4 -4
  7. braindecode/datasets/bids.py +3 -3
  8. braindecode/datasets/experimental.py +2 -2
  9. braindecode/datasets/mne.py +3 -5
  10. braindecode/datasets/moabb.py +2 -2
  11. braindecode/datasets/nmt.py +2 -2
  12. braindecode/datasets/sleep_physio_challe_18.py +4 -3
  13. braindecode/datasets/sleep_physionet.py +2 -2
  14. braindecode/datasets/tuh.py +2 -2
  15. braindecode/datasets/xy.py +2 -2
  16. braindecode/datautil/serialization.py +18 -13
  17. braindecode/eegneuralnet.py +2 -0
  18. braindecode/functional/functions.py +6 -2
  19. braindecode/functional/initialization.py +2 -3
  20. braindecode/models/__init__.py +6 -0
  21. braindecode/models/atcnet.py +32 -33
  22. braindecode/models/attentionbasenet.py +39 -32
  23. braindecode/models/base.py +280 -2
  24. braindecode/models/bendr.py +469 -0
  25. braindecode/models/biot.py +3 -1
  26. braindecode/models/ctnet.py +6 -3
  27. braindecode/models/deepsleepnet.py +27 -18
  28. braindecode/models/eegconformer.py +2 -2
  29. braindecode/models/eeginception_erp.py +31 -25
  30. braindecode/models/eegnet.py +1 -1
  31. braindecode/models/labram.py +193 -87
  32. braindecode/models/patchedtransformer.py +640 -0
  33. braindecode/models/signal_jepa.py +109 -27
  34. braindecode/models/sinc_shallow.py +10 -9
  35. braindecode/models/sstdpn.py +869 -0
  36. braindecode/models/summary.csv +9 -6
  37. braindecode/models/usleep.py +26 -21
  38. braindecode/models/util.py +3 -0
  39. braindecode/modules/attention.py +10 -10
  40. braindecode/modules/blocks.py +3 -3
  41. braindecode/modules/filter.py +2 -3
  42. braindecode/modules/layers.py +18 -17
  43. braindecode/preprocessing/__init__.py +24 -0
  44. braindecode/preprocessing/eegprep_preprocess.py +1202 -0
  45. braindecode/preprocessing/preprocess.py +23 -14
  46. braindecode/preprocessing/util.py +166 -0
  47. braindecode/preprocessing/windowers.py +24 -19
  48. braindecode/samplers/base.py +8 -8
  49. braindecode/version.py +1 -1
  50. {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183667303.dist-info}/METADATA +6 -2
  51. braindecode-1.3.0.dev183667303.dist-info/RECORD +106 -0
  52. braindecode-1.3.0.dev181065563.dist-info/RECORD +0 -101
  53. {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183667303.dist-info}/WHEEL +0 -0
  54. {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183667303.dist-info}/licenses/LICENSE.txt +0 -0
  55. {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183667303.dist-info}/licenses/NOTICE.txt +0 -0
  56. {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183667303.dist-info}/top_level.txt +0 -0
@@ -2,7 +2,7 @@
2
2
  ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
3
  AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
4
  BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
6
6
  ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
7
  CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
8
  Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
@@ -16,13 +16,13 @@ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEG
16
16
  EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
17
17
  EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
18
18
  EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
19
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
19
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
20
20
  MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
21
21
  SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
22
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
23
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
25
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
22
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
23
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
24
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
25
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
26
26
  SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
27
27
  ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
28
28
  SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
@@ -37,3 +37,6 @@ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",118
37
37
  FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
38
38
  FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
39
39
  IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
40
+ PBT,General,Classification,250,"n_chans, n_outputs, n_times",818948,"PBT(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Large Brain Model"
41
+ SSTDPN,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",19502,"SSTDPN(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
42
+ BENDR,General,"Classification,Embedding",250,"n_chans, n_times, n_outputs",157141049,"BENDR(n_chans=22, n_outputs=4, n_times=1000)","Large Brain Model,Convolution"
@@ -62,43 +62,48 @@ class USleep(EEGModuleMixin, nn.Module):
62
62
  - Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
63
63
 
