braindecode 1.3.0.dev177069446__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- braindecode/__init__.py +9 -0
- braindecode/augmentation/__init__.py +52 -0
- braindecode/augmentation/base.py +225 -0
- braindecode/augmentation/functional.py +1300 -0
- braindecode/augmentation/transforms.py +1356 -0
- braindecode/classifier.py +258 -0
- braindecode/datasets/__init__.py +44 -0
- braindecode/datasets/base.py +823 -0
- braindecode/datasets/bbci.py +693 -0
- braindecode/datasets/bcicomp.py +193 -0
- braindecode/datasets/bids/__init__.py +54 -0
- braindecode/datasets/bids/datasets.py +239 -0
- braindecode/datasets/bids/format.py +717 -0
- braindecode/datasets/bids/hub.py +987 -0
- braindecode/datasets/bids/hub_format.py +717 -0
- braindecode/datasets/bids/hub_io.py +197 -0
- braindecode/datasets/bids/hub_validation.py +114 -0
- braindecode/datasets/bids/iterable.py +220 -0
- braindecode/datasets/chb_mit.py +163 -0
- braindecode/datasets/mne.py +170 -0
- braindecode/datasets/moabb.py +219 -0
- braindecode/datasets/nmt.py +313 -0
- braindecode/datasets/registry.py +120 -0
- braindecode/datasets/siena.py +162 -0
- braindecode/datasets/sleep_physio_challe_18.py +411 -0
- braindecode/datasets/sleep_physionet.py +125 -0
- braindecode/datasets/tuh.py +591 -0
- braindecode/datasets/utils.py +67 -0
- braindecode/datasets/xy.py +96 -0
- braindecode/datautil/__init__.py +62 -0
- braindecode/datautil/channel_utils.py +114 -0
- braindecode/datautil/hub_formats.py +180 -0
- braindecode/datautil/serialization.py +359 -0
- braindecode/datautil/util.py +154 -0
- braindecode/eegneuralnet.py +372 -0
- braindecode/functional/__init__.py +22 -0
- braindecode/functional/functions.py +251 -0
- braindecode/functional/initialization.py +47 -0
- braindecode/models/__init__.py +117 -0
- braindecode/models/atcnet.py +830 -0
- braindecode/models/attentionbasenet.py +727 -0
- braindecode/models/attn_sleep.py +549 -0
- braindecode/models/base.py +574 -0
- braindecode/models/bendr.py +493 -0
- braindecode/models/biot.py +537 -0
- braindecode/models/brainmodule.py +845 -0
- braindecode/models/config.py +233 -0
- braindecode/models/contrawr.py +319 -0
- braindecode/models/ctnet.py +541 -0
- braindecode/models/deep4.py +376 -0
- braindecode/models/deepsleepnet.py +417 -0
- braindecode/models/eegconformer.py +475 -0
- braindecode/models/eeginception_erp.py +379 -0
- braindecode/models/eeginception_mi.py +379 -0
- braindecode/models/eegitnet.py +302 -0
- braindecode/models/eegminer.py +256 -0
- braindecode/models/eegnet.py +359 -0
- braindecode/models/eegnex.py +354 -0
- braindecode/models/eegsimpleconv.py +201 -0
- braindecode/models/eegsym.py +917 -0
- braindecode/models/eegtcnet.py +337 -0
- braindecode/models/fbcnet.py +225 -0
- braindecode/models/fblightconvnet.py +315 -0
- braindecode/models/fbmsnet.py +338 -0
- braindecode/models/hybrid.py +126 -0
- braindecode/models/ifnet.py +443 -0
- braindecode/models/labram.py +1316 -0
- braindecode/models/luna.py +891 -0
- braindecode/models/medformer.py +760 -0
- braindecode/models/msvtnet.py +377 -0
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/reve.py +843 -0
- braindecode/models/sccnet.py +280 -0
- braindecode/models/shallow_fbcsp.py +212 -0
- braindecode/models/signal_jepa.py +1122 -0
- braindecode/models/sinc_shallow.py +339 -0
- braindecode/models/sleep_stager_blanco_2020.py +169 -0
- braindecode/models/sleep_stager_chambon_2018.py +159 -0
- braindecode/models/sparcnet.py +426 -0
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +47 -0
- braindecode/models/syncnet.py +234 -0
- braindecode/models/tcn.py +275 -0
- braindecode/models/tidnet.py +397 -0
- braindecode/models/tsinception.py +295 -0
- braindecode/models/usleep.py +439 -0
- braindecode/models/util.py +369 -0
- braindecode/modules/__init__.py +92 -0
- braindecode/modules/activation.py +86 -0
- braindecode/modules/attention.py +883 -0
- braindecode/modules/blocks.py +160 -0
- braindecode/modules/convolution.py +330 -0
- braindecode/modules/filter.py +654 -0
- braindecode/modules/layers.py +216 -0
- braindecode/modules/linear.py +70 -0
- braindecode/modules/parametrization.py +38 -0
- braindecode/modules/stats.py +87 -0
- braindecode/modules/util.py +85 -0
- braindecode/modules/wrapper.py +90 -0
- braindecode/preprocessing/__init__.py +271 -0
- braindecode/preprocessing/eegprep_preprocess.py +1317 -0
- braindecode/preprocessing/mne_preprocess.py +240 -0
- braindecode/preprocessing/preprocess.py +579 -0
- braindecode/preprocessing/util.py +177 -0
- braindecode/preprocessing/windowers.py +1037 -0
- braindecode/regressor.py +234 -0
- braindecode/samplers/__init__.py +18 -0
- braindecode/samplers/base.py +399 -0
- braindecode/samplers/ssl.py +263 -0
- braindecode/training/__init__.py +23 -0
- braindecode/training/callbacks.py +23 -0
- braindecode/training/losses.py +105 -0
- braindecode/training/scoring.py +477 -0
- braindecode/util.py +419 -0
- braindecode/version.py +1 -0
- braindecode/visualization/__init__.py +8 -0
- braindecode/visualization/confusion_matrices.py +289 -0
- braindecode/visualization/gradients.py +62 -0
- braindecode-1.3.0.dev177069446.dist-info/METADATA +230 -0
- braindecode-1.3.0.dev177069446.dist-info/RECORD +124 -0
- braindecode-1.3.0.dev177069446.dist-info/WHEEL +5 -0
- braindecode-1.3.0.dev177069446.dist-info/licenses/LICENSE.txt +31 -0
- braindecode-1.3.0.dev177069446.dist-info/licenses/NOTICE.txt +20 -0
- braindecode-1.3.0.dev177069446.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,727 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import math
|
|
4
|
+
|
|
5
|
+
from einops.layers.torch import Rearrange
|
|
6
|
+
from mne.utils import warn
|
|
7
|
+
from torch import nn
|
|
8
|
+
|
|
9
|
+
from braindecode.models.base import EEGModuleMixin
|
|
10
|
+
from braindecode.modules import Ensure4d
|
|
11
|
+
from braindecode.modules.attention import (
|
|
12
|
+
CAT,
|
|
13
|
+
CBAM,
|
|
14
|
+
ECA,
|
|
15
|
+
FCA,
|
|
16
|
+
GCT,
|
|
17
|
+
SRM,
|
|
18
|
+
CATLite,
|
|
19
|
+
EncNet,
|
|
20
|
+
GatherExcite,
|
|
21
|
+
GSoP,
|
|
22
|
+
SqueezeAndExcitation,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class AttentionBaseNet(EEGModuleMixin, nn.Module):
|
|
27
|
+
r"""AttentionBaseNet from Wimpff M et al (2023) [Martin2023]_.
