braindecode 1.2.0.dev184328194__py3-none-any.whl → 1.3.0.dev171178473__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/augmentation/base.py +1 -1
- braindecode/augmentation/functional.py +154 -54
- braindecode/augmentation/transforms.py +2 -2
- braindecode/datasets/__init__.py +10 -2
- braindecode/datasets/base.py +116 -152
- braindecode/datasets/bcicomp.py +4 -4
- braindecode/datasets/bids.py +3 -3
- braindecode/datasets/experimental.py +218 -0
- braindecode/datasets/mne.py +3 -5
- braindecode/datasets/moabb.py +2 -2
- braindecode/datasets/nmt.py +2 -2
- braindecode/datasets/sleep_physio_challe_18.py +4 -3
- braindecode/datasets/sleep_physionet.py +2 -2
- braindecode/datasets/tuh.py +2 -2
- braindecode/datasets/xy.py +2 -2
- braindecode/datautil/serialization.py +18 -13
- braindecode/eegneuralnet.py +2 -0
- braindecode/functional/functions.py +6 -2
- braindecode/functional/initialization.py +2 -3
- braindecode/models/__init__.py +12 -8
- braindecode/models/atcnet.py +156 -17
- braindecode/models/attentionbasenet.py +148 -16
- braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
- braindecode/models/base.py +280 -2
- braindecode/models/bendr.py +469 -0
- braindecode/models/biot.py +3 -1
- braindecode/models/ctnet.py +7 -4
- braindecode/models/deep4.py +6 -2
- braindecode/models/deepsleepnet.py +127 -5
- braindecode/models/eegconformer.py +114 -15
- braindecode/models/eeginception_erp.py +82 -7
- braindecode/models/eeginception_mi.py +2 -0
- braindecode/models/eegnet.py +64 -177
- braindecode/models/eegnex.py +113 -6
- braindecode/models/eegsimpleconv.py +2 -0
- braindecode/models/eegtcnet.py +1 -1
- braindecode/models/labram.py +188 -84
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/sccnet.py +81 -8
- braindecode/models/shallow_fbcsp.py +2 -0
- braindecode/models/signal_jepa.py +109 -27
- braindecode/models/sinc_shallow.py +10 -9
- braindecode/models/sleep_stager_blanco_2020.py +2 -0
- braindecode/models/sleep_stager_chambon_2018.py +2 -0
- braindecode/models/sparcnet.py +2 -0
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +42 -41
- braindecode/models/tidnet.py +2 -0
- braindecode/models/tsinception.py +15 -3
- braindecode/models/usleep.py +108 -9
- braindecode/models/util.py +8 -5
- braindecode/modules/attention.py +10 -10
- braindecode/modules/blocks.py +3 -3
- braindecode/modules/filter.py +2 -3
- braindecode/modules/layers.py +18 -17
- braindecode/preprocessing/__init__.py +24 -0
- braindecode/preprocessing/eegprep_preprocess.py +1202 -0
- braindecode/preprocessing/preprocess.py +42 -39
- braindecode/preprocessing/util.py +166 -0
- braindecode/preprocessing/windowers.py +24 -19
- braindecode/samplers/base.py +8 -8
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/METADATA +12 -3
- braindecode-1.3.0.dev171178473.dist-info/RECORD +106 -0
- braindecode/models/eegresnet.py +0 -362
- braindecode-1.2.0.dev184328194.dist-info/RECORD +0 -101
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev171178473.dist-info}/top_level.txt +0 -0
braindecode/models/summary.csv
CHANGED
|
@@ -1,41 +1,42 @@
|
|
|
1
|
-
Model,
|
|
2
|
-
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
3
|
-
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
4
|
-
BDTCN,Normal
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
|
|
6
|
-
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
|
|
7
|
-
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
|
|
8
|
-
Deep4Net,
|
|
9
|
-
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
|
|
10
|
-
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)
|
|
11
|
-
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
|
|
12
|
-
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
|
|
13
|
-
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
1
|
+
Model,Application,Type,Sampling Frequency (Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
|
|
2
|
+
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
|
+
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
|
+
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
|
|
6
|
+
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
|
+
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
|
+
Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
9
|
+
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution,Recurrent"
|
|
10
|
+
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
