braindecode 1.2.0.dev184328194__py3-none-any.whl → 1.3.0.dev168496007__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/augmentation/base.py +1 -1
- braindecode/augmentation/functional.py +154 -54
- braindecode/augmentation/transforms.py +2 -2
- braindecode/datasets/__init__.py +10 -2
- braindecode/datasets/base.py +116 -152
- braindecode/datasets/bcicomp.py +4 -4
- braindecode/datasets/bids.py +3 -3
- braindecode/datasets/experimental.py +218 -0
- braindecode/datasets/mne.py +3 -5
- braindecode/datasets/moabb.py +2 -2
- braindecode/datasets/nmt.py +2 -2
- braindecode/datasets/sleep_physio_challe_18.py +4 -3
- braindecode/datasets/sleep_physionet.py +2 -2
- braindecode/datasets/tuh.py +2 -2
- braindecode/datasets/xy.py +2 -2
- braindecode/datautil/serialization.py +18 -13
- braindecode/eegneuralnet.py +2 -0
- braindecode/functional/functions.py +6 -2
- braindecode/functional/initialization.py +2 -3
- braindecode/models/__init__.py +12 -8
- braindecode/models/atcnet.py +156 -17
- braindecode/models/attentionbasenet.py +148 -16
- braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +14 -2
- braindecode/models/base.py +280 -2
- braindecode/models/bendr.py +469 -0
- braindecode/models/biot.py +3 -1
- braindecode/models/contrawr.py +2 -0
- braindecode/models/ctnet.py +9 -4
- braindecode/models/deep4.py +6 -2
- braindecode/models/deepsleepnet.py +127 -5
- braindecode/models/eegconformer.py +114 -15
- braindecode/models/eeginception_erp.py +82 -7
- braindecode/models/eeginception_mi.py +2 -0
- braindecode/models/eegitnet.py +2 -0
- braindecode/models/eegminer.py +2 -0
- braindecode/models/eegnet.py +64 -177
- braindecode/models/eegnex.py +113 -6
- braindecode/models/eegsimpleconv.py +2 -0
- braindecode/models/eegtcnet.py +3 -1
- braindecode/models/fbcnet.py +5 -1
- braindecode/models/fblightconvnet.py +2 -0
- braindecode/models/fbmsnet.py +20 -6
- braindecode/models/ifnet.py +2 -0
- braindecode/models/labram.py +193 -87
- braindecode/models/msvtnet.py +2 -0
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/sccnet.py +81 -8
- braindecode/models/shallow_fbcsp.py +2 -0
- braindecode/models/signal_jepa.py +111 -27
- braindecode/models/sinc_shallow.py +12 -9
- braindecode/models/sleep_stager_blanco_2020.py +2 -0
- braindecode/models/sleep_stager_chambon_2018.py +2 -0
- braindecode/models/sparcnet.py +2 -0
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +42 -41
- braindecode/models/syncnet.py +2 -0
- braindecode/models/tcn.py +2 -0
- braindecode/models/tidnet.py +2 -0
- braindecode/models/tsinception.py +15 -3
- braindecode/models/usleep.py +108 -9
- braindecode/models/util.py +8 -5
- braindecode/modules/attention.py +10 -10
- braindecode/modules/blocks.py +3 -3
- braindecode/modules/filter.py +2 -9
- braindecode/modules/layers.py +18 -17
- braindecode/preprocessing/__init__.py +24 -0
- braindecode/preprocessing/eegprep_preprocess.py +1202 -0
- braindecode/preprocessing/preprocess.py +42 -39
- braindecode/preprocessing/util.py +166 -0
- braindecode/preprocessing/windowers.py +26 -20
- braindecode/samplers/base.py +8 -8
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/METADATA +12 -3
- braindecode-1.3.0.dev168496007.dist-info/RECORD +106 -0
- braindecode/models/eegresnet.py +0 -362
- braindecode-1.2.0.dev184328194.dist-info/RECORD +0 -101
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/top_level.txt +0 -0
braindecode/models/eegnet.py
CHANGED
|
@@ -6,7 +6,7 @@ from __future__ import annotations
|
|
|
6
6
|
from typing import Dict, Optional
|
|
7
7
|
|
|
8
8
|
from einops.layers.torch import Rearrange
|
|
9
|
-
from mne.utils import warn
|
|
9
|
+
from mne.utils import deprecated, warn
|
|
10
10
|
from torch import nn
|
|
11
11
|
|
|
12
12
|
from braindecode.functional import glorot_weight_zero_bias
|
|
@@ -19,14 +19,62 @@ from braindecode.modules import (
|
|
|
19
19
|
)
|
|
20
20
|
|
|
21
21
|
|
|
22
|
-
class
|
|
23
|
-
"""EEGNet
|
|
22
|
+
class EEGNet(EEGModuleMixin, nn.Sequential):
|
|
23
|
+
"""EEGNet model from Lawhern et al. (2018) [Lawhern2018]_.
