braindecode 1.3.0.dev177069446__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- braindecode/__init__.py +9 -0
- braindecode/augmentation/__init__.py +52 -0
- braindecode/augmentation/base.py +225 -0
- braindecode/augmentation/functional.py +1300 -0
- braindecode/augmentation/transforms.py +1356 -0
- braindecode/classifier.py +258 -0
- braindecode/datasets/__init__.py +44 -0
- braindecode/datasets/base.py +823 -0
- braindecode/datasets/bbci.py +693 -0
- braindecode/datasets/bcicomp.py +193 -0
- braindecode/datasets/bids/__init__.py +54 -0
- braindecode/datasets/bids/datasets.py +239 -0
- braindecode/datasets/bids/format.py +717 -0
- braindecode/datasets/bids/hub.py +987 -0
- braindecode/datasets/bids/hub_format.py +717 -0
- braindecode/datasets/bids/hub_io.py +197 -0
- braindecode/datasets/bids/hub_validation.py +114 -0
- braindecode/datasets/bids/iterable.py +220 -0
- braindecode/datasets/chb_mit.py +163 -0
- braindecode/datasets/mne.py +170 -0
- braindecode/datasets/moabb.py +219 -0
- braindecode/datasets/nmt.py +313 -0
- braindecode/datasets/registry.py +120 -0
- braindecode/datasets/siena.py +162 -0
- braindecode/datasets/sleep_physio_challe_18.py +411 -0
- braindecode/datasets/sleep_physionet.py +125 -0
- braindecode/datasets/tuh.py +591 -0
- braindecode/datasets/utils.py +67 -0
- braindecode/datasets/xy.py +96 -0
- braindecode/datautil/__init__.py +62 -0
- braindecode/datautil/channel_utils.py +114 -0
- braindecode/datautil/hub_formats.py +180 -0
- braindecode/datautil/serialization.py +359 -0
- braindecode/datautil/util.py +154 -0
- braindecode/eegneuralnet.py +372 -0
- braindecode/functional/__init__.py +22 -0
- braindecode/functional/functions.py +251 -0
- braindecode/functional/initialization.py +47 -0
- braindecode/models/__init__.py +117 -0
- braindecode/models/atcnet.py +830 -0
- braindecode/models/attentionbasenet.py +727 -0
- braindecode/models/attn_sleep.py +549 -0
- braindecode/models/base.py +574 -0
- braindecode/models/bendr.py +493 -0
- braindecode/models/biot.py +537 -0
- braindecode/models/brainmodule.py +845 -0
- braindecode/models/config.py +233 -0
- braindecode/models/contrawr.py +319 -0
- braindecode/models/ctnet.py +541 -0
- braindecode/models/deep4.py +376 -0
- braindecode/models/deepsleepnet.py +417 -0
- braindecode/models/eegconformer.py +475 -0
- braindecode/models/eeginception_erp.py +379 -0
- braindecode/models/eeginception_mi.py +379 -0
- braindecode/models/eegitnet.py +302 -0
- braindecode/models/eegminer.py +256 -0
- braindecode/models/eegnet.py +359 -0
- braindecode/models/eegnex.py +354 -0
- braindecode/models/eegsimpleconv.py +201 -0
- braindecode/models/eegsym.py +917 -0
- braindecode/models/eegtcnet.py +337 -0
- braindecode/models/fbcnet.py +225 -0
- braindecode/models/fblightconvnet.py +315 -0
- braindecode/models/fbmsnet.py +338 -0
- braindecode/models/hybrid.py +126 -0
- braindecode/models/ifnet.py +443 -0
- braindecode/models/labram.py +1316 -0
- braindecode/models/luna.py +891 -0
- braindecode/models/medformer.py +760 -0
- braindecode/models/msvtnet.py +377 -0
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/reve.py +843 -0
- braindecode/models/sccnet.py +280 -0
- braindecode/models/shallow_fbcsp.py +212 -0
- braindecode/models/signal_jepa.py +1122 -0
- braindecode/models/sinc_shallow.py +339 -0
- braindecode/models/sleep_stager_blanco_2020.py +169 -0
- braindecode/models/sleep_stager_chambon_2018.py +159 -0
- braindecode/models/sparcnet.py +426 -0