11
|
+
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
|
|
12
|
+
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
|
|
13
|
+
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
|
|
14
|
+
EEGNet,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNet(n_chans=22, n_outputs=4, n_times=512)","Convolution"
|
|
15
|
+
EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
|
|
16
|
+
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
|
|
17
|
+
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
18
|
+
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
19
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
|
|
20
|
+
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
21
|
+
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
22
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
23
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
24
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
25
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
26
|
+
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
27
|
+
ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
28
|
+
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
29
|
+
SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
|
|
30
|
+
AttnSleep,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"AttnSleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
|
|
31
|
+
SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
|
|
32
|
+
SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
|
|
33
|
+
TSception,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSception(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
|
|
34
|
+
TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
35
|
+
USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
36
|
+
FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
37
|
+
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
|
+
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
|
+
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
40
|
+
PBT,General,Classification,250,"n_chans, n_outputs, n_times",818948,"PBT(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Large Brain Model"
|
|
41
|
+
SSTDPN,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",19502,"SSTDPN(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
42
|
+
BENDR,General,"Classification,Embedding",250,"n_chans, n_times, n_outputs",157141049,"BENDR(n_chans=22, n_outputs=4, n_times=1000)","Large Brain Model,Convolution"
|
braindecode/models/tidnet.py
CHANGED
|
@@ -13,6 +13,8 @@ from braindecode.modules import Ensure4d
|
|
|
13
13
|
class TIDNet(EEGModuleMixin, nn.Module):
|
|
14
14
|
"""Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet]_.
|
|
15
15
|
|
|
16
|
+
:bdg-success:`Convolution`
|
|
17
|
+
|
|
16
18
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/17/5/056008/revision3/jneabb7a7f1_hr.jpg
|
|
17
19
|
:align: center
|
|
18
20
|
:alt: TIDNet Architecture
|
|
@@ -7,19 +7,21 @@ from __future__ import annotations
|
|
|
7
7
|
import torch
|
|
8
8
|
import torch.nn as nn
|
|
9
9
|
from einops.layers.torch import Rearrange
|
|
10
|
-
from mne.utils import warn
|
|
10
|
+
from mne.utils import deprecated, warn
|
|
11
11
|
|
|
12
12
|
from braindecode.models.base import EEGModuleMixin
|
|
13
13
|
|
|
14
14
|
|
|
15
|
-
class
|
|
15
|
+
class TSception(EEGModuleMixin, nn.Module):
|
|
16
16
|
"""TSception model from Ding et al. (2020) from [ding2020]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
TSception: A deep learning framework for emotion detection using EEG.
|
|
19
21
|
|
|
20
22
|
.. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
|
|
21
23
|
:align: center
|
|
22
|
-
:alt:
|
|
24
|
+
:alt: TSception Architecture
|
|
23
25
|
|
|
24
26
|
The model consists of temporal and spatial convolutional layers
|
|
25
27
|
(Tception and Sception) designed to learn temporal and spatial features
|
|
@@ -281,3 +283,13 @@ class TSceptionV1(EEGModuleMixin, nn.Module):
|
|
|
281
283
|
activation(),
|
|
282
284
|
nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
|
|
283
285
|
)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
@deprecated(
|
|
289
|
+
"`TSceptionV1` was renamed to `TSception` in v1.12; "
|
|
290
|
+
"this alias will be removed in v1.14."
|
|
291
|
+
)
|
|
292
|
+
class TSceptionV1(TSception):
|
|
293
|
+
"""Deprecated alias for TSception."""