|
|
24
|
+
|
|
25
|
+
:bdg-success:`Convolution`
|
|
24
26
|
|
|
25
27
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
|
|
26
|
-
|
|
27
|
-
|
|
28
|
+
:align: center
|
|
29
|
+
:alt: EEGNet Architecture
|
|
30
|
+
:width: 600px
|
|
31
|
+
|
|
32
|
+
.. rubric:: Architectural Overview
|
|
33
|
+
|
|
34
|
+
EEGNet is a compact convolutional network designed for EEG decoding with a pipeline that mirrors classical EEG processing:
|
|
35
|
+
- (i) learn temporal frequency-selective filters,
|
|
36
|
+
- (ii) learn spatial filters for those frequencies, and
|
|
37
|
+
- (iii) condense features with depthwise-separable convolutions before a lightweight classifier.
|
|
38
|
+
|
|
39
|
+
The architecture is deliberately small (temporal convolutional and spatial patterns) [Lawhern2018]_.
|
|
40
|
+
|
|
41
|
+
.. rubric:: Macro Components
|
|
42
|
+
|
|
43
|
+
- **Temporal convolution**
|
|
44
|
+
Temporal convolution applied per channel; learns ``F1`` kernels that act as data-driven band-pass filters.
|
|
45
|
+
- **Depthwise Spatial Filtering.**
|
|
46
|
+
Depthwise convolution spanning the channel dimension with ``groups = F1``,
|
|
47
|
+
yielding ``D`` spatial filters for each temporal filter (no cross-filter mixing).
|
|
48
|
+
- **Norm-Nonlinearity-Pooling (+ dropout).**
|
|
49
|
+
Batch normalization → ELU → temporal pooling, with dropout.
|
|
50
|
+
- **Depthwise-Separable Convolution Block.**
|
|
51
|
+
(a) depthwise temporal conv to refine temporal structure;
|
|
52
|
+
(b) pointwise 1x1 conv to mix feature maps into ``F2`` combinations.
|
|
53
|
+
- **Classifier Head.**
|
|
54
|
+
Lightweight 1x1 conv or dense layer (often with max-norm constraint).
|
|
55
|
+
|
|
56
|
+
.. rubric:: Convolutional Details
|
|
57
|
+
|
|
58
|
+
- **Temporal.** The initial temporal convs serve as a *learned filter bank*:
|
|
59
|
+
long 1-D kernels (implemented as 2-D with singleton spatial extent) emphasize oscillatory bands and transients.
|
|
60
|
+
Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each feature's spectrum [Lawhern2018]_.
|
|
61
|
+
|
|
62
|
+
- **Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
|
|
63
|
+
With ``groups = F1``, each temporal filter learns its own set of ``D`` spatial projections—akin to CSP, learned end-to-end and
|
|
64
|
+
typically regularized with max-norm.
|
|
65
|
+
|
|
66
|
+
- **Spectral.** No explicit Fourier/wavelet transform is used. Frequency structure
|
|
67
|
+
is captured implicitly by the temporal filter bank; later depthwise temporal kernels act as short-time integrators/refiners.
|
|
68
|
+
|
|
69
|
+
.. rubric:: Additional Comments
|
|
70
|
+
|
|
71
|
+
- **Filter-bank structure:** Parallel temporal kernels (``F1``) emulate classical filter banks; pairing them with frequency-specific spatial filters
|
|
72
|
+
yields features mappable to rhythms and topographies.
|
|
73
|
+
- **Depthwise & separable convs:** Parameter-efficient decomposition (depthwise + pointwise) retains power while limiting overfitting
|
|
74
|
+
[Chollet2017]_ and keeps temporal vs. mixing steps interpretable.
|
|
75
|
+
- **Regularization:** Batch norm, dropout, pooling, and optional max-norm on spatial kernels aid stability on small EEG datasets.
|
|
76
|
+
- The v4 means the version 4 at the arxiv paper [Lawhern2018]_.
|
|
28
77
|
|
|
29
|
-
See details in [EEGNet4]_.