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +47 -0
- braindecode/models/syncnet.py +234 -0
- braindecode/models/tcn.py +275 -0
- braindecode/models/tidnet.py +397 -0
- braindecode/models/tsinception.py +295 -0
- braindecode/models/usleep.py +439 -0
- braindecode/models/util.py +369 -0
- braindecode/modules/__init__.py +92 -0
- braindecode/modules/activation.py +86 -0
- braindecode/modules/attention.py +883 -0
- braindecode/modules/blocks.py +160 -0
- braindecode/modules/convolution.py +330 -0
- braindecode/modules/filter.py +654 -0
- braindecode/modules/layers.py +216 -0
- braindecode/modules/linear.py +70 -0
- braindecode/modules/parametrization.py +38 -0
- braindecode/modules/stats.py +87 -0
- braindecode/modules/util.py +85 -0
- braindecode/modules/wrapper.py +90 -0
- braindecode/preprocessing/__init__.py +271 -0
- braindecode/preprocessing/eegprep_preprocess.py +1317 -0
- braindecode/preprocessing/mne_preprocess.py +240 -0
- braindecode/preprocessing/preprocess.py +579 -0
- braindecode/preprocessing/util.py +177 -0
- braindecode/preprocessing/windowers.py +1037 -0
- braindecode/regressor.py +234 -0
- braindecode/samplers/__init__.py +18 -0
- braindecode/samplers/base.py +399 -0
- braindecode/samplers/ssl.py +263 -0
- braindecode/training/__init__.py +23 -0
- braindecode/training/callbacks.py +23 -0
- braindecode/training/losses.py +105 -0
- braindecode/training/scoring.py +477 -0
- braindecode/util.py +419 -0
- braindecode/version.py +1 -0
- braindecode/visualization/__init__.py +8 -0
- braindecode/visualization/confusion_matrices.py +289 -0
- braindecode/visualization/gradients.py +62 -0
- braindecode-1.3.0.dev177069446.dist-info/METADATA +230 -0
- braindecode-1.3.0.dev177069446.dist-info/RECORD +124 -0
- braindecode-1.3.0.dev177069446.dist-info/WHEEL +5 -0
- braindecode-1.3.0.dev177069446.dist-info/licenses/LICENSE.txt +31 -0
- braindecode-1.3.0.dev177069446.dist-info/licenses/NOTICE.txt +20 -0
- braindecode-1.3.0.dev177069446.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,541 @@
|
|
|
1
|
+
"""
|
|
2
|
+
CTNet: a convolutional transformer network for EEG-based motor imagery
|
|
3
|
+
classification from Wei Zhao et al. (2024).
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
# Authors: Wei Zhao <zhaowei701@163.com>
|
|
7
|
+
# Bruno Aristimunha <b.aristimunha@gmail.com> (braindecode adaptation)
|
|
8
|
+
# License: MIT
|
|
9
|
+
|
|
10
|
+
from __future__ import annotations
|
|
11
|
+
|
|
12
|
+
import math
|
|
13
|
+
from typing import Optional
|
|
14
|
+
|
|
15
|
+
import torch
|
|
16
|
+
from einops.layers.torch import Rearrange
|
|
17
|
+
from mne.utils import warn
|
|
18
|
+
from torch import Tensor, nn
|
|
19
|
+
|
|
20
|
+
from braindecode.models.base import EEGModuleMixin
|
|
21
|
+
from braindecode.modules import (
|
|
22
|
+
FeedForwardBlock,
|
|
23
|
+
MultiHeadAttention,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class CTNet(EEGModuleMixin, nn.Module):
|
|
28
|
+
r"""CTNet from Zhao, W et al (2024) [ctnet]_.
|
|
29
|
+
|
|
30
|
+
:bdg-success:`Convolution` :bdg-info:`Attention/Transformer`
|
|
31
|
+
|
|
32
|
+
A Convolutional Transformer Network for EEG-Based Motor Imagery Classification
|
|
33
|
+
|
|
34
|
+
.. figure:: https://raw.githubusercontent.com/snailpt/CTNet/main/architecture.png
|
|
35
|
+
:align: center
|
|
36
|
+
:alt: CTNet Architecture
|
|
37
|
+
|
|
38
|
+
CTNet is an end-to-end neural network architecture designed for classifying motor imagery (MI) tasks from EEG signals.