|
|
28
|
+
|
|
29
|
+
:bdg-success:`Convolution` :bdg-info:`Attention/Transformer`
|
|
30
|
+
|
|
31
|
+
.. figure:: https://content.cld.iop.org/journals/1741-2552/21/3/036020/revision2/jnead48b9f2_hr.jpg
|
|
32
|
+
:align: center
|
|
33
|
+
:alt: AttentionBaseNet Architecture
|
|
34
|
+
:width: 640px
|
|
35
|
+
|
|
36
|
+
.. rubric:: Architectural Overview
|
|
37
|
+
|
|
38
|
+
AttentionBaseNet is a *convolution-first* network with a *channel-attention* stage.
|
|
39
|
+
The end-to-end flow is:
|
|
40
|
+
|
|
41
|
+
- (i) :class:`_FeatureExtractor` learns a temporal filter bank and per-filter spatial
|
|
42
|
+
projections (depthwise across electrodes), then condenses time by pooling;
|
|
43
|
+
- (ii) **Channel Expansion** uses a ``1x1`` convolution to set the feature width;
|
|
44
|
+
- (iii) :class:`_ChannelAttentionBlock` refines features via depthwise–pointwise temporal
|
|
45
|
+
convs and an optional channel-attention module (SE/CBAM/ECA/…);
|
|
46
|
+
- (iv) **Classifier** flattens the sequence and applies a linear readout.
|
|
47
|
+
|
|
48
|
+
This design mirrors shallow CNN pipelines (EEGNet-style stem) but inserts a pluggable
|
|
49
|
+
attention unit that *re-weights channels* (and optionally temporal positions) before
|
|
50
|
+
classification.
|
|
51
|
+
|
|
52
|
+
.. rubric:: Macro Components
|
|
53
|
+
|
|
54
|
+
- :class:`_FeatureExtractor` **(Shallow conv stem → condensed feature map)**
|
|
55
|
+
|
|
56
|
+
- *Operations.*
|
|
57
|
+
- **Temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(1, L_t)`` creates a learned
|
|
58
|
+
FIR-like filter bank with ``n_temporal_filters`` maps.
|
|
59
|
+
- **Depthwise spatial conv** (:class:`torch.nn.Conv2d`, ``groups=n_temporal_filters``)
|
|
60
|
+
with kernel ``(n_chans, 1)`` learns per-filter spatial projections over the full montage.
|
|
61
|
+
- **BatchNorm → ELU → AvgPool → Dropout** stabilize and downsample time.
|
|
62
|
+
- Output shape: ``(B, F2, 1, T₁)`` with ``F2 = n_temporal_filters x spatial_expansion``.
|
|
63
|
+
|
|
64
|
+
*Interpretability/robustness.* Temporal kernels behave as analyzable FIR filters; the
|
|
65
|
+
depthwise spatial step yields rhythm-specific topographies. Pooling acts as a local
|
|
66
|
+
integrator that reduces variance on short EEG windows.
|
|
67
|
+
|
|
68
|
+
- **Channel Expansion**
|
|
69
|
+
|
|
70
|
+
- *Operations.*
|
|
71
|
+
- A ``1x1`` conv → BN → activation maps ``F2 → ch_dim`` without changing
|
|
72
|
+
the temporal length ``T₁`` (shape: ``(B, ch_dim, 1, T₁)``).
|
|
73
|
+
This sets the embedding width for the attention block.
|
|
74
|
+
|
|
75
|
+
- :class:`_ChannelAttentionBlock` **(temporal refinement + channel attention)**
|
|
76
|
+
|
|
77
|
+
- *Operations.*
|
|
78
|
+
- **Depthwise temporal conv** ``(1, L_a)`` (groups=``ch_dim``) + **pointwise ``1x1``**,
|
|
79
|
+
BN and activation → preserves shape ``(B, ch_dim, 1, T₁)`` while refining timing.
|
|
80
|
+
- **Optional attention module** (see *Additional Mechanisms*) applies channel reweighting
|
|
81
|
+
(some variants also apply temporal gating).
|
|
82
|
+
- **AvgPool (1, P₂)** with stride ``(1, S₂)`` and **Dropout** → outputs
|
|
83
|
+
``(B, ch_dim, 1, T₂)``.
|
|
84
|
+
|
|
85
|
+
*Role.* Emphasizes informative channels (and, in certain modes, salient time steps)
|
|
86
|
+
before the classifier; complements the convolutional priors with adaptive re-weighting.
|
|
87
|
+
|
|
88
|
+
- **Classifier (aggregation + readout)**
|
|
89
|
+
|
|
90
|
+
*Operations.* :class:`torch.nn.Flatten` → :class:`torch.nn.Linear` from
|
|
91
|
+
``(B, ch_dim·T₂)`` to classes.