|
|
30
78
|
|
|
31
79
|
Parameters
|
|
32
80
|
----------
|
|
@@ -68,10 +116,13 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
|
|
|
68
116
|
|
|
69
117
|
References
|
|
70
118
|
----------
|
|
71
|
-
.. [
|
|
119
|
+
.. [Lawhern2018] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
|
|
72
120
|
Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional
|
|
73
121
|
neural network for EEG-based brain–computer interfaces. Journal of
|
|
74
122
|
neural engineering, 15(5), 056013.
|
|
123
|
+
.. [Chollet2017] Chollet, F., *Xception: Deep Learning with Depthwise Separable
|
|
124
|
+
Convolutions*, CVPR, 2017.
|
|
125
|
+
|
|
75
126
|
"""
|
|
76
127
|
|
|
77
128
|
def __init__(
|
|
@@ -299,174 +350,10 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
|
|
|
299
350
|
glorot_weight_zero_bias(self)
|
|
300
351
|
|
|
301
352
|
|
|
302
|
-
|
|
303
|
-
"
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
Parameters
|
|
308
|
-
----------
|
|
309
|
-
in_chans :
|
|
310
|
-
Alias for n_chans.
|
|
311
|
-
n_classes:
|
|
312
|
-
Alias for n_outputs.
|
|
313
|
-
input_window_samples :
|
|
314
|
-
Alias for n_times.
|
|
315
|
-
activation: nn.Module, default=nn.ELU
|
|
316
|
-
Activation function class to apply. Should be a PyTorch activation
|
|
317
|
-
module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
|
|
318
|
-
|
|
319
|
-
Notes
|
|
320
|
-
-----
|
|
321
|
-
This implementation is not guaranteed to be correct, has not been checked
|
|
322
|
-
by original authors, only reimplemented from the paper description.
|
|
323
|
-
|
|
324
|
-
References
|
|
325
|
-
----------
|
|
326
|
-
.. [EEGNet] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
|
|
327
|
-
S. M., Hung, C. P., & Lance, B. J. (2016).
|
|
328
|
-
EEGNet: A Compact Convolutional Network for EEG-based
|
|
329
|
-
Brain-Computer Interfaces.
|
|
330
|
-
arXiv preprint arXiv:1611.08024.
|
|
331
|
-
"""
|
|
332
|
-
|
|
333
|
-
def __init__(
|
|
334
|
-
self,
|
|
335
|
-
n_chans=None,
|
|
336
|
-
n_outputs=None,
|
|
337
|
-
n_times=None,
|
|
338
|
-
final_conv_length="auto",
|
|
339
|
-
pool_mode="max",
|
|
340
|
-
second_kernel_size=(2, 32),
|
|
341
|
-
third_kernel_size=(8, 4),
|
|
342
|
-
drop_prob=0.25,
|
|
343
|
-
activation: nn.Module = nn.ELU,
|
|
344
|
-
chs_info=None,
|
|
345
|
-
input_window_seconds=None,
|
|
346
|
-
sfreq=None,
|
|
347
|
-
):
|
|
348
|
-
super().__init__(
|
|
349
|
-
n_outputs=n_outputs,
|
|
350
|
-
n_chans=n_chans,
|
|
351
|
-
chs_info=chs_info,
|
|
352
|
-
n_times=n_times,
|
|
353
|
-
input_window_seconds=input_window_seconds,
|
|
354
|
-
sfreq=sfreq,
|
|
355
|
-
)
|
|
356
|
-
del n_outputs, n_chans, chs_info, n_times, input_window_seconds, sfreq
|
|
357
|
-
warn(
|
|
358
|
-
"The class EEGNetv1 is deprecated and will be removed in the "
|
|
359
|
-
"release 1.0 of braindecode. Please use "
|
|
360
|
-
"braindecode.models.EEGNetv4 instead in the future.",
|
|
361
|
-
DeprecationWarning,
|
|
362
|
-
)
|
|
363
|
-
if final_conv_length == "auto":
|
|
364
|
-
assert self.n_times is not None
|
|
365
|
-
self.final_conv_length = final_conv_length
|
|
366
|
-
self.pool_mode = pool_mode
|
|
367
|
-
self.second_kernel_size = second_kernel_size
|
|
368
|
-
self.third_kernel_size = third_kernel_size
|
|
369
|
-
self.drop_prob = drop_prob
|
|
370
|
-
# For the load_state_dict
|
|
371
|
-
# When padronize all layers,
|
|
372
|
-
# add the old's parameters here
|
|
373
|
-
self.mapping = {
|
|
374
|
-
"conv_classifier.weight": "final_layer.conv_classifier.weight",
|
|
375
|
-
"conv_classifier.bias": "final_layer.conv_classifier.bias",
|
|
376
|
-
}
|
|
377
|
-
|
|
378
|
-
pool_class = dict(max=nn.MaxPool2d, mean=nn.AvgPool2d)[self.pool_mode]
|
|
379
|
-
self.add_module("ensuredims", Ensure4d())
|
|
380
|
-
n_filters_1 = 16
|
|
381
|
-
self.add_module(
|
|
382
|
-
"conv_1",
|
|
383
|
-
nn.Conv2d(self.n_chans, n_filters_1, (1, 1), stride=1, bias=True),
|
|
384
|
-
)
|
|
385
|
-
self.add_module(
|
|
386
|
-
"bnorm_1",
|
|
387
|
-
nn.BatchNorm2d(n_filters_1, momentum=0.01, affine=True, eps=1e-3),
|
|
388
|
-
)
|
|
389
|
-
self.add_module("elu_1", activation())
|
|
390
|
-
# transpose to examples x 1 x (virtual, not EEG) channels x time
|
|
391
|
-
self.add_module("permute_1", Rearrange("batch x y z -> batch z x y"))
|
|
392
|
-
|
|
393
|
-
self.add_module("drop_1", nn.Dropout(p=self.drop_prob))