|
|
39
|
+
The model combines convolutional neural networks (CNNs) with a Transformer encoder to capture both local and global temporal dependencies in the EEG data.
|
|
40
|
+
|
|
41
|
+
The architecture consists of three main components:
|
|
42
|
+
|
|
43
|
+
1. **Convolutional Module**:
|
|
44
|
+
|
|
45
|
+
- Apply :class:`EEGNet` to perform some feature extraction, denoted here as
|
|
46
|
+
_PatchEmbeddingEEGNet module.
|
|
47
|
+
|
|
48
|
+
2. **Transformer Encoder Module**:
|
|
49
|
+
|
|
50
|
+
- Utilizes multi-head self-attention mechanisms as EEGConformer but
|
|
51
|
+
with residual blocks.
|
|
52
|
+
|
|
53
|
+
3. **Classifier Module**:
|
|
54
|
+
|
|
55
|
+
- Combines features from both the convolutional module
|
|
56
|
+
and the Transformer encoder.
|
|
57
|
+
- Flattens the combined features and applies dropout for regularization.
|
|
58
|
+
- Uses a fully connected layer to produce the final classification output.
|
|
59
|
+
|
|
60
|
+
Parameters
|
|
61
|
+
----------
|
|
62
|
+
activation : nn.Module, default=nn.GELU
|
|
63
|
+
Activation function to use in the network.
|
|
64
|
+
num_heads : int, default=4
|
|
65
|
+
Number of attention heads in the Transformer encoder.
|
|
66
|
+
embed_dim : int or None, default=None
|
|
67
|
+
Embedding size (dimensionality) for the Transformer encoder.
|
|
68
|
+
num_layers : int, default=6
|
|
69
|
+
Number of encoder layers in the Transformer.
|
|
70
|
+
n_filters_time : int, default=20
|
|
71
|
+
Number of temporal filters in the first convolutional layer.
|
|
72
|
+
kernel_size : int, default=64
|
|
73
|
+
Kernel size for the temporal convolutional layer.
|
|
74
|
+
depth_multiplier : int, default=2
|
|
75
|
+
Multiplier for the number of depth-wise convolutional filters.
|
|
76
|
+
pool_size_1 : int, default=8
|
|
77
|
+
Pooling size for the first average pooling layer.
|
|
78
|
+
pool_size_2 : int, default=8
|
|
79
|
+
Pooling size for the second average pooling layer.
|
|
80
|
+
cnn_drop_prob: float, default=0.3
|
|
81
|
+
Dropout probability after convolutional layers.
|
|
82
|
+
att_positional_drop_prob : float, default=0.1
|
|
83
|
+
Dropout probability for the positional encoding in the Transformer.
|
|
84
|
+
final_drop_prob : float, default=0.5
|
|
85
|
+
Dropout probability before the final classification layer.
|
|
86
|
+
|
|
87
|
+
Notes
|
|
88
|
+
-----
|
|
89
|
+
This implementation is adapted from the original CTNet source code
|
|
90
|
+
[ctnetcode]_ to comply with Braindecode's model standards.
|
|
91
|
+
|
|
92
|
+
References
|
|
93
|
+
----------
|
|
94
|
+
.. [ctnet] Zhao, W., Jiang, X., Zhang, B., Xiao, S., & Weng, S. (2024).
|
|
95
|
+
CTNet: a convolutional transformer network for EEG-based motor imagery
|
|
96
|
+
classification. Scientific Reports, 14(1), 20237.
|
|
97
|
+
.. [ctnetcode] Zhao, W., Jiang, X., Zhang, B., Xiao, S., & Weng, S. (2024).