|
|
92
|
+
|
|
93
|
+
.. rubric:: Convolutional Details
|
|
94
|
+
|
|
95
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
96
|
+
Wide kernels in the stem (``(1, L_t)``) act as a learned filter bank for oscillatory
|
|
97
|
+
bands/transients; the attention block's depthwise temporal conv (``(1, L_a)``) sharpens
|
|
98
|
+
short-term dynamics after downsampling. Pool sizes/strides (``P₁,S₁`` then ``P₂,S₂``)
|
|
99
|
+
set the token rate and effective temporal resolution.
|
|
100
|
+
|
|
101
|
+
- **Spatial (how electrodes are processed).**
|
|
102
|
+
A depthwise spatial conv with kernel ``(n_chans, 1)`` spans the full montage to
|
|
103
|
+
learn *per-temporal-filter* spatial projections (no cross-filter mixing at this step),
|
|
104
|
+
mirroring the interpretable spatial stage in shallow CNNs.
|
|
105
|
+
|
|
106
|
+
- **Spectral (how frequency content is captured).**
|
|
107
|
+
No explicit Fourier/wavelet transform is used in the stem—spectral selectivity
|
|
108
|
+
emerges from learned temporal kernels. When ``attention_mode="fca"``, a frequency
|
|
109
|
+
channel attention (DCT-based) summarizes frequencies to drive channel weights.
|
|
110
|
+
|
|
111
|
+
.. rubric:: Attention / Sequential Modules
|
|
112
|
+
|
|
113
|
+
- **Type.** Channel attention chosen by ``attention_mode`` (SE, ECA, CBAM, CAT, GSoP,
|
|
114
|
+
EncNet, GE, GCT, SRM, CATLite). Most operate purely on channels; CBAM/CAT additionally
|
|
115
|
+
include temporal attention.
|
|
116
|
+
|
|
117
|
+
- **Shapes.** Input/Output around attention: ``(B, ch_dim, 1, T₁)``. Re-arrangements
|
|
118
|
+
(if any) are internal to the module; the block returns the same shape before pooling.
|
|
119
|
+
|
|
120
|
+
- **Role.** Re-weights channels (and optionally time) to highlight informative sources
|
|
121
|
+
and suppress distractors, improving SNR ahead of the linear head.
|
|
122
|
+
|
|
123
|
+
.. rubric:: Additional Mechanisms
|
|
124
|
+
|
|
125
|
+
**Attention variants at a glance:**
|
|
126
|
+
|
|
127
|
+
- ``"se"``: Squeeze-and-Excitation (global pooling → bottleneck → gates).
|
|
128
|
+
- ``"gsop"``: Global second-order pooling (covariance-aware channel weights).
|
|
129
|
+
- ``"fca"``: Frequency Channel Attention (DCT summary; uses ``seq_len`` and ``freq_idx``).
|
|
130
|
+
- ``"encnet"``: EncNet with learned codewords (uses ``n_codewords``).
|
|
131
|
+
- ``"eca"``: Efficient Channel Attention (local 1-D conv over channel descriptor; uses ``kernel_size``).
|
|
132
|
+
- ``"ge"``: Gather–Excite (context pooling with optional MLP; can use ``extra_params``).
|
|
133
|
+
- ``"gct"``: Gated Channel Transformation (global context normalization + gating).
|
|
134
|
+
- ``"srm"``: Style-based recalibration (mean–std descriptors; optional MLP).
|
|
135
|
+
- ``"cbam"``: Channel then temporal attention (uses ``kernel_size``).
|
|
136
|
+
- ``"cat"`` / ``"catlite"``: Collaborative (channel ± temporal) attention; *lite* omits temporal.
|
|
137
|
+
|
|
138
|
+
**Auto-compatibility on short inputs:**
|
|
139
|
+
|
|
140
|
+
If the input duration is too short for the configured kernels/pools, the implementation
|
|
141
|
+
**automatically rescales** temporal lengths/strides downward (with a warning) to keep
|
|
142
|
+
shapes valid and preserve the pipeline semantics.
|
|
143
|
+
|
|
144
|
+
.. rubric:: Usage and Configuration
|
|
145
|
+
|
|
146
|
+
- ``n_temporal_filters``, ``temporal_filter_length`` and ``spatial_expansion``:
|
|
147
|
+
control the capacity and the number of spatial projections in the stem.
|
|
148
|
+
- ``pool_length_inp``, ``pool_stride_inp`` then ``pool_length``, ``pool_stride``:
|
|
149
|
+
trade temporal resolution for compute; they determine the final sequence length ``T₂``.
|
|
150
|
+
- ``ch_dim``: width after the ``1x1`` expansion and the effective embedding size for attention.
|
|
151
|
+
- ``attention_mode`` + its specific hyperparameters (``reduction_rate``,
|
|
152
|
+
``kernel_size``, ``seq_len``, ``freq_idx``, ``n_codewords``, ``use_mlp``):
|
|
153
|
+
select and tune the reweighting mechanism.
|
|
154
|
+
- ``drop_prob_inp`` and ``drop_prob_attn``: regularize stem and attention stages.
|
|
155
|
+
- **Training tips.**
|
|
156
|
+
|
|
157
|
+
Start with moderate pooling (e.g., ``P₁=75,S₁=15``) and ELU activations; enable attention
|
|
158
|
+
only after the stem learns stable filters. For small datasets, prefer simpler modes
|
|
159
|
+
(``"se"``, ``"eca"``) before heavier ones (``"gsop"``, ``"encnet"``).
|
|
160
|
+
|
|
161
|
+
Parameters
|
|
162
|
+
----------
|
|
163
|
+
n_temporal_filters : int, optional
|
|
164
|
+
Number of temporal convolutional filters in the first layer. This defines
|
|
165
|
+
the number of output channels after the temporal convolution.
|
|
166
|
+
Default is 40.
|
|
167
|
+
temp_filter_length : int, default=15
|
|
168
|
+
The length of the temporal filters in the convolutional layers.
|
|
169
|
+
spatial_expansion : int, optional
|
|
170
|
+
Multiplicative factor to expand the spatial dimensions. Used to increase
|
|
171
|
+
the capacity of the model by expanding spatial features. Default is 1.
|
|
172
|
+
pool_length_inp : int, optional
|
|
173
|
+
Length of the pooling window in the input layer. Determines how much
|
|
174
|
+
temporal information is aggregated during pooling. Default is 75.