|
|
294
|
+
|
|
295
|
+
pass
|
braindecode/models/usleep.py
CHANGED
|
@@ -15,22 +15,121 @@ class USleep(EEGModuleMixin, nn.Module):
|
|
|
15
15
|
"""
|
|
16
16
|
Sleep staging architecture from Perslev et al. (2021) [1]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
.. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
|
|
19
21
|
:align: center
|
|
20
22
|
:alt: USleep Architecture
|
|
21
23
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
+
Figure: U-Sleep consists of an encoder (left) which encodes the input signals into dense feature representations, a decoder (middle) which projects
|
|
25
|
+
the learned features into the input space to generate a dense sleep stage representation, and finally a specially designed segment
|
|
26
|
+
classifier (right) which generates sleep stages at a chosen temporal resolution.
|
|
27
|
+
|
|
28
|
+
.. rubric:: Architectural Overview
|
|
29
|
+
|
|
30
|
+
U-Sleep is a **fully convolutional**, feed-forward encoder-decoder with a *segment classifier* head for
|
|
31
|
+
time-series **segmentation** (sleep staging). It maps multi-channel PSG (EEG+EOG) to a *dense, high-frequency*
|
|
32
|
+
per-sample representation, then aggregates it into fixed-length stage labels (e.g., 30 s). The network
|
|
33
|
+
processes arbitrarily long inputs in **one forward pass** (resampling to 128 Hz), allowing whole-night
|
|
34
|
+
hypnograms in seconds.
|
|
35
|
+
|
|
36
|
+
- (i). :class:`_EncoderBlock` extracts progressively deeper temporal features at lower resolution;
|
|
37
|
+
- (ii). :class:`_Decoder` upsamples and fuses encoder features via U-Net-style skips to recover a per-sample stage map;
|
|
38
|
+
- (iii). Segment Classifier mean-pools over the target epoch length and applies two pointwise convs to yield
|
|
39
|
+
per-epoch probabilities. Integrates into the USleep class.
|
|
40
|
+
|
|
41
|
+
.. rubric:: Macro Components
|
|
42
|
+
|
|
43
|
+
- Encoder :class:`_EncoderBlock` **(multi-scale temporal feature extractor; downsampling x2 per block)**
|
|
44
|
+
|
|
45
|
+
- *Operations.*
|
|
46
|
+
- **Conv1d** (:class:`torch.nn.Conv1d`) with kernel ``9`` (stride ``1``, no dilation)
|
|
47
|
+
- **ELU** (:class:`torch.nn.ELU`)
|
|
48
|
+
- **Batch Norm** (:class:`torch.nn.BatchNorm1d`)
|
|
49
|
+
- **Max Pool 1d**, :class:`torch.nn.MaxPool1d` (``kernel=2, stride=2``).
|
|
50
|
+
|
|
51
|
+
Filters grow with depth by a factor of ``sqrt(2)`` (start ``c_1=5``); each block exposes a **skip**
|
|
52
|
+
(pre-pooling activation) to the matching decoder block.
|
|
53
|
+
*Role.* Slow, uniform downsampling preserves early information while expanding the effective temporal
|
|
54
|
+
context over minutes—foundational for robust cross-cohort staging.
|
|
55
|
+
|
|
56
|
+
The number of filters grows with depth (capacity scaling); each block also exposes a **skip** (pre-pool)
|
|
57
|
+
to the matching decoder block.
|
|
58
|
+
|
|
59
|
+
**Rationale.**
|
|
60
|
+
- Slow, uniform downsampling (x2 each level) preserves information in early layers while expanding the temporal receptive field over the minutes.
|
|
61
|
+
|
|
62
|
+
- Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
|
|
63
|
+
|
|
64
|
+
- *Operations.*
|
|
65
|
+
|
|
66
|
+
- **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
|
|
67
|
+
- **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
|
|
68
|
+
- ELU, :class:`torch.nn.ELU`
|
|
69
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`
|
|
70
|
+
- **Concatenate** with the encoder skip at the same temporal scale, ``torch.cat``
|
|
71
|
+
- **Convolution**, :class:`torch.nn.Conv2d`
|
|
72
|
+
- ELU, :class:`torch.nn.ELU`
|
|
73
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`.