|
|
98
|
+
CTNet source code:
|
|
99
|
+
https://github.com/snailpt/CTNet
|
|
100
|
+
"""
|
|
101
|
+
|
|
102
|
+
def __init__(
|
|
103
|
+
self,
|
|
104
|
+
# Base arguments
|
|
105
|
+
n_outputs=None,
|
|
106
|
+
n_chans=None,
|
|
107
|
+
sfreq=None,
|
|
108
|
+
chs_info=None,
|
|
109
|
+
n_times=None,
|
|
110
|
+
input_window_seconds=None,
|
|
111
|
+
# Model specific arguments
|
|
112
|
+
activation_patch: type[nn.Module] = nn.ELU,
|
|
113
|
+
activation_transformer: type[nn.Module] = nn.GELU,
|
|
114
|
+
cnn_drop_prob: float = 0.3,
|
|
115
|
+
att_positional_drop_prob: float = 0.1,
|
|
116
|
+
final_drop_prob: float = 0.5,
|
|
117
|
+
# other parameters
|
|
118
|
+
num_heads: int = 4,
|
|
119
|
+
embed_dim: Optional[int] = 40,
|
|
120
|
+
num_layers: int = 6,
|
|
121
|
+
n_filters_time: Optional[int] = None,
|
|
122
|
+
kernel_size: int = 64,
|
|
123
|
+
depth_multiplier: Optional[int] = 2,
|
|
124
|
+
pool_size_1: int = 8,
|
|
125
|
+
pool_size_2: int = 8,
|
|
126
|
+
):
|
|
127
|
+
super().__init__(
|
|
128
|
+
n_outputs=n_outputs,
|
|
129
|
+
n_chans=n_chans,
|
|
130
|
+
chs_info=chs_info,
|
|
131
|
+
n_times=n_times,
|
|
132
|
+
input_window_seconds=input_window_seconds,
|
|
133
|
+
sfreq=sfreq,
|
|
134
|
+
)
|
|
135
|
+
del n_outputs, n_chans, chs_info, n_times, input_window_seconds, sfreq
|
|
136
|
+
|
|
137
|
+
self.activation_patch = activation_patch
|
|
138
|
+
self.activation_transformer = activation_transformer
|
|
139
|
+
self.cnn_drop_prob = cnn_drop_prob
|
|
140
|
+
self.pool_size_1 = pool_size_1
|
|
141
|
+
self.pool_size_2 = pool_size_2
|
|
142
|
+
self.kernel_size = kernel_size
|
|
143
|
+
self.att_positional_drop_prob = att_positional_drop_prob
|
|
144
|
+
self.final_drop_prob = final_drop_prob
|
|
145
|
+
self.num_heads = num_heads
|
|
146
|
+
self.num_layers = num_layers
|
|
147
|
+
# n_times - pool_size_1 / p
|
|
148
|
+
self.sequence_length = math.floor(
|
|
149
|
+
(
|
|
150
|
+
math.floor((self.n_times - self.pool_size_1) / self.pool_size_1 + 1)
|
|
151
|
+
- self.pool_size_2
|
|
152
|
+
)
|
|
153
|
+
/ self.pool_size_2
|
|
154
|
+
+ 1
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
self.depth_multiplier, self.n_filters_time, self.embed_dim = self._resolve_dims(
|
|
158
|
+
depth_multiplier, n_filters_time, embed_dim
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
# Layers
|
|
162
|
+
self.ensuredim = Rearrange("batch nchans time -> batch 1 nchans time")
|
|
163
|
+
self.flatten = nn.Flatten()
|
|
164
|
+
|
|
165
|
+
self.cnn = _PatchEmbeddingEEGNet(
|
|
166
|
+
n_filters_time=self.n_filters_time,
|
|
167
|
+
kernel_size=self.kernel_size,
|
|
168
|
+
depth_multiplier=self.depth_multiplier,
|
|
169
|
+
pool_size_1=self.pool_size_1,
|
|
170
|
+
pool_size_2=self.pool_size_2,
|
|
171
|
+
drop_prob=self.cnn_drop_prob,
|
|
172
|
+
n_chans=self.n_chans,
|
|
173
|
+
activation=self.activation_patch,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
self.position = _PositionalEncoding(
|
|
177
|
+
emb_size=self.embed_dim,
|
|
178
|
+
drop_prob=self.att_positional_drop_prob,
|
|
179
|
+
n_times=self.n_times,
|
|
180
|
+
pool_size=self.pool_size_1,
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
self.trans = _TransformerEncoder(
|
|
184
|
+
self.num_heads,
|
|
185
|
+
self.num_layers,
|
|
186
|
+
self.embed_dim,
|
|
187
|
+
activation=self.activation_transformer,
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
self.flatten_drop_layer = nn.Sequential(
|
|
191
|
+
nn.Flatten(),
|
|
192
|
+
nn.Dropout(p=self.final_drop_prob),
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
self.final_layer = nn.Linear(
|
|
196
|
+
in_features=int(self.embed_dim * self.sequence_length),
|
|
197
|
+
out_features=self.n_outputs,
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
201
|
+
"""
|
|
202
|
+
Forward pass of the CTNet model.