|
|
175
|
+
pool_stride_inp : int, optional
|
|
176
|
+
Stride of the pooling operation in the input layer. Controls the
|
|
177
|
+
downsampling factor in the temporal dimension. Default is 15.
|
|
178
|
+
drop_prob_inp : float, optional
|
|
179
|
+
Dropout rate applied after the input layer. This is the probability of
|
|
180
|
+
zeroing out elements during training to prevent overfitting.
|
|
181
|
+
Default is 0.5.
|
|
182
|
+
ch_dim : int, optional
|
|
183
|
+
Number of channels in the subsequent convolutional layers. This controls
|
|
184
|
+
the depth of the network after the initial layer. Default is 16.
|
|
185
|
+
attention_mode : str, optional
|
|
186
|
+
The type of attention mechanism to apply. If `None`, no attention is applied.
|
|
187
|
+
|
|
188
|
+
- "se" for Squeeze-and-excitation network
|
|
189
|
+
- "gsop" for Global Second-Order Pooling
|
|
190
|
+
- "fca" for Frequency Channel Attention Network
|
|
191
|
+
- "encnet" for context encoding module
|
|
192
|
+
- "eca" for Efficient channel attention for deep convolutional neural networks
|
|
193
|
+
- "ge" for Gather-Excite
|
|
194
|
+
- "gct" for Gated Channel Transformation
|
|
195
|
+
- "srm" for Style-based Recalibration Module
|
|
196
|
+
- "cbam" for Convolutional Block Attention Module
|
|
197
|
+
- "cat" for Learning to collaborate channel and temporal attention
|
|
198
|
+
from multi-information fusion
|
|
199
|
+
- "catlite" for Learning to collaborate channel attention
|
|
200
|
+
from multi-information fusion (lite version, cat w/o temporal attention)
|
|
201
|
+
|
|
202
|
+
pool_length : int, default=8
|
|
203
|
+
The length of the window for the average pooling operation.
|
|
204
|
+
pool_stride : int, default=8
|
|
205
|
+
The stride of the average pooling operation.
|
|
206
|
+
drop_prob_attn : float, default=0.5
|
|
207
|
+
The dropout rate for regularization for the attention layer. Values should be between 0 and 1.
|
|
208
|
+
reduction_rate : int, default=4
|
|
209
|
+
The reduction rate used in the attention mechanism to reduce dimensionality
|
|
210
|
+
and computational complexity.
|
|
211
|
+
use_mlp : bool, default=False
|
|
212
|
+
Flag to indicate whether an MLP (Multi-Layer Perceptron) should be used within
|
|
213
|
+
the attention mechanism for further processing.
|
|
214
|
+
freq_idx : int, default=0
|
|
215
|
+
DCT index used in fca attention mechanism.
|
|
216
|
+
n_codewords : int, default=4
|
|
217
|
+
The number of codewords (clusters) used in attention mechanisms that employ
|
|
218
|
+
quantization or clustering strategies.
|
|
219
|
+
kernel_size : int, default=9
|
|
220
|
+
The kernel size used in certain types of attention mechanisms for convolution
|
|
221
|
+
operations.
|
|
222
|
+
activation : type[nn.Module] = nn.ELU,
|
|
223
|
+
Activation function class to apply. Should be a PyTorch activation
|
|
224
|
+
module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
|
|
225
|
+
extra_params : bool, default=False
|
|
226
|
+
Flag to indicate whether additional, custom parameters should be passed to
|
|
227
|
+
the attention mechanism.
|
|
228
|
+
|
|
229
|
+
Notes
|
|
230
|
+
-----
|
|
231
|
+
- Sequence length after each stage is computed internally; the final classifier expects
|
|
232
|
+
a flattened ``ch_dim x T₂`` vector.
|
|
233
|
+
- Attention operates on *channel* dimension by design; temporal gating exists only in
|
|
234
|
+
specific variants (CBAM/CAT).
|
|
235
|
+
- The paper and original code with more details about the methodological
|
|
236
|
+
choices are available at the [Martin2023]_ and [MartinCode]_.
|
|
237
|
+
|
|
238
|
+
.. versionadded:: 0.9
|
|
239
|
+
|
|
240
|
+
References
|
|
241
|
+
----------
|
|
242
|
+
.. [Martin2023] Wimpff, M., Gizzi, L., Zerfowski, J. and Yang, B., 2023.
|
|
243
|
+
EEG motor imagery decoding: A framework for comparative analysis with
|
|
244
|
+
channel attention mechanisms. arXiv preprint arXiv:2310.11198.
|
|
245
|
+
.. [MartinCode] Wimpff, M., Gizzi, L., Zerfowski, J. and Yang, B.
|
|
246
|
+
GitHub https://github.com/martinwimpff/channel-attention (accessed 2024-03-28)
|
|
247
|
+
"""
|
|
248
|
+
|
|
249
|
+
def __init__(
|
|
250
|
+
self,
|
|
251
|
+
n_times=None,
|
|
252
|
+
n_chans=None,
|
|
253
|
+
n_outputs=None,
|
|
254
|
+
chs_info=None,
|
|
255
|
+
sfreq=None,
|
|
256
|
+
input_window_seconds=None,
|
|
257
|
+
# Module parameters
|
|
258
|
+
n_temporal_filters: int = 40,
|
|
259
|
+
temp_filter_length_inp: int = 25,
|
|
260
|
+
spatial_expansion: int = 1,
|
|
261
|
+
pool_length_inp: int = 75,
|
|
262
|
+
pool_stride_inp: int = 15,
|
|
263
|
+
drop_prob_inp: float = 0.5,
|
|
264
|
+
ch_dim: int = 16,
|
|
265
|
+
temp_filter_length: int = 15,
|
|
266
|
+
pool_length: int = 8,
|
|
267
|
+
pool_stride: int = 8,
|
|
268
|
+
drop_prob_attn: float = 0.5,
|
|
269
|
+
attention_mode: str | None = None,
|
|
270
|
+
reduction_rate: int = 4,
|
|
271
|
+
use_mlp: bool = False,
|
|
272
|
+
freq_idx: int = 0,
|
|
273
|
+
n_codewords: int = 4,
|
|
274
|
+
kernel_size: int = 9,
|
|
275
|
+
activation: type[nn.Module] = nn.ELU,
|
|
276
|
+
extra_params: bool = False,
|
|
277
|
+
):
|
|
278
|
+
super(AttentionBaseNet, self).__init__()
|
|
279
|
+
|
|
280
|
+
super().__init__(
|
|
281
|
+
n_outputs=n_outputs,
|
|
282
|
+
n_chans=n_chans,
|
|
283
|
+
chs_info=chs_info,
|
|
284
|
+
n_times=n_times,
|
|
285
|
+
sfreq=sfreq,
|
|
286
|
+
input_window_seconds=input_window_seconds,
|
|
287
|
+
)
|
|
288
|
+
del n_outputs, n_chans, chs_info, n_times, sfreq, input_window_seconds
|
|
289
|
+
|
|
290
|
+
min_n_times_required = self._get_min_n_times(
|
|
291
|
+
pool_length_inp,
|
|
292
|
+
pool_stride_inp,
|
|
293
|
+
pool_length,
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
if self.n_times < min_n_times_required:
|
|
297
|
+
scaling_factor = self.n_times / min_n_times_required
|
|
298
|
+
warn(
|
|
299
|
+
f"n_times ({self.n_times}) is smaller than the minimum required "
|
|
300
|
+
f"({min_n_times_required}) for the current model parameters configuration. "
|
|
301
|
+
"Adjusting parameters to ensure compatibility."
