braindecode 1.2.0.dev184328194__py3-none-any.whl → 1.3.0.dev171178473__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (70) hide show
  1. braindecode/augmentation/base.py +1 -1
  2. braindecode/augmentation/functional.py +154 -54
  3. braindecode/augmentation/transforms.py +2 -2
  4. braindecode/datasets/__init__.py +10 -2
  5. braindecode/datasets/base.py +116 -152
  6. braindecode/datasets/bcicomp.py +4 -4
  7. braindecode/datasets/bids.py +3 -3
  8. braindecode/datasets/experimental.py +218 -0
  9. braindecode/datasets/mne.py +3 -5
  10. braindecode/datasets/moabb.py +2 -2
  11. braindecode/datasets/nmt.py +2 -2
  12. braindecode/datasets/sleep_physio_challe_18.py +4 -3
  13. braindecode/datasets/sleep_physionet.py +2 -2
  14. braindecode/datasets/tuh.py +2 -2
  15. braindecode/datasets/xy.py +2 -2
  16. braindecode/datautil/serialization.py +18 -13
  17. braindecode/eegneuralnet.py +2 -0
  18. braindecode/functional/functions.py +6 -2
  19. braindecode/functional/initialization.py +2 -3
  20. braindecode/models/__init__.py +12 -8
  21. braindecode/models/atcnet.py +156 -17
  22. braindecode/models/attentionbasenet.py +148 -16
  23. braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
  24. braindecode/models/base.py +280 -2
  25. braindecode/models/bendr.py +469 -0
  26. braindecode/models/biot.py +3 -1
  27. braindecode/models/ctnet.py +7 -4
  28. braindecode/models/deep4.py +6 -2
  29. braindecode/models/deepsleepnet.py +127 -5
  30. braindecode/models/eegconformer.py +114 -15
  31. braindecode/models/eeginception_erp.py +82 -7
  32. braindecode/models/eeginception_mi.py +2 -0
  33. braindecode/models/eegnet.py +64 -177
  34. braindecode/models/eegnex.py +113 -6
  35. braindecode/models/eegsimpleconv.py +2 -0
  36. braindecode/models/eegtcnet.py +1 -1
  37. braindecode/models/labram.py +188 -84
  38. braindecode/models/patchedtransformer.py +640 -0
  39. braindecode/models/sccnet.py +81 -8
  40. braindecode/models/shallow_fbcsp.py +2 -0
  41. braindecode/models/signal_jepa.py +109 -27
  42. braindecode/models/sinc_shallow.py +10 -9
  43. braindecode/models/sleep_stager_blanco_2020.py +2 -0
  44. braindecode/models/sleep_stager_chambon_2018.py +2 -0
  45. braindecode/models/sparcnet.py +2 -0
  46. braindecode/models/sstdpn.py +869 -0
  47. braindecode/models/summary.csv +42 -41
  48. braindecode/models/tidnet.py +2 -0
  49. braindecode/models/tsinception.py +15 -3
  50. braindecode/models/usleep.py +108 -9
  51. braindecode/models/util.py +8 -5
  52. braindecode/modules/attention.py +10 -10
  53. braindecode/modules/blocks.py +3 -3
  54. braindecode/modules/filter.py +2 -3
  55. braindecode/modules/layers.py +18 -17
  56. braindecode/preprocessing/__init__.py +24 -0
  57. braindecode/preprocessing/eegprep_preprocess.py +1202 -0
  58. braindecode/preprocessing/preprocess.py +42 -39
  59. braindecode/preprocessing/util.py +166 -0
  60. braindecode/preprocessing/windowers.py +24 -19
  61. braindecode/samplers/base.py +8 -8
  62. braindecode/version.py +1 -1
  63. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/METADATA +12 -3
  64. braindecode-1.3.0.dev171178473.dist-info/RECORD +106 -0
  65. braindecode/models/eegresnet.py +0 -362
  66. braindecode-1.2.0.dev184328194.dist-info/RECORD +0 -101
  67. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/WHEEL +0 -0
  68. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/licenses/LICENSE.txt +0 -0
  69. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/licenses/NOTICE.txt +0 -0
  70. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/top_level.txt +0 -0
@@ -26,24 +26,151 @@ from braindecode.modules.attention import (
26
26
  class AttentionBaseNet(EEGModuleMixin, nn.Module):
27
27
  """AttentionBaseNet from Wimpff M et al. (2023) [Martin2023]_.
28
28
 