|
|
74
|
+
|
|
75
|
+
**Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
|
|
76
|
+
|
|
77
|
+
- **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
|
|
78
|
+
|
|
79
|
+
- *Operations.*
|
|
80
|
+
|
|
81
|
+
- **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
|
|
82
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d`
|
|
83
|
+
- ELU, :class:`torch.nn.ELU`
|
|
84
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
|
|
85
|
+
|
|
86
|
+
**Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
|
|
87
|
+
|
|
88
|
+
.. rubric:: Convolutional Details
|
|
89
|
+
|
|
90
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
91
|
+
|
|
92
|
+
All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
|
|
93
|
+
(reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
|
|
94
|
+
The decoder restores sample-level resolution before epoch aggregation.
|
|
95
|
+
|
|
96
|
+
- **Spatial (how channels are processed).**
|
|
97
|
+
|
|
98
|
+
Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
|
|
99
|
+
is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
|
|
100
|
+
supporting robustness to channel placement and hardware differences.
|
|
101
|
+
|
|
102
|
+
- **Spectral (how frequency content is captured).**
|
|
103
|
+
|
|
104
|
+
No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
|
|
105
|
+
filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
|
|
106
|
+
retains fine temporal detail for the segment classifier.
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
.. rubric:: Attention / Sequential Modules
|
|
110
|
+
|
|
111
|
+
U-Sleep contains **no attention or recurrent units**; it is a *pure* feed-forward, fully convolutional
|
|
112
|
+
segmentation network inspired by U-Net/U-Time, favoring training stability and cross-dataset portability.
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
.. rubric:: Additional Mechanisms
|
|
116
|
+
|
|
117
|
+
- **U-Net lineage with task-specific head.** U-Sleep extends U-Time by being **deeper** (12 vs. 4 levels),
|
|
118
|
+
switching ReLU→**ELU**, using uniform pooling (2) at all depths, and replacing the linear combiner with a
|
|
119
|
+
**two-layer** pointwise head—improving capacity and resilience across datasets.
|
|
120
|
+
- **Arbitrary-length inference.** Thanks to full convolutionality and tiling-free design, entire nights can be
|
|
121
|
+
staged in a single pass on commodity hardware. Inputs shorter than ≈ 17.5 min may reduce performance by
|
|
122
|
+
limiting long-range context.
|
|
123
|
+
- **Complexity scaling (alpha).** Filter counts can be adjusted by a global **complexity factor** to trade accuracy
|
|
124
|
+
and memory (as described in the paper's topology table).
|
|
125
|
+
|
|
24
126
|
|
|
25
|
-
|
|
26
|
-
- the temporal dimension shrinks (via maxpooling in the time-domain)
|
|
27
|
-
- the spatial dimension expands (via more conv1d filters in the time-domain)
|
|
127
|
+
.. rubric:: Usage and Configuration
|
|
28
128
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
129
|
+
- **Practice.** Resample PSG to **128 Hz** and provide at least two channels (one EEG, one EOG). Choose epoch
|
|
130
|
+
length *i* (often 30 s); ensure windows long enough to exploit the model's receptive field (e.g., training on
|
|
131
|
+
≥ 17.5 min chunks).
|
|
32
132
|
|
|
33
|
-
Both do so at exponential rates.