|
|
302
|
+
"Reducing the kernel, pooling, and stride sizes accordingly.\n"
|
|
303
|
+
"Scaling factor: {:.2f}".format(scaling_factor),
|
|
304
|
+
UserWarning,
|
|
305
|
+
)
|
|
306
|
+
# 3. Scale down all temporal parameters proportionally
|
|
307
|
+
# Use max(1, ...) to ensure parameters remain valid
|
|
308
|
+
temp_filter_length_inp = max(
|
|
309
|
+
1, int(temp_filter_length_inp * scaling_factor)
|
|
310
|
+
)
|
|
311
|
+
pool_length_inp = max(1, int(pool_length_inp * scaling_factor))
|
|
312
|
+
pool_stride_inp = max(1, int(pool_stride_inp * scaling_factor))
|
|
313
|
+
temp_filter_length = max(1, int(temp_filter_length * scaling_factor))
|
|
314
|
+
pool_length = max(1, int(pool_length * scaling_factor))
|
|
315
|
+
pool_stride = max(1, int(pool_stride * scaling_factor))
|
|
316
|
+
|
|
317
|
+
self.input_block = _FeatureExtractor(
|
|
318
|
+
n_chans=self.n_chans,
|
|
319
|
+
n_temporal_filters=n_temporal_filters,
|
|
320
|
+
temporal_filter_length=temp_filter_length_inp,
|
|
321
|
+
spatial_expansion=spatial_expansion,
|
|
322
|
+
pool_length=pool_length_inp,
|
|
323
|
+
pool_stride=pool_stride_inp,
|
|
324
|
+
drop_prob=drop_prob_inp,
|
|
325
|
+
activation=activation,
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
self.channel_expansion = nn.Sequential(
|
|
329
|
+
nn.Conv2d(
|
|
330
|
+
n_temporal_filters * spatial_expansion, ch_dim, (1, 1), bias=False
|
|
331
|
+
),
|
|
332
|
+
nn.BatchNorm2d(ch_dim),
|
|
333
|
+
activation(),
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
seq_lengths = self._calculate_sequence_lengths(
|
|
337
|
+
self.n_times,
|
|
338
|
+
[temp_filter_length_inp, temp_filter_length],
|
|
339
|
+
[pool_length_inp, pool_length],
|
|
340
|
+
[pool_stride_inp, pool_stride],
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
self.channel_attention_block = _ChannelAttentionBlock(
|
|
344
|
+
attention_mode=attention_mode,
|
|
345
|
+
in_channels=ch_dim,
|
|
346
|
+
temp_filter_length=temp_filter_length,
|
|
347
|
+
pool_length=pool_length,
|
|
348
|
+
pool_stride=pool_stride,
|
|
349
|
+
drop_prob=drop_prob_attn,
|
|
350
|
+
reduction_rate=reduction_rate,
|
|
351
|
+
use_mlp=use_mlp,
|
|
352
|
+
seq_len=seq_lengths[0],
|
|
353
|
+
freq_idx=freq_idx,
|
|
354
|
+
n_codewords=n_codewords,
|
|
355
|
+
kernel_size=kernel_size,
|
|
356
|
+
extra_params=extra_params,
|
|
357
|
+
activation=activation,
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
self.final_layer = nn.Sequential(
|
|
361
|
+
nn.Flatten(), nn.Linear(seq_lengths[-1] * ch_dim, self.n_outputs)
|
|
362
|
+
)
|
|
363
|
+
|
|
364
|
+
def forward(self, x):
|
|
365
|
+
x = self.input_block(x)
|
|
366
|
+
x = self.channel_expansion(x)
|
|
367
|
+
x = self.channel_attention_block(x)
|
|
368
|
+
x = self.final_layer(x)
|
|
369
|
+
return x
|
|
370
|
+
|
|
371
|
+
@staticmethod
|
|
372
|
+
def _calculate_sequence_lengths(
|
|
373
|
+
input_window_samples: int,
|
|
374
|
+
kernel_lengths: list,
|
|
375
|
+
pool_lengths: list,
|
|
376
|
+
pool_strides: list,
|
|
377
|
+
):
|
|
378
|
+
seq_lengths = []
|
|
379
|
+
out = input_window_samples
|
|
380
|
+
for k, pl, ps in zip(kernel_lengths, pool_lengths, pool_strides):
|
|
381
|
+
out = math.floor(out + 2 * (k // 2) - k + 1)
|
|
382
|
+
out = math.floor((out - pl) / ps + 1)
|
|
383
|
+
# Ensure output is at least 1 to avoid zero-sized tensors
|
|
384
|
+
out = max(1, out)
|
|
385
|
+
seq_lengths.append(int(out))
|
|
386
|
+
return seq_lengths
|
|
387
|
+
|
|
388
|
+
@staticmethod
|
|
389
|
+
def _get_min_n_times(
|
|
390
|
+
pool_length_inp: int,
|
|
391
|
+
pool_stride_inp: int,
|
|
392
|
+
pool_length: int,
|
|
393
|
+
) -> int:
|
|
394
|
+
"""
|
|
395
|
+
Calculates the minimum n_times required for the model to work.