29
+ :bdg-success:`Convolution` :bdg-info:`Small Attention`
30
+
29
31
  .. figure:: https://content.cld.iop.org/journals/1741-2552/21/3/036020/revision2/jnead48b9f2_hr.jpg
30
- :align: center
31
- :alt: Attention Base Net
32
+ :align: center
33
+ :alt: AttentionBaseNet Architecture
34
+ :width: 640px
35
+
36
+
37
+ .. rubric:: Architectural Overview
38
+
39
+ AttentionBaseNet is a *convolution-first* network with a *channel-attention* stage.
40
+ The end-to-end flow is:
41
+
42
+ - (i) :class:`_FeatureExtractor` learns a temporal filter bank and per-filter spatial
43
+ projections (depthwise across electrodes), then condenses time by pooling;
44
+ - (ii) **Channel Expansion** uses a ``1x1`` convolution to set the feature width;
45
+ - (iii) :class:`_ChannelAttentionBlock` refines features via depthwise–pointwise temporal
46
+ convs and an optional channel-attention module (SE/CBAM/ECA/…);
47
+ - (iv) **Classifier** flattens the sequence and applies a linear readout.
48
+
49
+ This design mirrors shallow CNN pipelines (EEGNet-style stem) but inserts a pluggable
50
+ attention unit that *re-weights channels* (and optionally temporal positions) before
51
+ classification.
52
+
53
+
54
+ .. rubric:: Macro Components
55
+
56
+ - :class:`_FeatureExtractor` **(Shallow conv stem → condensed feature map)**
57
+
58
+ - *Operations.*
59
+ - **Temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(1, L_t)`` creates a learned
60
+ FIR-like filter bank with ``n_temporal_filters`` maps.
61
+ - **Depthwise spatial conv** (:class:`torch.nn.Conv2d`, ``groups=n_temporal_filters``)
62
+ with kernel ``(n_chans, 1)`` learns per-filter spatial projections over the full montage.
63
+ - **BatchNorm → ELU → AvgPool → Dropout** stabilize and downsample time.
64
+ - Output shape: ``(B, F2, 1, T₁)`` with ``F2 = n_temporal_filters x spatial_expansion``.
65
+
66
+ *Interpretability/robustness.* Temporal kernels behave as analyzable FIR filters; the
67
+ depthwise spatial step yields rhythm-specific topographies. Pooling acts as a local
68
+ integrator that reduces variance on short EEG windows.
69
+
70
+ - **Channel Expansion**
71
+
72
+ - *Operations.*
73
+ - A ``1x1`` conv → BN → activation maps ``F2 → ch_dim`` without changing
74
+ the temporal length ``T₁`` (shape: ``(B, ch_dim, 1, T₁)``).
75
+ This sets the embedding width for the attention block.
76
+
77
+ - :class:`_ChannelAttentionBlock` **(temporal refinement + channel attention)**
78
+
79
+ - *Operations.*
80
+ - **Depthwise temporal conv** ``(1, L_a)`` (groups=``ch_dim``) + **pointwise ``1x1``**,
81
+ BN and activation → preserves shape ``(B, ch_dim, 1, T₁)`` while refining timing.
82
+ - **Optional attention module** (see *Additional Mechanisms*) applies channel reweighting
83
+ (some variants also apply temporal gating).
84
+ - **AvgPool (1, P₂)** with stride ``(1, S₂)`` and **Dropout** → outputs
85
+ ``(B, ch_dim, 1, T₂)``.
86
+
87
+ *Role.* Emphasizes informative channels (and, in certain modes, salient time steps)
88
+ before the classifier; complements the convolutional priors with adaptive re-weighting.
89
+
90
+ - **Classifier (aggregation + readout)**
91
+
92
+ *Operations.* :class:`torch.nn.Flatten` → :class:`torch.nn.Linear` from
93
+ ``(B, ch_dim·T₂)`` to classes.
94
+
95
+
96
+ .. rubric:: Convolutional Details
32
97
 
33
- Neural Network from the paper: EEG motor imagery decoding:
34
- A framework for comparative analysis with channel attention
35
- mechanisms
98
+ - **Temporal (where time-domain patterns are learned).**
99
+ Wide kernels in the stem (``(1, L_t)``) act as a learned filter bank for oscillatory
100
+ bands/transients; the attention block's depthwise temporal conv (``(1, L_a)``) sharpens
101
+ short-term dynamics after downsampling. Pool sizes/strides (``P₁,S₁`` then ``P₂,S₂``)
102
+ set the token rate and effective temporal resolution.
36
103
 