|
|
34
133
|
|
|
35
134
|
Parameters
|
|
36
135
|
----------
|
braindecode/models/util.py
CHANGED
|
@@ -22,6 +22,8 @@ def _init_models_dict():
|
|
|
22
22
|
issubclass(m[1], models.base.EEGModuleMixin)
|
|
23
23
|
and m[1] != models.base.EEGModuleMixin
|
|
24
24
|
):
|
|
25
|
+
if m[1].__name__ == "EEGNetv4":
|
|
26
|
+
continue
|
|
25
27
|
models_dict[m[0]] = m[1]
|
|
26
28
|
|
|
27
29
|
|
|
@@ -55,9 +57,7 @@ models_mandatory_parameters = [
|
|
|
55
57
|
("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
56
58
|
("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
57
59
|
("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
58
|
-
("
|
|
59
|
-
("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
-
("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
+
("EEGNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
61
61
|
("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
62
62
|
(
|
|
63
63
|
"SleepStagerBlanco2020",
|
|
@@ -66,7 +66,7 @@ models_mandatory_parameters = [
|
|
|
66
66
|
),
|
|
67
67
|
("SleepStagerChambon2018", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
68
68
|
(
|
|
69
|
-
"
|
|
69
|
+
"AttnSleep",
|
|
70
70
|
["n_outputs", "n_times", "sfreq"],
|
|
71
71
|
dict(sfreq=100.0, n_times=3000, chs_info=[dict(ch_name="C1", kind="eeg")]),
|
|
72
72
|
), # 1 channel
|
|
@@ -79,7 +79,7 @@ models_mandatory_parameters = [
|
|
|
79
79
|
("SPARCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
80
80
|
("ContraWR", ["n_chans", "n_outputs", "sfreq", "n_times"], dict(sfreq=200.0)),
|
|
81
81
|
("EEGNeX", ["n_chans", "n_outputs", "n_times"], None),
|
|
82
|
-
("
|
|
82
|
+
("TSception", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
83
83
|
("EEGTCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
84
84
|
("SyncNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
85
85
|
("MSVTNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
@@ -95,6 +95,9 @@ models_mandatory_parameters = [
|
|
|
95
95
|
("FBMSNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
96
96
|
("FBLightConvNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
97
97
|
("IFNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
98
|
+
("PBT", ["n_chans", "n_outputs", "n_times"], None),
|
|
99
|
+
("SSTDPN", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
100
|
+
("BENDR", ["n_chans", "n_outputs", "n_times"], None),
|
|
98
101
|
]
|
|
99
102
|
|
|
100
103
|
################################################################
|
braindecode/modules/attention.py
CHANGED
|
@@ -38,7 +38,7 @@ class SqueezeAndExcitation(nn.Module):
|
|
|
38
38
|
References
|
|
39
39
|
----------
|
|
40
40
|
.. [Hu2018] Hu, J., Albanie, S., Sun, G., Wu, E., 2018.
|
|
41
|
-
|
|
41
|
+
Squeeze-and-Excitation Networks. CVPR 2018.
|
|
42
42
|
"""
|
|
43
43
|
|
|
44
44
|
def __init__(self, in_channels: int, reduction_rate: int, bias: bool = False):
|
|
@@ -93,7 +93,7 @@ class GSoP(nn.Module):
|
|
|
93
93
|
References
|
|
94
94
|
----------
|
|
95
95
|
.. [Gao2018] Gao, Z., Jiangtao, X., Wang, Q., Li, P., 2018.
|
|
96
|
-
|
|
96
|
+
Global Second-order Pooling Convolutional Networks. CVPR 2018.
|
|
97
97
|
"""
|
|
98
98
|
|
|
99
99
|
def __init__(self, in_channels: int, reduction_rate: int, bias: bool = True):
|
|
@@ -149,7 +149,7 @@ class FCA(nn.Module):
|
|
|
149
149
|
References
|
|
150
150
|
----------
|
|
151
151
|
.. [Qin2021] Qin, Z., Zhang, P., Wu, F., Li, X., 2021.
|
|
152
|
-
|
|
152
|
+
FcaNet: Frequency Channel Attention Networks. ICCV 2021.
|
|
153
153
|
"""
|
|
154
154
|
|
|
155
155
|
def __init__(
|
|
@@ -233,7 +233,7 @@ class EncNet(nn.Module):
|
|
|
233
233
|
References
|
|
234
234
|
----------
|
|
235
235
|
.. [Zhang2018] Zhang, H. et al. 2018.
|
|
236
|
-
|
|
236
|
+
Context Encoding for Semantic Segmentation. CVPR 2018.