|
|
203
|
+
|
|
204
|
+
Parameters
|
|
205
|
+
----------
|
|
206
|
+
x : Tensor
|
|
207
|
+
Input tensor of shape (batch_size, n_channels, n_times).
|
|
208
|
+
|
|
209
|
+
Returns
|
|
210
|
+
-------
|
|
211
|
+
Tensor
|
|
212
|
+
Output with shape (batch_size, n_outputs).
|
|
213
|
+
"""
|
|
214
|
+
x = self.ensuredim(x)
|
|
215
|
+
cnn = self.cnn(x)
|
|
216
|
+
cnn = cnn * math.sqrt(self.embed_dim)
|
|
217
|
+
cnn = self.position(cnn)
|
|
218
|
+
trans = self.trans(cnn)
|
|
219
|
+
features = cnn + trans
|
|
220
|
+
flatten_feature = self.flatten(features)
|
|
221
|
+
out = self.final_layer(flatten_feature)
|
|
222
|
+
return out
|
|
223
|
+
|
|
224
|
+
@staticmethod
|
|
225
|
+
def _resolve_dims(
|
|
226
|
+
depth_multiplier: Optional[int],
|
|
227
|
+
n_filters_time: Optional[int],
|
|
228
|
+
emb_size: Optional[int],
|
|
229
|
+
) -> tuple[int, int, int]:
|
|
230
|
+
# Basic type/positivity checks for provided values
|
|
231
|
+
for name, val in (
|
|
232
|
+
("depth_multiplier", depth_multiplier),
|
|
233
|
+
("n_filters_time", n_filters_time),
|
|
234
|
+
("emb_size", emb_size),
|
|
235
|
+
):
|
|
236
|
+
if val is not None:
|
|
237
|
+
if not isinstance(val, int):
|
|
238
|
+
raise TypeError(f"{name} must be int, got {type(val).__name__}")
|
|
239
|
+
if val <= 0:
|
|
240
|
+
raise ValueError(f"{name} must be > 0, got {val}")
|
|
241
|
+
|
|
242
|
+
missing = [
|
|
243
|
+
k
|
|
244
|
+
for k, v in {
|
|
245
|
+
"depth_multiplier": depth_multiplier,
|
|
246
|
+
"n_filters_time": n_filters_time,
|
|
247
|
+
"emb_size": emb_size,
|
|
248
|
+
}.items()
|
|
249
|
+
if v is None
|
|
250
|
+
]
|
|
251
|
+
|
|
252
|
+
if len(missing) >= 2:
|
|
253
|
+
# Too many unknowns → ambiguous
|
|
254
|
+
raise ValueError(
|
|
255
|
+
"Specify exactly two of {depth_multiplier, n_filters_time, emb_size}; the third will be inferred."