37
- The paper and original code with more details about the methodological
38
- choices are available at the [Martin2023]_ and [MartinCode]_.
104
+ - **Spatial (how electrodes are processed).**
105
+ A depthwise spatial conv with kernel ``(n_chans, 1)`` spans the full montage to
106
+ learn *per-temporal-filter* spatial projections (no cross-filter mixing at this step),
107
+ mirroring the interpretable spatial stage in shallow CNNs.
39
108
 
40
- The AttentionBaseNet architecture is composed of four modules:
41
- - Input Block that performs a temporal convolution and a spatial
42
- convolution.
43
- - Channel Expansion that modifies the number of channels.
44
- - An attention block that performs channel attention with several
45
- options
46
- - ClassificationHead
109
+ - **Spectral (how frequency content is captured).**
110
+ No explicit Fourier/wavelet transform is used in the stem—spectral selectivity
111
+ emerges from learned temporal kernels. When ``attention_mode="fca"``, a frequency
112
+ channel attention (DCT-based) summarizes frequencies to drive channel weights.
113
+
114
+
115
+ .. rubric:: Attention / Sequential Modules
116
+
117
+ - **Type.** Channel attention chosen by ``attention_mode`` (SE, ECA, CBAM, CAT, GSoP,
118
+ EncNet, GE, GCT, SRM, CATLite). Most operate purely on channels; CBAM/CAT additionally
119
+ include temporal attention.
120
+
121
+ - **Shapes.** Input/Output around attention: ``(B, ch_dim, 1, T₁)``. Re-arrangements
122
+ (if any) are internal to the module; the block returns the same shape before pooling.
123
+
124
+ - **Role.** Re-weights channels (and optionally time) to highlight informative sources
125
+ and suppress distractors, improving SNR ahead of the linear head.
126
+
127
+
128
+ .. rubric:: Additional Mechanisms
129
+
130
+ **Attention variants at a glance:**
131
+
132
+ - ``"se"``: Squeeze-and-Excitation (global pooling → bottleneck → gates).
133
+ - ``"gsop"``: Global second-order pooling (covariance-aware channel weights).
134
+ - ``"fca"``: Frequency Channel Attention (DCT summary; uses ``seq_len`` and ``freq_idx``).
135
+ - ``"encnet"``: EncNet with learned codewords (uses ``n_codewords``).
136
+ - ``"eca"``: Efficient Channel Attention (local 1-D conv over channel descriptor; uses ``kernel_size``).
137
+ - ``"ge"``: Gather–Excite (context pooling with optional MLP; can use ``extra_params``).
138
+ - ``"gct"``: Gated Channel Transformation (global context normalization + gating).
139
+ - ``"srm"``: Style-based recalibration (mean–std descriptors; optional MLP).
140
+ - ``"cbam"``: Channel then temporal attention (uses ``kernel_size``).
141
+ - ``"cat"`` / ``"catlite"``: Collaborative (channel ± temporal) attention; *lite* omits temporal.
142
+
143
+ **Auto-compatibility on short inputs:**
144
+
145
+ If the input duration is too short for the configured kernels/pools, the implementation
146
+ **automatically rescales** temporal lengths/strides downward (with a warning) to keep
147
+ shapes valid and preserve the pipeline semantics.
148
+
149
+ .. rubric:: Usage and Configuration
150
+
151
+ - ``n_temporal_filters``, ``temporal_filter_length`` and ``spatial_expansion``:
152
+ control the capacity and the number of spatial projections in the stem.
153
+ - ``pool_length_inp``, ``pool_stride_inp`` then ``pool_length``, ``pool_stride``:
154
+ trade temporal resolution for compute; they determine the final sequence length ``T₂``.
155
+ - ``ch_dim``: width after the ``1x1`` expansion and the effective embedding size for attention.
156
+ - ``attention_mode`` + its specific hyperparameters (``reduction_rate``,
157
+ ``kernel_size``, ``seq_len``, ``freq_idx``, ``n_codewords``, ``use_mlp``):
158
+ select and tune the reweighting mechanism.
159
+ - ``drop_prob_inp`` and ``drop_prob_attn``: regularize stem and attention stages.
160
+ - **Training tips.**
161
+
162
+ Start with moderate pooling (e.g., ``P₁=75,S₁=15``) and ELU activations; enable attention
163
+ only after the stem learns stable filters. For small datasets, prefer simpler modes
164
+ (``"se"``, ``"eca"``) before heavier ones (``"gsop"``, ``"encnet"``).
165
+
166
+ Notes
167
+ -----
168
+ - Sequence length after each stage is computed internally; the final classifier expects
169
+ a flattened ``ch_dim x T₂`` vector.
170
+ - Attention operates on *channel* dimension by design; temporal gating exists only in
171
+ specific variants (CBAM/CAT).
172
+ - The paper and original code with more details about the methodological
173
+ choices are available at the [Martin2023]_ and [MartinCode]_.
47
174
 