|
|
237
237
|
"""
|
|
238
238
|
|
|
239
239
|
def __init__(self, in_channels: int, n_codewords: int):
|
|
@@ -290,7 +290,7 @@ class ECA(nn.Module):
|
|
|
290
290
|
References
|
|
291
291
|
----------
|
|
292
292
|
.. [Wang2021] Wang, Q. et al., 2021. ECA-Net: Efficient Channel Attention
|
|
293
|
-
|
|
293
|
+
for Deep Convolutional Neural Networks. CVPR 2021.
|
|
294
294
|
"""
|
|
295
295
|
|
|
296
296
|
def __init__(self, in_channels: int, kernel_size: int):
|
|
@@ -341,8 +341,8 @@ class GatherExcite(nn.Module):
|
|
|
341
341
|
References
|
|
342
342
|
----------
|
|
343
343
|
.. [Hu2018b] Hu, J., Albanie, S., Sun, G., Vedaldi, A., 2018.
|
|
344
|
-
|
|
345
|
-
|
|
344
|
+
Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
|
|
345
|
+
NeurIPS 2018.
|
|
346
346
|
"""
|
|
347
347
|
|
|
348
348
|
def __init__(
|
|
@@ -410,7 +410,7 @@ class GCT(nn.Module):
|
|
|
410
410
|
References
|
|
411
411
|
----------
|
|
412
412
|
.. [Yang2020] Yang, Z. Linchao, Z., Wu, Y., Yang, Y., 2020.
|
|
413
|
-
|
|
413
|
+
Gated Channel Transformation for Visual Recognition. CVPR 2020.
|
|
414
414
|
"""
|
|
415
415
|
|
|
416
416
|
def __init__(self, in_channels: int):
|
|
@@ -455,7 +455,7 @@ class SRM(nn.Module):
|
|
|
455
455
|
References
|
|
456
456
|
----------
|
|
457
457
|
.. [Lee2019] Lee, H., Kim, H., Nam, H., 2019. SRM: A Style-based
|
|
458
|
-
|
|
458
|
+
Recalibration Module for Convolutional Neural Networks. ICCV 2019.
|
|
459
459
|
"""
|
|
460
460
|
|
|
461
461
|
def __init__(
|
|
@@ -520,7 +520,7 @@ class CBAM(nn.Module):
|
|
|
520
520
|
References
|
|
521
521
|
----------
|
|
522
522
|
.. [Woo2018] Woo, S., Park, J., Lee, J., Kweon, I., 2018.
|
|
523
|
-
|
|
523
|
+
CBAM: Convolutional Block Attention Module. ECCV 2018.
|
|
524
524
|
"""
|
|
525
525
|
|
|
526
526
|
def __init__(self, in_channels: int, reduction_rate: int, kernel_size: int):
|
braindecode/modules/blocks.py
CHANGED
|
@@ -37,8 +37,8 @@ class MLP(nn.Sequential):
|
|
|
37
37
|
:math:`a_i` are called activation functions. The trainable parameters of an
|
|
38
38
|
MLP are its weights and biases :math:`\\phi = \{W_i, b_i | i = 1, \dots, L\}`.
|
|
39
39
|
|
|
40
|
-
Parameters
|
|
41
|
-
|
|
40
|
+
Parameters
|
|
41
|
+
----------
|
|
42
42
|
in_features: int
|
|
43
43
|
Number of input features.
|
|
44
44
|
hidden_features: Sequential[int] (default=None)
|
|
@@ -49,7 +49,7 @@ class MLP(nn.Sequential):
|
|
|
49
49
|
out_features: int (default=None)
|
|
50
50
|
Number of output features, if None, set to in_features.
|
|
51
51
|
act_layer: nn.GELU (default)
|
|
52
|
-
The activation function constructor. If
|
|
52
|
+
The activation function constructor. If ``None``, use
|
|
53
53
|
:class:`torch.nn.GELU` instead.
|
|
54
54
|
drop: float (default=0.0)
|
|
55
55
|
Dropout rate.