64
64
  - *Operations.*
65
- - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
66
- - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
67
- - ELU, :class:`torch.nn.ELU`
68
- - Batch Norm, :class:`torch.nn.BatchNorm2d`
69
- - **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
70
- - **Convolution**, :class:`torch.nn.Conv2d`
71
- - ELU, :class:`torch.nn.ELU`
72
- - Batch Norm, :class:`torch.nn.BatchNorm2d`.
65
+
66
+ - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
67
+ - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
68
+ - ELU, :class:`torch.nn.ELU`
69
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`
70
+ - **Concatenate** with the encoder skip at the same temporal scale, ``torch.cat``
71
+ - **Convolution**, :class:`torch.nn.Conv2d`
72
+ - ELU, :class:`torch.nn.ELU`
73
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`.
73
74
 
74
75
  **Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
75
76
 
76
77
  - **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
77
78
 
78
79
  - *Operations.*
79
- - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
80
- - **1x1 conv**, :class:`torch.nn.Conv2d`
81
- - ELU, :class:`torch.nn.ELU`
82
- - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
80
+
81
+ - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
82
+ - **1x1 conv**, :class:`torch.nn.Conv2d`
83
+ - ELU, :class:`torch.nn.ELU`
84
+ - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
83
85
 
84
86
  **Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
85
87
 
86
88
  .. rubric:: Convolutional Details
87
89
 
88
90
  - **Temporal (where time-domain patterns are learned).**
89
- All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
90
- (reported sensitivity to ±6.75 min around each epoch; theoretical field 9.6 min at the deepest layer).
91
- The decoder restores sample-level resolution before epoch aggregation.
91
+
92
+ All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
93
+ (reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
94
+ The decoder restores sample-level resolution before epoch aggregation.
92
95
 
93
96
  - **Spatial (how channels are processed).**
94
- Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
95
- is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
96
- supporting robustness to channel placement and hardware differences.
97
+
98
+ Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
99
+ is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
100
+ supporting robustness to channel placement and hardware differences.
97
101
 
98
102
  - **Spectral (how frequency content is captured).**
99
- No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
100
- filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
101
- retains fine temporal detail for the segment classifier.
103
+
104
+ No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
105
+ filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
106
+ retains fine temporal detail for the segment classifier.
102
107
 
103
108
 
104
109
  .. rubric:: Attention / Sequential Modules
@@ -95,6 +95,9 @@ models_mandatory_parameters = [
95
95
  ("FBMSNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
96
96
  ("FBLightConvNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
97
97
  ("IFNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
98
+ ("PBT", ["n_chans", "n_outputs", "n_times"], None),
99
+ ("SSTDPN", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
100
+ ("BENDR", ["n_chans", "n_outputs", "n_times"], None),
98
101
  ]
99
102
 
100
103
  ################################################################
@@ -38,7 +38,7 @@ class SqueezeAndExcitation(nn.Module):
38
38
  References
39
39
  ----------
40
40
  .. [Hu2018] Hu, J., Albanie, S., Sun, G., Wu, E., 2018.
41
- Squeeze-and-Excitation Networks. CVPR 2018.
41
+ Squeeze-and-Excitation Networks. CVPR 2018.
42
42
  """
43
43
 
44
44
  def __init__(self, in_channels: int, reduction_rate: int, bias: bool = False):
@@ -93,7 +93,7 @@ class GSoP(nn.Module):
93
93
  References
94
94
  ----------
95
95
  .. [Gao2018] Gao, Z., Jiangtao, X., Wang, Q., Li, P., 2018.
96
- Global Second-order Pooling Convolutional Networks. CVPR 2018.
96
+ Global Second-order Pooling Convolutional Networks. CVPR 2018.
97
97
  """
98
98
 