48
175
  .. versionadded:: 0.9
49
176
 
@@ -73,6 +200,7 @@ class AttentionBaseNet(EEGModuleMixin, nn.Module):
73
200
  the depth of the network after the initial layer. Default is 16.
74
201
  attention_mode : str, optional
75
202
  The type of attention mechanism to apply. If `None`, no attention is applied.
203
+
76
204
  - "se" for Squeeze-and-excitation network
77
205
  - "gsop" for Global Second-Order Pooling
78
206
  - "fca" for Frequency Channel Attention Network
@@ -83,9 +211,10 @@ class AttentionBaseNet(EEGModuleMixin, nn.Module):
83
211
  - "srm" for Style-based Recalibration Module
84
212
  - "cbam" for Convolutional Block Attention Module
85
213
  - "cat" for Learning to collaborate channel and temporal attention
86
- from multi-information fusion
214
+ from multi-information fusion
87
215
  - "catlite" for Learning to collaborate channel attention
88
- from multi-information fusion (lite version, cat w/o temporal attention)
216
+ from multi-information fusion (lite version, cat w/o temporal attention)
217
+
89
218
  pool_length : int, default=8
90
219
  The length of the window for the average pooling operation.
91
220
  pool_stride : int, default=8
@@ -256,6 +385,8 @@ class AttentionBaseNet(EEGModuleMixin, nn.Module):
256
385
  for k, pl, ps in zip(kernel_lengths, pool_lengths, pool_strides):
257
386
  out = math.floor(out + 2 * (k // 2) - k + 1)
258
387
  out = math.floor((out - pl) / ps + 1)
388
+ # Ensure output is at least 1 to avoid zero-sized tensors
389
+ out = max(1, out)
259
390
  seq_lengths.append(int(out))
260
391
  return seq_lengths
261
392
 
@@ -372,6 +503,7 @@ class _ChannelAttentionBlock(nn.Module):
372
503
  ----------
373
504
  attention_mode : str, optional
374
505
  The type of attention mechanism to apply. If `None`, no attention is applied.
506
+
375
507
  - "se" for Squeeze-and-excitation network
376
508
  - "gsop" for Global Second-Order Pooling
377
509
  - "fca" for Frequency Channel Attention Network
@@ -8,18 +8,19 @@ from copy import deepcopy
8
8
 
9
9
  import torch
10
10
  import torch.nn.functional as F
11
+ from mne.utils import deprecated
11
12
  from torch import nn
12
13
 
13
14
  from braindecode.models.base import EEGModuleMixin
14
15
  from braindecode.modules import CausalConv1d
15
16
 
16
17
 
17
- class SleepStagerEldele2021(EEGModuleMixin, nn.Module):
18
+ class AttnSleep(EEGModuleMixin, nn.Module):
18
19
  """Sleep Staging Architecture from Eldele et al. (2021) [Eldele2021]_.
19
20
 
20
21
  .. figure:: https://raw.githubusercontent.com/emadeldeen24/AttnSleep/refs/heads/main/imgs/AttnSleep.png
21
22
  :align: center
22
- :alt: SleepStagerEldele2021 Architecture
23
+ :alt: AttnSleep Architecture
23
24
 