|
|
394
|
-
|
|
395
|
-
n_filters_2 = 4
|
|
396
|
-
# keras pads unequal padding more in front, so padding
|
|
397
|
-
# too large should be ok.
|
|
398
|
-
# Not padding in time so that cropped training makes sense
|
|
399
|
-
# https://stackoverflow.com/questions/43994604/padding-with-even-kernel-size-in-a-convolutional-layer-in-keras-theano
|
|
400
|
-
|
|
401
|
-
self.add_module(
|
|
402
|
-
"conv_2",
|
|
403
|
-
nn.Conv2d(
|
|
404
|
-
1,
|
|
405
|
-
n_filters_2,
|
|
406
|
-
self.second_kernel_size,
|
|
407
|
-
stride=1,
|
|
408
|
-
padding=(self.second_kernel_size[0] // 2, 0),
|
|
409
|
-
bias=True,
|
|
410
|
-
),
|
|
411
|
-
)
|
|
412
|
-
self.add_module(
|
|
413
|
-
"bnorm_2",
|
|
414
|
-
nn.BatchNorm2d(n_filters_2, momentum=0.01, affine=True, eps=1e-3),
|
|
415
|
-
)
|
|
416
|
-
self.add_module("elu_2", activation())
|
|
417
|
-
self.add_module("pool_2", pool_class(kernel_size=(2, 4), stride=(2, 4)))
|
|
418
|
-
self.add_module("drop_2", nn.Dropout(p=self.drop_prob))
|
|
419
|
-
|
|
420
|
-
n_filters_3 = 4
|
|
421
|
-
self.add_module(
|
|
422
|
-
"conv_3",
|
|
423
|
-
nn.Conv2d(
|
|
424
|
-
n_filters_2,
|
|
425
|
-
n_filters_3,
|
|
426
|
-
self.third_kernel_size,
|
|
427
|
-
stride=1,
|
|
428
|
-
padding=(self.third_kernel_size[0] // 2, 0),
|
|
429
|
-
bias=True,
|
|
430
|
-
),
|
|
431
|
-
)
|
|
432
|
-
self.add_module(
|
|
433
|
-
"bnorm_3",
|
|
434
|
-
nn.BatchNorm2d(n_filters_3, momentum=0.01, affine=True, eps=1e-3),
|
|
435
|
-
)
|
|
436
|
-
self.add_module("elu_3", activation())
|
|
437
|
-
self.add_module("pool_3", pool_class(kernel_size=(2, 4), stride=(2, 4)))
|
|
438
|
-
self.add_module("drop_3", nn.Dropout(p=self.drop_prob))
|
|
439
|
-
|
|
440
|
-
output_shape = self.get_output_shape()
|
|
441
|
-
n_out_virtual_chans = output_shape[2]
|
|
442
|
-
|
|
443
|
-
if self.final_conv_length == "auto":
|
|
444
|
-
n_out_time = output_shape[3]
|
|
445
|
-
self.final_conv_length = n_out_time
|
|
446
|
-
|
|
447
|
-
# Incorporating classification module and subsequent ones in one final layer
|
|
448
|
-
module = nn.Sequential()
|
|
449
|
-
|
|
450
|
-
module.add_module(
|
|
451
|
-
"conv_classifier",
|
|
452
|
-
nn.Conv2d(
|
|
453
|
-
n_filters_3,
|
|
454
|
-
self.n_outputs,
|
|
455
|
-
(n_out_virtual_chans, self.final_conv_length),
|
|
456
|
-
bias=True,
|
|
457
|
-
),
|
|
458
|
-
)
|
|
459
|
-
|
|
460
|
-
# Transpose back to the logic of braindecode,
|
|
461
|
-
|
|
462
|
-
# so time in third dimension (axis=2)
|
|
463
|
-
module.add_module(
|
|
464
|
-
"permute_2",
|
|
465
|
-
Rearrange("batch x y z -> batch x z y"),
|
|
466
|
-
)
|
|
467
|
-
|
|
468
|
-
module.add_module("squeeze", SqueezeFinalOutput())
|
|
469
|
-
|
|
470
|
-
self.add_module("final_layer", module)
|
|
353
|
+
@deprecated(
|
|
354
|
+
"`EEGNetv4` was renamed to `EEGNet` in v1.12; this alias will be removed in v1.14."