99
99
  def __init__(self, in_channels: int, reduction_rate: int, bias: bool = True):
@@ -149,7 +149,7 @@ class FCA(nn.Module):
149
149
  References
150
150
  ----------
151
151
  .. [Qin2021] Qin, Z., Zhang, P., Wu, F., Li, X., 2021.
152
- FcaNet: Frequency Channel Attention Networks. ICCV 2021.
152
+ FcaNet: Frequency Channel Attention Networks. ICCV 2021.
153
153
  """
154
154
 
155
155
  def __init__(
@@ -233,7 +233,7 @@ class EncNet(nn.Module):
233
233
  References
234
234
  ----------
235
235
  .. [Zhang2018] Zhang, H. et al. 2018.
236
- Context Encoding for Semantic Segmentation. CVPR 2018.
236
+ Context Encoding for Semantic Segmentation. CVPR 2018.
237
237
  """
238
238
 
239
239
  def __init__(self, in_channels: int, n_codewords: int):
@@ -290,7 +290,7 @@ class ECA(nn.Module):
290
290
  References
291
291
  ----------
292
292
  .. [Wang2021] Wang, Q. et al., 2021. ECA-Net: Efficient Channel Attention
293
- for Deep Convolutional Neural Networks. CVPR 2021.
293
+ for Deep Convolutional Neural Networks. CVPR 2021.
294
294
  """
295
295
 
296
296
  def __init__(self, in_channels: int, kernel_size: int):
@@ -341,8 +341,8 @@ class GatherExcite(nn.Module):
341
341
  References
342
342
  ----------
343
343
  .. [Hu2018b] Hu, J., Albanie, S., Sun, G., Vedaldi, A., 2018.
344
- Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
345
- NeurIPS 2018.
344
+ Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
345
+ NeurIPS 2018.
346
346
  """
347
347
 
348
348
  def __init__(
@@ -410,7 +410,7 @@ class GCT(nn.Module):
410
410
  References
411
411
  ----------
412
412
  .. [Yang2020] Yang, Z. Linchao, Z., Wu, Y., Yang, Y., 2020.
413
- Gated Channel Transformation for Visual Recognition. CVPR 2020.
413
+ Gated Channel Transformation for Visual Recognition. CVPR 2020.
414
414
  """
415
415
 
416
416
  def __init__(self, in_channels: int):
@@ -455,7 +455,7 @@ class SRM(nn.Module):
455
455
  References
456
456
  ----------
457
457
  .. [Lee2019] Lee, H., Kim, H., Nam, H., 2019. SRM: A Style-based
458
- Recalibration Module for Convolutional Neural Networks. ICCV 2019.
458
+ Recalibration Module for Convolutional Neural Networks. ICCV 2019.
459
459
  """
460
460
 
461
461
  def __init__(
@@ -520,7 +520,7 @@ class CBAM(nn.Module):
520
520
  References
521
521
  ----------
522
522
  .. [Woo2018] Woo, S., Park, J., Lee, J., Kweon, I., 2018.
523
- CBAM: Convolutional Block Attention Module. ECCV 2018.
523
+ CBAM: Convolutional Block Attention Module. ECCV 2018.
524
524
  """
525
525
 
526
526
  def __init__(self, in_channels: int, reduction_rate: int, kernel_size: int):
@@ -37,8 +37,8 @@ class MLP(nn.Sequential):
37
37
  :math:`a_i` are called activation functions. The trainable parameters of an
38
38
  MLP are its weights and biases :math:`\\phi = \{W_i, b_i | i = 1, \dots, L\}`.
39
39
 