24
25
  Attention based Neural Net for sleep staging as described in [Eldele2021]_.
25
26
  The code for the paper and this model is also available at [1]_.
@@ -533,3 +534,12 @@ class _PositionwiseFeedForward(nn.Module):
533
534
  def forward(self, x: torch.Tensor) -> torch.Tensor:
534
535
  """Implements FFN equation."""
535
536
  return self.w_2(self.dropout(self.activate(self.w_1(x))))
537
+
538
+
539
+ @deprecated(
540
+ "`SleepStagerEldele2021` was renamed to `AttnSleep` in v1.12 to follow original author's name; this alias will be removed in v1.14."
541
+ )
542
+ class SleepStagerEldele2021(AttnSleep):
543
+ """Deprecated alias for SleepStagerEldele2021."""
544
+
545
+ pass
@@ -5,15 +5,35 @@
5
5
 
6
6
  from __future__ import annotations
7
7
 
8
+ import json
8
9
  import warnings
9
10
  from collections import OrderedDict
10
- from typing import Dict, Iterable, Optional
11
+ from pathlib import Path
12
+ from typing import Dict, Iterable, Optional, Type, Union
11
13
 
12
14
  import numpy as np
13
15
  import torch
14
16
  from docstring_inheritance import NumpyDocstringInheritanceInitMeta
17
+ from mne.utils import _soft_import
15
18
  from torchinfo import ModelStatistics, summary
16
19
 
20
+ from braindecode.version import __version__
21
+
22
+ huggingface_hub = _soft_import(
23
+ "huggingface_hub", "Hugging Face Hub integration", strict=False
24
+ )
25
+
26
+ HAS_HF_HUB = huggingface_hub is not False
27
+
28
+
29
+ class _BaseHubMixin:
30
+ pass
31
+
32
+
33
+ # Define base class for hub mixin
34
+ if HAS_HF_HUB:
35
+ _BaseHubMixin: Type = huggingface_hub.PyTorchModelHubMixin # type: ignore
36
+
17
37
 
18
38
  def deprecated_args(obj, *old_new_args):
19
39
  out_args = []
@@ -32,10 +52,14 @@ def deprecated_args(obj, *old_new_args):
32
52
  return out_args
33
53
 
34
54
 
35
- class EEGModuleMixin(metaclass=NumpyDocstringInheritanceInitMeta):
55
+ class EEGModuleMixin(_BaseHubMixin, metaclass=NumpyDocstringInheritanceInitMeta):
36
56
  """
37
57
  Mixin class for all EEG models in braindecode.
38
58
 
59
+ This class integrates with Hugging Face Hub when the ``huggingface_hub`` package
60
+ is installed, enabling models to be pushed to and loaded from the Hub using
61
+ :func:`push_to_hub()` and :func:`from_pretrained()` methods.
62
+
39
63
  Parameters
40
64
  ----------
41
65
  n_outputs : int
@@ -62,8 +86,87 @@ class EEGModuleMixin(metaclass=NumpyDocstringInheritanceInitMeta):
62
86
  -----
63
87
  If some input signal-related parameters are not specified,
64
88
  there will be an attempt to infer them from the other parameters.
89
+
90
+ .. rubric:: Hugging Face Hub integration
91
+
92
+ When the optional ``huggingface_hub`` package is installed, all models
93
+ automatically gain the ability to be pushed to and loaded from the
94
+ Hugging Face Hub. Install with::
95
+
96
+ pip install braindecode[hug]
97
+
98
+ **Pushing a model to the Hub:**
99
+
100
+ .. code-block:: python
101
+
102
+ from braindecode.models import EEGNetv4
103
+
104
+ # Train your model
105
+ model = EEGNetv4(n_chans=22, n_outputs=4, n_times=1000)
106
+ # ... training code ...
107
+
108
+ # Push to the Hub
109
+ model.push_to_hub(
110
+ repo_id="username/my-eegnet-model", commit_message="Initial model upload"
111
+ )
112
+
113
+ **Loading a model from the Hub:**
114
+
115
+ .. code-block:: python
116
+
117
+ from braindecode.models import EEGNetv4
118
+
119
+ # Load pretrained model
120
+ model = EEGNetv4.from_pretrained("username/my-eegnet-model")
121
+
122
+ The integration automatically handles EEG-specific parameters (n_chans,
123
+ n_times, sfreq, chs_info, etc.) by saving them in a config file alongside
124
+ the model weights. This ensures that loaded models are correctly configured
125
+ for their original data specifications.
126
+
127
+ .. important::
128
+ Currently, only EEG-specific parameters (n_outputs, n_chans, n_times,
129
+ input_window_seconds, sfreq, chs_info) are saved to the Hub. Model-specific
130
+ parameters (e.g., dropout rates, activation functions, number of filters)
131
+ are not preserved and will use their default values when loading from the Hub.
132
+
133
+ To use non-default model parameters, specify them explicitly when calling
134
+ :func:`from_pretrained()`::
135
+
136
+ model = EEGNet.from_pretrained("user/model", dropout=0.3, activation='relu')
137
+
138
+ Full parameter serialization will be addressed in a future update.
65
139
  """
66
140
 