|
|
396
|
+
|
|
397
|
+
with the given parameters.
|
|
398
|
+
|
|
399
|
+
The calculation is based on reversing the pooling operations to
|
|
400
|
+
ensure the input to each is valid.
|
|
401
|
+
"""
|
|
402
|
+
# The input to the second pooling layer must be at least its kernel size.
|
|
403
|
+
min_len_for_second_pool = pool_length
|
|
404
|
+
|
|
405
|
+
# Reverse the first pooling operation to find the required input size.
|
|
406
|
+
# Formula: min_L_in = Stride * (min_L_out - 1) + Kernel
|
|
407
|
+
min_len = pool_stride_inp * (min_len_for_second_pool - 1) + pool_length_inp
|
|
408
|
+
return min_len
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
class _FeatureExtractor(nn.Module):
|
|
412
|
+
r"""
|
|
413
|
+
A module for feature extraction of the data with temporal and spatial.
|
|
414
|
+
|
|
415
|
+
transformations.
|
|
416
|
+
|
|
417
|
+
This module sequentially processes the input through a series of layers:
|
|
418
|
+
rearrangement, temporal convolution, batch normalization, spatial convolution,
|
|
419
|
+
another batch normalization, an ELU non-linearity, average pooling, and dropout.
|
|
420
|
+
|
|
421
|
+
Parameters
|
|
422
|
+
----------
|
|
423
|
+
n_chans : int
|
|
424
|
+
The number of channels in the input data.
|
|
425
|
+
n_temporal_filters : int, optional
|
|
426
|
+
The number of filters to use in the temporal convolution layer. Default is 40.
|
|
427
|
+
temporal_filter_length : int, optional
|
|
428
|
+
The size of each filter in the temporal convolution layer. Default is 25.
|
|
429
|
+
spatial_expansion : int, optional
|
|
430
|
+
The expansion factor of the spatial convolution layer, determining the number
|
|
431
|
+
of output channels relative to the number of temporal filters. Default is 1.
|
|
432
|
+
pool_length : int, optional
|
|
433
|
+
The size of the window for the average pooling operation. Default is 75.
|
|
434
|
+
pool_stride : int, optional
|
|
435
|
+
The stride of the average pooling operation. Default is 15.
|
|
436
|
+
drop_prob : float, optional
|
|
437
|
+
The dropout rate for regularization. Default is 0.5.
|
|
438
|
+
activation : nn.Module, default=nn.ELU
|
|
439
|
+
Activation function class to apply. Should be a PyTorch activation
|
|
440
|
+
module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
|
|
441
|
+
"""
|
|
442
|
+
|
|
443
|
+
def __init__(
|
|
444
|
+
self,
|
|
445
|
+
n_chans: int,
|
|
446
|
+
n_temporal_filters: int = 40,
|
|
447
|
+
temporal_filter_length: int = 25,
|
|
448
|
+
spatial_expansion: int = 1,
|
|
449
|
+
pool_length: int = 75,
|
|
450
|
+
pool_stride: int = 15,
|
|
451
|
+
drop_prob: float = 0.5,
|
|
452
|
+
activation: type[nn.Module] = nn.ELU,
|
|
453
|
+
):
|
|
454
|
+
super().__init__()
|
|
455
|
+
|
|
456
|
+
self.ensure4d = Ensure4d()
|
|
457
|
+
self.rearrange_input = Rearrange("b c t 1 -> b 1 c t")
|
|
458
|
+
self.temporal_conv = nn.Conv2d(
|
|
459
|
+
1,
|
|
460
|
+
n_temporal_filters,
|
|
461
|
+
kernel_size=(1, temporal_filter_length),
|
|
462
|
+
padding=(0, temporal_filter_length // 2),
|
|
463
|
+
bias=False,
|
|
464
|
+
)
|
|
465
|
+
self.intermediate_bn = nn.BatchNorm2d(n_temporal_filters)
|
|
466
|
+
self.spatial_conv = nn.Conv2d(
|
|
467
|
+
n_temporal_filters,
|
|
468
|
+
n_temporal_filters * spatial_expansion,
|
|
469
|
+
kernel_size=(n_chans, 1),
|
|
470
|
+
groups=n_temporal_filters,
|
|
471
|
+
bias=False,
|
|
472
|
+
)
|
|
473
|
+
self.bn = nn.BatchNorm2d(n_temporal_filters * spatial_expansion)
|
|
474
|
+
self.nonlinearity = activation()
|
|
475
|
+
self.pool = nn.AvgPool2d((1, pool_length), stride=(1, pool_stride))
|
|
476
|
+
self.dropout = nn.Dropout(drop_prob)
|
|
477
|
+
|
|
478
|
+
def forward(self, x):
|
|
479
|
+
x = self.ensure4d(x)
|
|
480
|
+
x = self.rearrange_input(x)
|
|
481
|
+
x = self.temporal_conv(x)
|
|
482
|
+
x = self.intermediate_bn(x)
|
|
483
|
+
x = self.spatial_conv(x)
|
|
484
|
+
x = self.bn(x)
|
|
485
|
+
x = self.nonlinearity(x)
|
|
486
|
+
x = self.pool(x)
|
|
487
|
+
x = self.dropout(x)
|
|
488
|
+
return x
|
|
489
|
+
|
|
490
|
+
|
|
491
|
+
class _ChannelAttentionBlock(nn.Module):
|
|
492
|
+
r"""
|
|
493
|
+
A neural network module implementing channel-wise attention mechanisms to enhance.
|
|
494
|
+
|
|
495
|
+
feature representations by selectively emphasizing important channels and suppressing
|
|
496
|
+
less useful ones. This block integrates convolutional layers, pooling, dropout, and
|
|
497
|
+
an optional attention mechanism that can be customized based on the given mode.
|
|
498
|
+
|
|
499
|
+
Parameters
|
|
500
|
+
----------
|
|
501
|
+
attention_mode : str, optional
|
|
502
|
+
The type of attention mechanism to apply. If `None`, no attention is applied.