|
|
355
|
+
)
|
|
356
|
+
class EEGNetv4(EEGNet):
|
|
357
|
+
"""Deprecated alias for EEGNet."""
|
|
471
358
|
|
|
472
|
-
|
|
359
|
+
pass
|
braindecode/models/eegnex.py
CHANGED
|
@@ -16,9 +16,122 @@ from braindecode.modules import Conv2dWithConstraint, LinearWithConstraint
|
|
|
16
16
|
class EEGNeX(EEGModuleMixin, nn.Module):
|
|
17
17
|
"""EEGNeX model from Chen et al. (2024) [eegnex]_.
|
|
18
18
|
|
|
19
|
+
:bdg-success:`Convolution`
|
|
20
|
+
|
|
19
21
|
.. figure:: https://braindecode.org/dev/_static/model/eegnex.jpg
|
|
20
22
|
:align: center
|
|
21
23
|
:alt: EEGNeX Architecture
|
|
24
|
+
:width: 620px
|
|
25
|
+
|
|
26
|
+
.. rubric:: Architectural Overview
|
|
27
|
+
|
|
28
|
+
EEGNeX is a **purely convolutional** architecture that refines the EEGNet-style stem
|
|
29
|
+
and deepens the temporal stack with **dilated temporal convolutions**. The end-to-end
|
|
30
|
+
flow is:
|
|
31
|
+
|
|
32
|
+
- (i) **Block-1/2**: two temporal convolutions ``(1 x L)`` with BN refine a
|
|
33
|
+
learned FIR-like *temporal filter bank* (no pooling yet);
|
|
34
|
+
- (ii) **Block-3**: depthwise **spatial** convolution across electrodes
|
|
35
|
+
``(n_chans x 1)`` with max-norm constraint, followed by ELU → AvgPool (time) → Dropout;
|
|
36
|
+
- (iii) **Block-4/5**: two additional **temporal** convolutions with increasing **dilation**
|
|
37
|
+
to expand the receptive field; the last block applies ELU → AvgPool → Dropout → Flatten;
|
|
38
|
+
- (iv) **Classifier**: a max-norm–constrained linear layer.
|
|
39
|
+
|
|
40
|
+
The published work positions EEGNeX as a compact, conv-only alternative that consistently
|
|
41
|
+
outperforms prior baselines across MOABB-style benchmarks, with the popular
|
|
42
|
+
“EEGNeX-8,32” shorthand denoting *8 temporal filters* and *kernel length 32*.
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
.. rubric:: Macro Components
|
|
46
|
+
|
|
47
|
+
- **Block-1 / Block-2 — Temporal filter (learned).**
|
|
48
|
+
|
|
49
|
+
- *Operations.*
|
|
50
|
+
- :class:`torch.nn.Conv2d` with kernels ``(1, L)``
|
|
51
|
+
- :class:`torch.nn.BatchNorm2d` (no nonlinearity until Block-3, mirroring a linear FIR analysis stage).
|
|
52
|
+
These layers set up frequency-selective detectors before spatial mixing.
|
|
53
|
+
|
|
54
|
+
- *Interpretability.* Kernels can be inspected as FIR filters; two stacked temporal
|
|
55
|
+
convs allow longer effective kernels without parameter blow-up.
|
|
56
|
+
|
|
57
|
+
- **Block-3 — Spatial projection + condensation.**
|
|
58
|
+
|
|
59
|
+
- *Operations.*
|
|
60
|
+
- :class:`braindecode.modules.Conv2dWithConstraint` with kernel``(n_chans, 1)``
|
|
61
|
+
and ``groups = filter_2`` (depthwise across filters)
|
|
62
|
+
- :class:`torch.nn.BatchNorm2d`
|
|
63
|
+
- :class:`torch.nn.ELU`
|
|
64
|
+
- :class:`torch.nn.AvgPool2d` (time)
|
|
65
|
+
- :class:`torch.nn.Dropout`.