141
+ def __init_subclass__(cls, **kwargs):
142
+ if not HAS_HF_HUB:
143
+ super().__init_subclass__(**kwargs)
144
+ return
145
+
146
+ base_tags = ["braindecode", cls.__name__]
147
+ user_tags = kwargs.pop("tags", None)
148
+ tags = list(user_tags) if user_tags is not None else []
149
+ for tag in base_tags:
150
+ if tag not in tags:
151
+ tags.append(tag)
152
+
153
+ docs_url = kwargs.pop(
154
+ "docs_url",
155
+ f"https://braindecode.org/stable/generated/braindecode.models.{cls.__name__}.html",
156
+ )
157
+ repo_url = kwargs.pop("repo_url", "https://braindecode.org")
158
+ library_name = kwargs.pop("library_name", "braindecode")
159
+ license = kwargs.pop("license", "bsd-3-clause")
160
+ # TODO: model_card_template can be added in the future for custom model cards
161
+ super().__init_subclass__(
162
+ tags=tags,
163
+ docs_url=docs_url,
164
+ repo_url=repo_url,
165
+ library_name=library_name,
166
+ license=license,
167
+ **kwargs,
168
+ )
169
+
67
170
  def __init__(
68
171
  self,
69
172
  n_outputs: Optional[int] = None, # type: ignore[assignment]
@@ -73,6 +176,16 @@ class EEGModuleMixin(metaclass=NumpyDocstringInheritanceInitMeta):
73
176
  input_window_seconds: Optional[float] = None, # type: ignore[assignment]
74
177
  sfreq: Optional[float] = None, # type: ignore[assignment]
75
178
  ):
179
+ # Deserialize chs_info if it comes as a list of dicts (from Hub)
180
+ if chs_info is not None and isinstance(chs_info, list):
181
+ if len(chs_info) > 0 and isinstance(chs_info[0], dict):
182
+ # Check if it needs deserialization (has 'loc' as list)
183
+ if "loc" in chs_info[0] and isinstance(chs_info[0]["loc"], list):
184
+ chs_info = self._deserialize_chs_info(chs_info)
185
+ warnings.warn(
186
+ "Modifying chs_info argument using the _deserialize_chs_info() method"
187
+ )
188
+
76
189
  if n_chans is not None and chs_info is not None and len(chs_info) != n_chans:
77
190
  raise ValueError(f"{n_chans=} different from {chs_info=} length")
78
191
  if (
@@ -294,3 +407,168 @@ class EEGModuleMixin(metaclass=NumpyDocstringInheritanceInitMeta):
294
407
 