|
|
503
|
+
|
|
504
|
+
- "se" for Squeeze-and-excitation network
|
|
505
|
+
- "gsop" for Global Second-Order Pooling
|
|
506
|
+
- "fca" for Frequency Channel Attention Network
|
|
507
|
+
- "encnet" for context encoding module
|
|
508
|
+
- "eca" for Efficient channel attention for deep convolutional neural networks
|
|
509
|
+
- "ge" for Gather-Excite
|
|
510
|
+
- "gct" for Gated Channel Transformation
|
|
511
|
+
- "srm" for Style-based Recalibration Module
|
|
512
|
+
- "cbam" for Convolutional Block Attention Module
|
|
513
|
+
- "cat" for Learning to collaborate channel and temporal attention
|
|
514
|
+
from multi-information fusion
|
|
515
|
+
- "catlite" for Learning to collaborate channel attention
|
|
516
|
+
from multi-information fusion (lite version, cat w/o temporal attention)
|
|
517
|
+
|
|
518
|
+
in_channels : int, default=16
|
|
519
|
+
The number of input channels to the block.
|
|
520
|
+
temp_filter_length : int, default=15
|
|
521
|
+
The length of the temporal filters in the convolutional layers.
|
|
522
|
+
pool_length : int, default=8
|
|
523
|
+
The length of the window for the average pooling operation.
|
|
524
|
+
pool_stride : int, default=8
|
|
525
|
+
The stride of the average pooling operation.
|
|
526
|
+
drop_prob : float, default=0.5
|
|
527
|
+
The dropout rate for regularization. Values should be between 0 and 1.
|
|
528
|
+
reduction_rate : int, default=4
|
|
529
|
+
The reduction rate used in the attention mechanism to reduce dimensionality
|
|
530
|
+
and computational complexity.
|
|
531
|
+
use_mlp : bool, default=False
|
|
532
|
+
Flag to indicate whether an MLP (Multi-Layer Perceptron) should be used within
|
|
533
|
+
the attention mechanism for further processing.
|
|
534
|
+
seq_len : int, default=62
|
|
535
|
+
The sequence length, used in certain types of attention mechanisms to process
|
|
536
|
+
temporal dimensions.
|
|
537
|
+
freq_idx : int, default=0
|
|
538
|
+
DCT index used in fca attention mechanism.
|
|
539
|
+
n_codewords : int, default=4
|
|
540
|
+
The number of codewords (clusters) used in attention mechanisms that employ
|
|
541
|
+
quantization or clustering strategies.
|
|
542
|
+
kernel_size : int, default=9
|
|
543
|
+
The kernel size used in certain types of attention mechanisms for convolution
|
|
544
|
+
operations.
|
|
545
|
+
extra_params : bool, default=False
|
|
546
|
+
Flag to indicate whether additional, custom parameters should be passed to
|
|
547
|
+
the attention mechanism.
|
|
548
|
+
activation : nn.Module, default=nn.ELU
|
|
549
|
+
Activation function class to apply. Should be a PyTorch activation
|
|
550
|
+
module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
|
|
551
|
+
|
|
552
|
+
Attributes
|
|
553
|
+
----------
|
|
554
|
+
conv : torch.nn.Sequential
|
|
555
|
+
Sequential model of convolutional layers, batch normalization, and ELU
|
|
556
|
+
activation, designed to process input features.
|
|
557
|
+
pool : torch.nn.AvgPool2d
|
|
558
|
+
Average pooling layer to reduce the dimensionality of the feature maps.
|
|
559
|
+
dropout : torch.nn.Dropout
|
|
560
|
+
Dropout layer for regularization.
|
|
561
|
+
attention_block : torch.nn.Module or None
|
|
562
|
+
The attention mechanism applied to the output of the convolutional layers,
|
|
563
|
+
if `attention_mode` is not None. Otherwise, it's set to None.
|
|
564
|
+
activation : nn.Module, default=nn.ELU
|
|
565
|
+
Activation function class to apply. Should be a PyTorch activation
|
|
566
|
+
module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
|
|
567
|
+
|
|
568
|
+
Examples
|
|
569
|
+
--------
|
|
570
|
+
>>> channel_attention_block = _ChannelAttentionBlock(attention_mode='cbam', in_channels=16, reduction_rate=4, kernel_size=7)
|
|
571
|
+
>>> x = torch.randn(1, 16, 64, 64) # Example input tensor
|
|
572
|
+
>>> output = channel_attention_block(x)
|
|
573
|
+
The output tensor then can be further processed or used as input to another block.
|
|
574
|
+
"""
|
|
575
|
+
|
|
576
|
+
def __init__(
|
|
577
|
+
self,
|
|
578
|
+
attention_mode: str | None = None,
|
|
579
|
+
in_channels: int = 16,
|
|
580
|
+
temp_filter_length: int = 15,
|
|
581
|
+
pool_length: int = 8,
|
|
582
|
+
pool_stride: int = 8,
|
|
583
|
+
drop_prob: float = 0.5,
|
|
584
|
+
reduction_rate: int = 4,
|
|
585
|
+
use_mlp: bool = False,
|
|
586
|
+
seq_len: int = 62,
|
|
587
|
+
freq_idx: int = 0,
|
|
588
|
+
n_codewords: int = 4,
|
|
589
|
+
kernel_size: int = 9,
|
|
590
|
+
extra_params: bool = False,
|
|
591
|
+
activation: type[nn.Module] = nn.ELU,
|
|
592
|
+
):
|
|
593
|
+
super().__init__()
|
|
594
|
+
self.conv = nn.Sequential(
|
|
595
|
+
nn.Conv2d(
|
|
596
|
+
in_channels,
|
|
597
|
+
in_channels,
|
|
598
|
+
(1, temp_filter_length),
|
|
599
|
+
padding=(0, temp_filter_length // 2),
|
|
600
|
+
bias=False,
|
|
601
|
+
groups=in_channels,
|
|
602
|
+
),
|
|
603
|
+
nn.Conv2d(in_channels, in_channels, (1, 1), bias=False),
|
|
604
|
+
nn.BatchNorm2d(in_channels),
|
|
605
|
+
activation(),
|
|
606
|
+
)
|
|
607
|
+
|
|
608
|
+
self.pool = nn.AvgPool2d((1, pool_length), stride=(1, pool_stride))
|
|
609
|
+
self.dropout = nn.Dropout(drop_prob)
|
|
610
|
+
|
|
611
|
+
if attention_mode is not None:
|
|
612
|
+
self.attention_block = get_attention_block(
|
|
613
|
+
attention_mode,
|
|
614
|
+
ch_dim=in_channels,
|
|
615
|
+
reduction_rate=reduction_rate,
|
|
616
|
+
use_mlp=use_mlp,
|
|
617
|
+
seq_len=seq_len,
|
|
618
|
+
freq_idx=freq_idx,
|
|
619
|
+
n_codewords=n_codewords,
|
|
620
|
+
kernel_size=kernel_size,
|
|
621
|
+
extra_params=extra_params,
|
|
622
|
+
)
|
|
623
|
+
else:
|
|
624
|
+
self.attention_block = None
|
|
625
|
+
|
|
626
|
+
def forward(self, x):
|
|
627
|
+
out = self.conv(x)
|
|
628
|
+
if self.attention_block is not None:
|
|
629
|
+
out = self.attention_block(out)
|
|
630
|
+
out = self.pool(out)
|
|
631
|
+
out = self.dropout(out)
|
|
632
|
+
return out
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
def get_attention_block(
|
|
636
|
+
attention_mode: str,
|
|
637
|
+
ch_dim: int = 16,
|
|
638
|
+
reduction_rate: int = 4,
|
|
639
|
+
use_mlp: bool = False,
|
|
640
|
+
seq_len: int | None = None,
|
|
641
|
+
freq_idx: int = 0,
|
|
642
|
+
n_codewords: int = 4,
|
|
643
|
+
kernel_size: int = 9,
|
|
644
|
+
extra_params: bool = False,
|
|
645
|
+
):
|
|
646
|
+
"""
|
|
647
|
+
Util function to the attention block based on the attention mode.