|
|
66
|
+
|
|
67
|
+
**Role**: Learns per-filter spatial patterns over the **full montage** while temporal
|
|
68
|
+
pooling stabilizes and compresses features; max-norm encourages well-behaved spatial
|
|
69
|
+
weights similar to EEGNet practice.
|
|
70
|
+
|
|
71
|
+
- **Block-4 / Block-5 — Dilated temporal integration.**
|
|
72
|
+
|
|
73
|
+
- *Operations.*
|
|
74
|
+
- :class:`torch.nn.Conv2d` with kernels ``(1, k)`` and **dilations**
|
|
75
|
+
(e.g., 2 then 4);
|
|
76
|
+
- :class:`torch.nn.BatchNorm2d`
|
|
77
|
+
- :class:`torch.nn.ELU`
|
|
78
|
+
- :class:`torch.nn.AvgPool2d` (time)
|
|
79
|
+
- :class:`torch.nn.Dropout`
|
|
80
|
+
- :class:`torch.nn.Flatten`.
|
|
81
|
+
|
|
82
|
+
**Role**: Expands the temporal receptive field efficiently to capture rhythms and
|
|
83
|
+
long-range context after condensation.
|
|
84
|
+
|
|
85
|
+
- **Final Classifier — Max-norm linear.**
|
|
86
|
+
|
|
87
|
+
- *Operations.*
|
|
88
|
+
- :class:`braindecode.modules.LinearWithConstraint` maps the flattened
|
|
89
|
+
vector to the target classes; the max-norm constraint regularizes the readout.
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
.. rubric:: Convolutional Details
|
|
93
|
+
|
|
94
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
95
|
+
Blocks 1-2 learn the primary filter bank (oscillations/transients), while Blocks 4-5
|
|
96
|
+
use **dilation** to integrate over longer horizons without extra pooling. The final
|
|
97
|
+
AvgPool in Block-5 sets the output token rate and helps noise suppression.
|
|
98
|
+
|
|
99
|
+
- **Spatial (how electrodes are processed).**
|
|
100
|
+
A *single* depthwise spatial conv (Block-3) spans the entire electrode set
|
|
101
|
+
(kernel ``(n_chans, 1)``), producing per-temporal-filter topographies; no cross-filter
|
|
102
|
+
mixing occurs at this stage, aiding interpretability.
|
|
103
|
+
|
|
104
|
+
- **Spectral (how frequency content is captured).**
|
|
105
|
+
Frequency selectivity emerges from the learned temporal kernels; dilation broadens effective
|
|
106
|
+
bandwidth coverage by composing multiple scales.
|
|
107
|
+
|
|
108
|
+
.. rubric:: Additional Mechanisms
|
|
109
|
+
|
|
110
|
+
- **EEGNeX-8,32 naming.** “8,32” indicates *8 temporal filters* and *kernel length 32*,
|
|
111
|
+
reflecting the paper's ablation path from EEGNet-8,2 toward thicker temporal kernels
|
|
112
|
+
and a deeper conv stack.
|
|
113
|
+
- **Max-norm constraints.** Spatial (Block-3) and final linear layers use max-norm
|
|
114
|
+
regularization—standard in EEG CNNs—to reduce overfitting and encourage stable spatial
|
|
115
|
+
patterns.
|
|
116
|
+
|
|
117
|
+
.. rubric:: Usage and Configuration
|
|
118
|
+
|
|
119
|
+
- **Kernel schedule.** Start with the canonical **EEGNeX-8,32** (``filter_1=8``,
|
|
120
|
+
``kernel_block_1_2=32``) and keep **Block-3** depth multiplier modest (e.g., 2) to match
|
|
121
|
+
the paper's “pure conv” profile.
|
|
122
|
+
- **Pooling vs. dilation.** Use pooling in Blocks 3 and 5 to control compute and variance;
|
|
123
|
+
increase dilations (Blocks 4-5) to widen temporal context when windows are short.
|
|
124
|
+
- **Regularization.** Combine dropout (Blocks 3 & 5) with max-norm on spatial and
|
|
125
|
+
classifier layers; prefer ELU activations for stable training on small EEG datasets.