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
if len(missing) == 1:
|
|
259
|
+
# Infer the missing one
|
|
260
|
+
if missing[0] == "emb_size":
|
|
261
|
+
assert depth_multiplier is not None and n_filters_time is not None
|
|
262
|
+
emb_size = depth_multiplier * n_filters_time
|
|
263
|
+
elif missing[0] == "n_filters_time":
|
|
264
|
+
assert emb_size is not None and depth_multiplier is not None
|
|
265
|
+
if emb_size % depth_multiplier != 0:
|
|
266
|
+
raise ValueError(
|
|
267
|
+
f"emb_size={emb_size} must be divisible by depth_multiplier={depth_multiplier}"
|
|
268
|
+
)
|
|
269
|
+
n_filters_time = emb_size // depth_multiplier
|
|
270
|
+
else: # missing depth_multiplier
|
|
271
|
+
assert emb_size is not None and n_filters_time is not None
|
|
272
|
+
if emb_size % n_filters_time != 0:
|
|
273
|
+
raise ValueError(
|
|
274
|
+
f"emb_size={emb_size} must be divisible by n_filters_time={n_filters_time}"
|
|
275
|
+
)
|
|
276
|
+
depth_multiplier = emb_size // n_filters_time
|
|
277
|
+
|
|
278
|
+
else:
|
|
279
|
+
# All provided: enforce consistency
|
|
280
|
+
assert (
|
|
281
|
+
depth_multiplier is not None
|
|
282
|
+
and n_filters_time is not None
|
|
283
|
+
and emb_size is not None
|
|
284
|
+
)
|
|
285
|
+
prod = depth_multiplier * n_filters_time
|
|
286
|
+
if prod != emb_size:
|
|
287
|
+
raise ValueError(
|
|
288
|
+
"`depth_multiplier * n_filters_time` must equal `emb_size`, "
|
|
289
|
+
f"but got {depth_multiplier} * {n_filters_time} = {prod} != {emb_size}. "
|
|
290
|
+
"Fix by setting one of: "
|
|
291
|
+
f"emb_size={prod}, "
|
|
292
|
+
f"n_filters_time={emb_size // depth_multiplier if emb_size % depth_multiplier == 0 else 'not integer'}, "
|
|
293
|
+
f"depth_multiplier={emb_size // n_filters_time if emb_size % n_filters_time == 0 else 'not integer'}."
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
# Ensure plain ints for the return type
|
|
297
|
+
assert (
|
|
298
|
+
depth_multiplier is not None
|
|
299
|
+
and n_filters_time is not None
|
|
300
|
+
and emb_size is not None
|
|
301
|
+
)
|
|
302
|
+
return depth_multiplier, n_filters_time, emb_size
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
class _PatchEmbeddingEEGNet(nn.Module):
|
|
306
|
+
def __init__(
|
|
307
|
+
self,
|
|
308
|
+
n_filters_time: int = 16,
|
|
309
|
+
kernel_size: int = 64,
|
|
310
|
+
depth_multiplier: int = 2,
|
|
311
|
+
pool_size_1: int = 8,
|
|
312
|
+
pool_size_2: int = 8,
|
|
313
|
+
drop_prob: float = 0.3,
|
|
314
|
+
n_chans: int = 22,
|
|
315
|
+
activation: type[nn.Module] = nn.ELU,
|
|
316
|
+
):
|
|
317
|
+
super().__init__()
|
|
318
|
+
n_filters_out = depth_multiplier * n_filters_time
|
|
319
|
+
self.eegnet_module = nn.Sequential(
|
|
320
|
+
# Temporal convolution
|
|
321
|
+
nn.Conv2d(
|
|
322
|
+
in_channels=1,
|
|
323
|
+
out_channels=n_filters_time,
|
|
324
|
+
kernel_size=(1, kernel_size),
|
|
325
|
+
stride=(1, 1),
|
|
326
|
+
padding="same",
|
|
327
|
+
bias=False,
|
|
328
|
+
),
|
|
329
|
+
nn.BatchNorm2d(n_filters_time),
|
|
330
|
+
# Channel depth-wise convolution
|
|
331
|
+
nn.Conv2d(
|
|
332
|
+
in_channels=n_filters_time,
|
|
333
|
+
out_channels=n_filters_out,
|
|
334
|
+
kernel_size=(n_chans, 1),
|
|
335
|
+
stride=(1, 1),
|
|
336
|
+
groups=n_filters_time,
|
|
337
|
+
padding="valid",
|
|
338
|
+
bias=False,
|
|
339
|
+
),
|
|
340
|
+
nn.BatchNorm2d(n_filters_out),
|
|
341
|
+
activation(),
|
|
342
|
+
# First average pooling
|
|
343
|
+
nn.AvgPool2d(kernel_size=(1, pool_size_1)),
|
|
344
|
+
nn.Dropout(drop_prob),
|
|
345
|
+
# Spatial convolution
|
|
346
|
+
nn.Conv2d(
|
|
347
|
+
in_channels=n_filters_out,
|
|
348
|
+
out_channels=n_filters_out,
|
|
349
|
+
kernel_size=(1, 16),
|
|
350
|
+
padding="same",
|
|
351
|
+
bias=False,
|
|
352
|
+
),
|
|
353
|
+
nn.BatchNorm2d(n_filters_out),
|
|
354
|
+
activation(),
|
|
355
|
+
# Second average pooling
|
|
356
|
+
nn.AvgPool2d(kernel_size=(1, pool_size_2)),
|
|
357
|
+
nn.Dropout(drop_prob),
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
self.projection = nn.Sequential(
|
|
361
|
+
Rearrange("b e h w -> b (h w) e"),
|
|
362
|
+
)
|
|
363
|
+
|
|
364
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
365
|
+
"""
|
|
366
|
+
Forward pass of the Patch Embedding CNN.