|
braindecode/modules/filter.py
CHANGED
|
@@ -17,9 +17,8 @@ class FilterBankLayer(nn.Module):
|
|
|
17
17
|
It uses MNE's `create_filter` function to create the band-specific filters and
|
|
18
18
|
applies them to multi-channel time-series data. Each filter in the bank corresponds to a
|
|
19
19
|
specific frequency band and is applied to all channels of the input data. The filtering is
|
|
20
|
-
performed using FFT-based convolution via the
|
|
21
|
-
|
|
22
|
-
:func:`torchaudio.functional if the method is IIR.
|
|
20
|
+
performed using FFT-based convolution via the ``torchaudio.functional`` if the method is FIR,
|
|
21
|
+
and ``torchaudio.functional`` if the method is IIR.
|
|
23
22
|
|
|
24
23
|
The default configuration creates 9 non-overlapping frequency bands with a 4 Hz bandwidth,
|
|
25
24
|
spanning from 4 Hz to 40 Hz (i.e., 4-8 Hz, 8-12 Hz, ..., 36-40 Hz). This setup is based on the
|
braindecode/modules/layers.py
CHANGED
|
@@ -70,26 +70,27 @@ class TimeDistributed(nn.Module):
|
|
|
70
70
|
class DropPath(nn.Module):
|
|
71
71
|
"""Drop paths, also known as Stochastic Depth, per sample.
|
|
72
72
|
|
|
73
|
-
|
|
73
|
+
When applied in main path of residual blocks.
|
|
74
74
|
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
75
|
+
Parameters
|
|
76
|
+
----------
|
|
77
|
+
drop_prob: float (default=None)
|
|
78
|
+
Drop path probability (should be in range 0-1).
|
|
79
79
|
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
80
|
+
Notes
|
|
81
|
+
-----
|
|
82
|
+
Code copied and modified from VISSL facebookresearch:
|
|
83
83
|
https://github.com/facebookresearch/vissl/blob/0b5d6a94437bc00baed112ca90c9d78c6ccfbafb/vissl/models/model_helpers.py#L676
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
84
|
+
|
|
85
|
+
All rights reserved.
|
|
86
|
+
|
|
87
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
88
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
89
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
90
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
91
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
92
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
93
|
+
SOFTWARE.
|
|
93
94
|
"""
|
|
94
95
|
|
|
95
96
|
def __init__(self, drop_prob=None):
|
|
@@ -1,3 +1,16 @@
|
|
|
1
|
+
from .eegprep_preprocess import (
|
|
2
|
+
EEGPrep,
|
|
3
|
+
ReinterpolateRemovedChannels,
|
|
4
|
+
RemoveBadChannels,
|
|
5
|
+
RemoveBadChannelsNoLocs,
|
|
6
|
+
RemoveBadWindows,
|
|
7
|
+
RemoveBursts,
|
|
8
|
+
RemoveCommonAverageReference,
|
|
9
|
+
RemoveDCOffset,
|
|
10
|
+
RemoveDrifts,
|
|
11
|
+
RemoveFlatChannels,
|
|
12
|
+
Resampling,
|
|
13
|
+
)
|
|
1
14
|
from .mne_preprocess import ( # type: ignore[attr-defined]
|
|
2
15
|
Crop,
|
|
3
16
|
DropChannels,
|
|
@@ -31,6 +44,17 @@ __all__ = [
|
|
|
31
44
|
"Filter",
|
|
32
45
|
"Pick",
|
|
33
46
|
"Crop",
|
|
47
|
+
"EEGPrep",
|
|
48
|
+
"RemoveDCOffset",
|
|
49
|
+
"Resampling",
|
|
50
|
+
"RemoveFlatChannels",
|
|
51
|
+
"RemoveDrifts",
|
|
52
|
+
"RemoveBadChannels",
|
|
53
|
+
"RemoveBadChannelsNoLocs",
|
|
54
|
+
"RemoveBursts",
|
|
55
|
+
"RemoveBadWindows",
|
|
56
|
+
"ReinterpolateRemovedChannels",
|
|
57
|
+
"RemoveCommonAverageReference",
|
|
34
58
|
"create_windows_from_events",
|
|
35
59
|
"create_fixed_length_windows",
|
|
36
60
|
"create_windows_from_target_channels",
|