40
- Parameters:
41
- -----------
40
+ Parameters
41
+ ----------
42
42
  in_features: int
43
43
  Number of input features.
44
44
  hidden_features: Sequential[int] (default=None)
@@ -49,7 +49,7 @@ class MLP(nn.Sequential):
49
49
  out_features: int (default=None)
50
50
  Number of output features, if None, set to in_features.
51
51
  act_layer: nn.GELU (default)
52
- The activation function constructor. If :py:`None`, use
52
+ The activation function constructor. If ``None``, use
53
53
  :class:`torch.nn.GELU` instead.
54
54
  drop: float (default=0.0)
55
55
  Dropout rate.
@@ -17,9 +17,8 @@ class FilterBankLayer(nn.Module):
17
17
  It uses MNE's `create_filter` function to create the band-specific filters and
18
18
  applies them to multi-channel time-series data. Each filter in the bank corresponds to a
19
19
  specific frequency band and is applied to all channels of the input data. The filtering is
20
- performed using FFT-based convolution via the `fftconvolve` function from
21
- :func:`torchaudio.functional if the method is FIR, and `filtfilt` function from
22
- :func:`torchaudio.functional if the method is IIR.
20
+ performed using FFT-based convolution via the ``torchaudio.functional`` if the method is FIR,
21
+ and ``torchaudio.functional`` if the method is IIR.
23
22
 
24
23
  The default configuration creates 9 non-overlapping frequency bands with a 4 Hz bandwidth,
25
24
  spanning from 4 Hz to 40 Hz (i.e., 4-8 Hz, 8-12 Hz, ..., 36-40 Hz). This setup is based on the
@@ -70,26 +70,27 @@ class TimeDistributed(nn.Module):
70
70
  class DropPath(nn.Module):
71
71
  """Drop paths, also known as Stochastic Depth, per sample.
72
72
 
73
- When applied in main path of residual blocks.
73
+ When applied in main path of residual blocks.
74
74
 
75
- Parameters:
76
- -----------
77
- drop_prob: float (default=None)
78
- Drop path probability (should be in range 0-1).
75
+ Parameters
76
+ ----------
77
+ drop_prob: float (default=None)
78
+ Drop path probability (should be in range 0-1).
79
79
 
80
- Notes
81
- -----
82
- Code copied and modified from VISSL facebookresearch:
80
+ Notes
81
+ -----
82
+ Code copied and modified from VISSL facebookresearch:
83
83
  https://github.com/facebookresearch/vissl/blob/0b5d6a94437bc00baed112ca90c9d78c6ccfbafb/vissl/models/model_helpers.py#L676
84
- All rights reserved.
85
-
86
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
87
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
88
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
89
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
90
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
91
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
92
- SOFTWARE.
84
+
85
+ All rights reserved.
86
+
87
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
88
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
89
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
90
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
91
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
92
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
93
+ SOFTWARE.
93
94
  """
94
95
 
95
96
  def __init__(self, drop_prob=None):
@@ -1,3 +1,16 @@
1
+ from .eegprep_preprocess import (
2
+ EEGPrep,
3
+ ReinterpolateRemovedChannels,
4
+ RemoveBadChannels,
5
+ RemoveBadChannelsNoLocs,
6
+ RemoveBadWindows,
7
+ RemoveBursts,
8
+ RemoveCommonAverageReference,
9
+ RemoveDCOffset,
10
+ RemoveDrifts,
11
+ RemoveFlatChannels,
12
+ Resampling,
13
+ )
1
14
  from .mne_preprocess import ( # type: ignore[attr-defined]
2
15
  Crop,
3
16
  DropChannels,
@@ -31,6 +44,17 @@ __all__ = [
31
44
  "Filter",
32
45
  "Pick",
33
46
  "Crop",
47
+ "EEGPrep",
48
+ "RemoveDCOffset",
49
+ "Resampling",
50
+ "RemoveFlatChannels",
51
+ "RemoveDrifts",
52
+ "RemoveBadChannels",
53
+ "RemoveBadChannelsNoLocs",
54
+ "RemoveBursts",
55
+ "RemoveBadWindows",
56
+ "ReinterpolateRemovedChannels",
57
+ "RemoveCommonAverageReference",
34
58
  "create_windows_from_events",
35
59
  "create_fixed_length_windows",
36
60
  "create_windows_from_target_channels",