|
|
648
|
+
|
|
649
|
+
Parameters
|
|
650
|
+
----------
|
|
651
|
+
attention_mode : str
|
|
652
|
+
The type of attention mechanism to apply.
|
|
653
|
+
ch_dim : int
|
|
654
|
+
The number of input channels to the block.
|
|
655
|
+
reduction_rate : int
|
|
656
|
+
The reduction rate used in the attention mechanism to reduce
|
|
657
|
+
dimensionality and computational complexity.
|
|
658
|
+
Used in all the methods, except for the
|
|
659
|
+
encnet and eca.
|
|
660
|
+
use_mlp : bool
|
|
661
|
+
Flag to indicate whether an MLP (Multi-Layer Perceptron) should be used
|
|
662
|
+
within the attention mechanism for further processing. Used in the ge
|
|
663
|
+
and srm attention mechanism.
|
|
664
|
+
seq_len : int
|
|
665
|
+
The sequence length, used in certain types of attention mechanisms to
|
|
666
|
+
process temporal dimensions. Used in the ge or fca attention mechanism.
|
|
667
|
+
freq_idx : int
|
|
668
|
+
DCT index used in fca attention mechanism.
|
|
669
|
+
n_codewords : int
|
|
670
|
+
The number of codewords (clusters) used in attention mechanisms
|
|
671
|
+
that employ quantization or clustering strategies, encnet.
|
|
672
|
+
kernel_size : int
|
|
673
|
+
The kernel size used in certain types of attention mechanisms for convolution
|
|
674
|
+
operations, used in the cbam, eca, and cat attention mechanisms.
|
|
675
|
+
extra_params : bool
|
|
676
|
+
Parameter to pass additional parameters to the GatherExcite mechanism.
|
|
677
|
+
|
|
678
|
+
Returns
|
|
679
|
+
-------
|
|
680
|
+
nn.Module
|
|
681
|
+
The attention block based on the attention mode.
|
|
682
|
+
"""
|
|
683
|
+
if attention_mode == "se":
|
|
684
|
+
return SqueezeAndExcitation(in_channels=ch_dim, reduction_rate=reduction_rate)
|
|
685
|
+
# improving the squeeze module
|
|
686
|
+
elif attention_mode == "gsop":
|
|
687
|
+
return GSoP(in_channels=ch_dim, reduction_rate=reduction_rate)
|
|
688
|
+
elif attention_mode == "fca":
|
|
689
|
+
assert seq_len is not None
|
|
690
|
+
return FCA(
|
|
691
|
+
in_channels=ch_dim,
|
|
692
|
+
seq_len=seq_len,
|
|
693
|
+
reduction_rate=reduction_rate,
|
|
694
|
+
freq_idx=freq_idx,
|
|
695
|
+
)
|
|
696
|
+
elif attention_mode == "encnet":
|
|
697
|
+
return EncNet(in_channels=ch_dim, n_codewords=n_codewords)
|
|
698
|
+
# improving the excitation module
|
|
699
|
+
elif attention_mode == "eca":
|
|
700
|
+
return ECA(in_channels=ch_dim, kernel_size=kernel_size)
|
|
701
|
+
# improving the squeeze and the excitation module
|
|
702
|
+
elif attention_mode == "ge":
|
|
703
|
+
assert seq_len is not None
|
|
704
|
+
return GatherExcite(
|
|
705
|
+
in_channels=ch_dim,
|
|
706
|
+
seq_len=seq_len,
|
|
707
|
+
extra_params=extra_params,
|
|
708
|
+
use_mlp=use_mlp,
|
|
709
|
+
reduction_rate=reduction_rate,
|
|
710
|
+
)
|
|
711
|
+
elif attention_mode == "gct":
|
|
712
|
+
return GCT(in_channels=ch_dim)
|
|
713
|
+
elif attention_mode == "srm":
|
|
714
|
+
return SRM(in_channels=ch_dim, use_mlp=use_mlp, reduction_rate=reduction_rate)
|
|
715
|
+
# temporal and channel attention
|
|
716
|
+
elif attention_mode == "cbam":
|
|
717
|
+
return CBAM(
|
|
718
|
+
in_channels=ch_dim, reduction_rate=reduction_rate, kernel_size=kernel_size
|
|
719
|
+
)
|
|
720
|
+
elif attention_mode == "cat":
|
|
721
|
+
return CAT(
|
|
722
|
+
in_channels=ch_dim, reduction_rate=reduction_rate, kernel_size=kernel_size
|
|
723
|
+
)
|
|
724
|
+
elif attention_mode == "catlite":
|
|
725
|
+
return CATLite(ch_dim, reduction_rate=reduction_rate)
|
|
726
|
+
else:
|
|
727
|
+
raise NotImplementedError
|