|
|
367
|
+
|
|
368
|
+
Parameters
|
|
369
|
+
----------
|
|
370
|
+
x : Tensor
|
|
371
|
+
Input tensor of shape (batch_size, 1, n_channels, n_times).
|
|
372
|
+
|
|
373
|
+
Returns
|
|
374
|
+
-------
|
|
375
|
+
Tensor
|
|
376
|
+
Embedded patches of shape (batch_size, num_patches, embedding_dim).
|
|
377
|
+
"""
|
|
378
|
+
x = self.eegnet_module(x)
|
|
379
|
+
x = self.projection(x)
|
|
380
|
+
return x
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
class _ResidualAdd(nn.Module):
|
|
384
|
+
def __init__(self, module: nn.Module, emb_size: int, drop_p: float):
|
|
385
|
+
super().__init__()
|
|
386
|
+
self.module = module
|
|
387
|
+
self.drop = nn.Dropout(drop_p)
|
|
388
|
+
self.layernorm = nn.LayerNorm(emb_size)
|
|
389
|
+
|
|
390
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
391
|
+
"""
|
|
392
|
+
Forward pass with residual connection.
|
|
393
|
+
|
|
394
|
+
Parameters
|
|
395
|
+
----------
|
|
396
|
+
x : Tensor
|
|
397
|
+
Input tensor.
|
|
398
|
+
**kwargs : Any
|
|
399
|
+
Additional arguments.
|
|
400
|
+
|
|
401
|
+
Returns
|
|
402
|
+
-------
|
|
403
|
+
Tensor
|
|
404
|
+
Output tensor after applying residual connection.
|
|
405
|
+
"""
|
|
406
|
+
res = self.module(x)
|
|
407
|
+
out = self.layernorm(self.drop(res) + x)
|
|
408
|
+
return out
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
class _TransformerEncoderBlock(nn.Module):
|
|
412
|
+
def __init__(
|
|
413
|
+
self,
|
|
414
|
+
dim_feedforward: int,
|
|
415
|
+
num_heads: int = 4,
|
|
416
|
+
drop_prob: float = 0.5,
|
|
417
|
+
forward_expansion: int = 4,
|
|
418
|
+
forward_drop_p: float = 0.5,
|
|
419
|
+
activation: type[nn.Module] = nn.GELU,
|
|
420
|
+
):
|
|
421
|
+
super().__init__()
|
|
422
|
+
self.attention = _ResidualAdd(
|
|
423
|
+
nn.Sequential(
|
|
424
|
+
MultiHeadAttention(dim_feedforward, num_heads, drop_prob),
|
|
425
|
+
),
|
|
426
|
+
dim_feedforward,
|
|
427
|
+
drop_prob,
|
|
428
|
+
)
|
|
429
|
+
self.feed_forward = _ResidualAdd(
|
|
430
|
+
nn.Sequential(
|
|
431
|
+
FeedForwardBlock(
|
|
432
|
+
dim_feedforward,
|
|
433
|
+
expansion=forward_expansion,
|
|
434
|
+
drop_p=forward_drop_p,
|
|
435
|
+
activation=activation,
|
|
436
|
+
),
|
|
437
|
+
),
|
|
438
|
+
dim_feedforward,
|
|
439
|
+
drop_prob,
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
443
|
+
"""
|
|
444
|
+
Forward pass of the transformer encoder block.