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
- The braindecode implementation follows the paper's conv-only design with five blocks
|
|
129
|
+
and reproduces the depthwise spatial step and dilated temporal stack. See the class
|
|
130
|
+
reference for exact kernel sizes, dilations, and pooling defaults. You can check the
|
|
131
|
+
original implementation at [EEGNexCode]_.
|
|
132
|
+
|
|
133
|
+
.. versionadded:: 1.1
|
|
134
|
+
|
|
22
135
|
|
|
23
136
|
Parameters
|
|
24
137
|
----------
|
|
@@ -45,12 +158,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
|
|
|
45
158
|
avg_pool_block5 : tuple[int, int], optional
|
|
46
159
|
Pooling size for block 5. Default is (1, 8).
|
|
47
160
|
|
|
48
|
-
Notes
|
|
49
|
-
-----
|
|
50
|
-
This implementation is not guaranteed to be correct, has not been checked
|
|
51
|
-
by original authors, only reimplemented from the paper description and
|
|
52
|
-
source code in tensorflow [EEGNexCode]_.
|
|
53
|
-
|
|
54
161
|
References
|
|
55
162
|
----------
|
|
56
163
|
.. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
|
|
@@ -21,6 +21,8 @@ from braindecode.models.base import EEGModuleMixin
|
|
|
21
21
|
class EEGSimpleConv(EEGModuleMixin, torch.nn.Module):
|
|
22
22
|
"""EEGSimpleConv from Ouahidi, YE et al. (2023) [Yassine2023]_.
|
|
23
23
|
|
|
24
|
+
:bdg-success:`Convolution`
|
|
25
|
+
|
|
24
26
|
.. figure:: https://raw.githubusercontent.com/elouayas/EEGSimpleConv/refs/heads/main/architecture.png
|
|
25
27
|
:align: center
|
|
26
28
|
:alt: EEGSimpleConv Architecture
|
braindecode/models/eegtcnet.py
CHANGED
|
@@ -15,6 +15,8 @@ from braindecode.modules import Chomp1d, MaxNormLinear
|
|
|
15
15
|
class EEGTCNet(EEGModuleMixin, nn.Module):
|
|
16
16
|
"""EEGTCNet model from Ingolfsson et al. (2020) [ingolfsson2020]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution` :bdg-secondary:`Recurrent`
|
|
19
|
+
|
|
18
20
|
.. figure:: https://braindecode.org/dev/_static/model/eegtcnet.jpg
|
|
19
21
|
:align: center
|
|
20
22
|
:alt: EEGTCNet Architecture
|
|
@@ -157,7 +159,7 @@ class EEGTCNet(EEGModuleMixin, nn.Module):
|
|
|
157
159
|
class _EEGNetTC(nn.Module):
|
|
158
160
|
"""EEGNet Temporal Convolutional Network (TCN) block.
|
|
159
161
|
|
|
160
|
-
The main difference from our
|
|
162
|
+
The main difference from our :class:`EEGNet` (braindecode) implementation is the
|
|
161
163
|
kernel and dimensional order. Because of this, we decided to keep this
|
|
162
164
|
implementation in a future issue; we will re-evaluate if it is necessary
|
|
163
165
|
to maintain this separate implementation.
|
braindecode/models/fbcnet.py
CHANGED
|
@@ -31,6 +31,8 @@ _valid_layers = {
|
|
|
31
31
|
class FBCNet(EEGModuleMixin, nn.Module):
|
|
32
32
|
"""FBCNet from Mane, R et al (2021) [fbcnet2021]_.
|
|
33
33
|
|
|
34
|
+
:bdg-success:`Convolution` :bdg-primary:`Filterbank`
|
|
35
|
+
|
|
34
36
|
.. figure:: https://raw.githubusercontent.com/ravikiran-mane/FBCNet/refs/heads/master/FBCNet-V2.png
|
|
35
37
|
:align: center
|
|
36
38
|
:alt: FBCNet Architecture
|
|
@@ -67,7 +69,9 @@ class FBCNet(EEGModuleMixin, nn.Module):
|
|
|
67
69
|
linear_max_norm : float, default=0.5
|
|
68
70
|
Maximum norm for the final linear layer.
|
|
69
71
|
filter_parameters: dict, default None
|
|
70
|
-
|
|
72
|
+
Dictionary of parameters to use for the FilterBankLayer.
|
|
73
|
+
If None, a default Chebyshev Type II filter with transition bandwidth of
|
|
74
|
+
2 Hz and stop-band ripple of 30 dB will be used.
|
|
71
75
|
|
|
72
76
|
References
|
|
73
77
|
----------
|
|
@@ -18,6 +18,8 @@ from braindecode.modules import (
|
|
|
18
18
|
class FBLightConvNet(EEGModuleMixin, nn.Module):
|
|
19
19
|
"""LightConvNet from Ma, X et al (2023) [lightconvnet]_.