295
408
  def __str__(self) -> str:
296
409
  return str(self.get_torchinfo_statistics())
410
+
411
+ @staticmethod
412
+ def _serialize_chs_info(chs_info):
413
+ """
414
+ Serialize MNE channel info to JSON-compatible format.
415
+
416
+ Parameters
417
+ ----------
418
+ chs_info : list of dict or None
419
+ Channel information from MNE Info object.
420
+
421
+ Returns
422
+ -------
423
+ list of dict or None
424
+ Serialized channel information that can be saved to JSON.
425
+ """
426
+ if chs_info is None:
427
+ return None
428
+
429
+ serialized = []
430
+ for ch in chs_info:
431
+ # Extract serializable fields from MNE channel info
432
+ ch_dict = {
433
+ "ch_name": ch.get("ch_name", ""),
434
+ }
435
+
436
+ # Handle kind field - can be either string or integer
437
+ kind_val = ch.get("kind")
438
+ if kind_val is not None:
439
+ ch_dict["kind"] = (
440
+ kind_val if isinstance(kind_val, str) else int(kind_val)
441
+ )
442
+
443
+ # Add numeric fields with safe conversion
444
+ coil_type = ch.get("coil_type")
445
+ if coil_type is not None:
446
+ ch_dict["coil_type"] = int(coil_type)
447
+
448
+ unit = ch.get("unit")
449
+ if unit is not None:
450
+ ch_dict["unit"] = int(unit)
451
+
452
+ cal = ch.get("cal")
453
+ if cal is not None:
454
+ ch_dict["cal"] = float(cal)
455
+
456
+ range_val = ch.get("range")
457
+ if range_val is not None:
458
+ ch_dict["range"] = float(range_val)
459
+
460
+ # Serialize location array if present
461
+ if "loc" in ch and ch["loc"] is not None:
462
+ ch_dict["loc"] = (
463
+ ch["loc"].tolist()
464
+ if hasattr(ch["loc"], "tolist")
465
+ else list(ch["loc"])
466
+ )
467
+ serialized.append(ch_dict)
468
+
469
+ return serialized
470
+
471
+ @staticmethod
472
+ def _deserialize_chs_info(chs_info_dict):
473
+ """
474
+ Deserialize channel info from JSON-compatible format to MNE-like structure.
475
+
476
+ Parameters
477
+ ----------
478
+ chs_info_dict : list of dict or None
479
+ Serialized channel information.
480
+
481
+ Returns
482
+ -------
483
+ list of dict or None
484
+ Deserialized channel information compatible with MNE.
485
+ """
486
+ if chs_info_dict is None:
487
+ return None
488
+
489
+ deserialized = []
490
+ for ch_dict in chs_info_dict:
491
+ ch = ch_dict.copy()
492
+ # Convert location back to numpy array if present
493
+ if "loc" in ch and ch["loc"] is not None:
494
+ ch["loc"] = np.array(ch["loc"])
495
+ deserialized.append(ch)
496
+
497
+ return deserialized
498
+
499
+ def _save_pretrained(self, save_directory):
500
+ """
501
+ Save model configuration and weights to the Hub.
502
+
503
+ This method is called by PyTorchModelHubMixin.push_to_hub() to save
504
+ model-specific configuration alongside the model weights.
505
+
506
+ Parameters
507
+ ----------
508
+ save_directory : str or Path
509
+ Directory where the configuration should be saved.
510
+ """
511
+ if not HAS_HF_HUB:
512
+ return
513
+
514
+ save_directory = Path(save_directory)
515
+
516
+ # Collect EEG-specific configuration
517
+ config = {
518
+ "n_outputs": self._n_outputs,
519
+ "n_chans": self._n_chans,
520
+ "n_times": self._n_times,
521
+ "input_window_seconds": self._input_window_seconds,
522
+ "sfreq": self._sfreq,
523
+ "chs_info": self._serialize_chs_info(self._chs_info),
524
+ "braindecode_version": __version__,
525
+ }
526
+
527
+ # Save to config.json
528
+ config_path = save_directory / "config.json"
529
+ with open(config_path, "w") as f:
530
+ json.dump(config, f, indent=2)
531
+
532
+ # Save model weights with standard Hub filename
533
+ weights_path = save_directory / "pytorch_model.bin"
534
+ torch.save(self.state_dict(), weights_path)
535
+
536
+ # Also save in safetensors format using parent's implementation
537
+ try:
538
+ super()._save_pretrained(save_directory)
539
+ except (ImportError, RuntimeError) as e:
540
+ # Fallback to pytorch_model.bin if safetensors saving fails
541
+ warnings.warn(
542
+ f"Could not save model in safetensors format: {e}. "
543
+ "Model weights saved in pytorch_model.bin instead.",
544
+ stacklevel=2,
545
+ )
546
+
547
+ if HAS_HF_HUB:
548
+
549
+ @classmethod
550
+ def _from_pretrained(
551
+ cls,
552
+ *,
553
+ model_id: str,
554
+ revision: Optional[str],
555
+ cache_dir: Optional[Union[str, Path]],
556
+ force_download: bool,
557
+ local_files_only: bool,
558
+ token: Union[str, bool, None],
559
+ map_location: str = "cpu",
560
+ strict: bool = False,
561
+ **model_kwargs,
562
+ ):
563
+ model_kwargs.pop("braindecode_version", None)
564
+ return super()._from_pretrained( # type: ignore
565
+ model_id=model_id,
566
+ revision=revision,
567
+ cache_dir=cache_dir,
568
+ force_download=force_download,
569
+ local_files_only=local_files_only,
570
+ token=token,
571
+ map_location=map_location,
572
+ strict=strict,
573
+ **model_kwargs,
574
+ )