|
|
445
|
+
|
|
446
|
+
Parameters
|
|
447
|
+
----------
|
|
448
|
+
x : Tensor
|
|
449
|
+
Input tensor.
|
|
450
|
+
**kwargs : Any
|
|
451
|
+
Additional arguments.
|
|
452
|
+
|
|
453
|
+
Returns
|
|
454
|
+
-------
|
|
455
|
+
Tensor
|
|
456
|
+
Output tensor after transformer encoder block.
|
|
457
|
+
"""
|
|
458
|
+
x = self.attention(x)
|
|
459
|
+
x = self.feed_forward(x)
|
|
460
|
+
return x
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
class _TransformerEncoder(nn.Module):
|
|
464
|
+
def __init__(
|
|
465
|
+
self,
|
|
466
|
+
nheads: int,
|
|
467
|
+
depth: int,
|
|
468
|
+
dim_feedforward: int,
|
|
469
|
+
activation: type[nn.Module] = nn.GELU,
|
|
470
|
+
):
|
|
471
|
+
super().__init__()
|
|
472
|
+
self.layers = nn.Sequential(
|
|
473
|
+
*[
|
|
474
|
+
_TransformerEncoderBlock(
|
|
475
|
+
dim_feedforward=dim_feedforward,
|
|
476
|
+
num_heads=nheads,
|
|
477
|
+
activation=activation,
|
|
478
|
+
)
|
|
479
|
+
for _ in range(depth)
|
|
480
|
+
]
|
|
481
|
+
)
|
|
482
|
+
|
|
483
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
484
|
+
"""
|
|
485
|
+
Forward pass of the transformer encoder.
|
|
486
|
+
|
|
487
|
+
Parameters
|
|
488
|
+
----------
|
|
489
|
+
x : Tensor
|
|
490
|
+
Input tensor.
|
|
491
|
+
|
|
492
|
+
Returns
|
|
493
|
+
-------
|
|
494
|
+
Tensor
|
|
495
|
+
Output tensor after transformer encoder.
|
|
496
|
+
"""
|
|
497
|
+
return self.layers(x)
|
|
498
|
+
|
|
499
|
+
|
|
500
|
+
class _PositionalEncoding(nn.Module):
|
|
501
|
+
def __init__(
|
|
502
|
+
self,
|
|
503
|
+
n_times: int,
|
|
504
|
+
emb_size: int,
|
|
505
|
+
length: int = 100,
|
|
506
|
+
drop_prob: float = 0.1,
|
|
507
|
+
pool_size: int = 8,
|
|
508
|
+
):
|
|
509
|
+
super().__init__()
|
|
510
|
+
self.pool_size = pool_size
|
|
511
|
+
self.n_times = n_times
|
|
512
|
+
|
|
513
|
+
if int(n_times / (pool_size * pool_size)) > length:
|
|
514
|
+
warn(
|
|
515
|
+
"the temporal dimensional is too long for this default length. "
|
|
516
|
+
"The length parameter will be automatically adjusted to "
|
|
517
|
+
"avoid inference issues."
|
|
518
|
+
)
|
|
519
|
+
length = int(n_times / (pool_size * pool_size))
|
|
520
|
+
|
|
521
|
+
self.dropout = nn.Dropout(drop_prob)
|
|
522
|
+
self.encoding = nn.Parameter(torch.randn(1, length, emb_size))
|
|
523
|
+
|
|
524
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
525
|
+
"""
|
|
526
|
+
Forward pass of the positional encoding.
|
|
527
|
+
|
|
528
|
+
Parameters
|
|
529
|
+
----------
|
|
530
|
+
x : Tensor
|
|
531
|
+
Input tensor of shape (batch_size, sequence_length, embedding_dim).
|
|
532
|
+
|
|
533
|
+
Returns
|
|
534
|
+
-------
|
|
535
|
+
Tensor
|
|
536
|
+
Tensor with positional encoding added.
|
|
537
|
+
"""
|
|
538
|
+
seq_length = x.size(1)
|
|
539
|
+
encoding = self.encoding[:, :seq_length, :]
|
|
540
|
+
x = x + encoding
|
|
541
|
+
return self.dropout(x)
|