|
|
20
20
|
|
|
21
|
+
:bdg-success:`Convolution` :bdg-primary:`Filterbank`
|
|
22
|
+
|
|
21
23
|
.. figure:: https://raw.githubusercontent.com/Ma-Xinzhi/LightConvNet/refs/heads/main/network_architecture.png
|
|
22
24
|
:align: center
|
|
23
25
|
:alt: LightConvNet Neural Network
|
braindecode/models/fbmsnet.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
from typing import
|
|
3
|
+
from typing import Any, Sequence
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
from einops.layers.torch import Rearrange
|
|
@@ -19,6 +19,8 @@ from braindecode.modules import (
|
|
|
19
19
|
class FBMSNet(EEGModuleMixin, nn.Module):
|
|
20
20
|
"""FBMSNet from Liu et al (2022) [fbmsnet]_.
|
|
21
21
|
|
|
22
|
+
:bdg-success:`Convolution` :bdg-primary:`Filterbank`
|
|
23
|
+
|
|
22
24
|
.. figure:: https://raw.githubusercontent.com/Want2Vanish/FBMSNet/refs/heads/main/FBMSNet.png
|
|
23
25
|
:align: center
|
|
24
26
|
:alt: FBMSNet Architecture
|
|
@@ -55,16 +57,28 @@ class FBMSNet(EEGModuleMixin, nn.Module):
|
|
|
55
57
|
----------
|
|
56
58
|
n_bands : int, default=9
|
|
57
59
|
Number of input channels (e.g., number of frequency bands).
|
|
58
|
-
stride_factor : int, default=4
|
|
59
|
-
Stride factor for temporal segmentation.
|
|
60
|
-
temporal_layer : str, default='LogVarLayer'
|
|
61
|
-
Temporal aggregation layer to use.
|
|
62
60
|
n_filters_spat : int, default=36
|
|
63
61
|
Number of output channels from the MixedConv2d layer.
|
|
62
|
+
temporal_layer : str, default='LogVarLayer'
|
|
63
|
+
Temporal aggregation layer to use.
|
|
64
|
+
n_dim: int, default=3
|
|
65
|
+
Dimension of the temporal reduction layer.
|
|
66
|
+
stride_factor : int, default=4
|
|
67
|
+
Stride factor for temporal segmentation.
|
|
64
68
|
dilatability : int, default=8
|
|
65
69
|
Expansion factor for the spatial convolution block.
|
|
66
70
|
activation : nn.Module, default=nn.SiLU
|
|
67
71
|
Activation function class to apply.
|
|
72
|
+
kernels_weights : Sequence[int], default=(15, 31, 63, 125)
|
|
73
|
+
Kernel sizes for the MixedConv2d layer.
|
|
74
|
+
cnn_max_norm : float, default=2
|
|
75
|
+
Maximum norm constraint for the convolutional layers.
|
|
76
|
+
linear_max_norm : float, default=0.5
|
|
77
|
+
Maximum norm constraint for the linear layers.
|
|
78
|
+
filter_parameters : dict, default=None
|
|
79
|
+
Dictionary of parameters to use for the FilterBankLayer.
|
|
80
|
+
If None, a default Chebyshev Type II filter with transition bandwidth of
|
|
81
|
+
2 Hz and stop-band ripple of 30 dB will be used.
|
|
68
82
|
verbose: bool, default False
|
|
69
83
|
Verbose parameter to create the filter using mne.
|
|
70
84
|
|
|
@@ -101,7 +115,7 @@ class FBMSNet(EEGModuleMixin, nn.Module):
|
|
|
101
115
|
cnn_max_norm: float = 2,
|
|
102
116
|
linear_max_norm: float = 0.5,
|
|
103
117
|
verbose: bool = False,
|
|
104
|
-
filter_parameters:
|
|
118
|
+
filter_parameters: dict[Any, Any] | None = None,
|
|
105
119
|
):
|
|
106
120
|
super().__init__(
|
|
107
121
|
n_chans=n_chans,
|
braindecode/models/ifnet.py
CHANGED
|
@@ -31,6 +31,8 @@ from braindecode.modules import (
|
|
|
31
31
|
class IFNet(EEGModuleMixin, nn.Module):
|
|
32
32
|
"""IFNetV2 from Wang J et al (2023) [ifnet]_.
|
|
33
33
|
|
|
34
|
+
:bdg-success:`Convolution` :bdg-primary:`Filterbank`
|
|
35
|
+
|
|
34
36
|
.. figure:: https://raw.githubusercontent.com/Jiaheng-Wang/IFNet/main/IFNet.png
|
|
35
37
|
:align: center
|
|
36
38
|
:alt: IFNetV2 Architecture
|