braindecode 1.2.0.dev184328194__py3-none-any.whl → 1.3.0.dev168496007__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (80) hide show
  1. braindecode/augmentation/base.py +1 -1
  2. braindecode/augmentation/functional.py +154 -54
  3. braindecode/augmentation/transforms.py +2 -2
  4. braindecode/datasets/__init__.py +10 -2
  5. braindecode/datasets/base.py +116 -152
  6. braindecode/datasets/bcicomp.py +4 -4
  7. braindecode/datasets/bids.py +3 -3
  8. braindecode/datasets/experimental.py +218 -0
  9. braindecode/datasets/mne.py +3 -5
  10. braindecode/datasets/moabb.py +2 -2
  11. braindecode/datasets/nmt.py +2 -2
  12. braindecode/datasets/sleep_physio_challe_18.py +4 -3
  13. braindecode/datasets/sleep_physionet.py +2 -2
  14. braindecode/datasets/tuh.py +2 -2
  15. braindecode/datasets/xy.py +2 -2
  16. braindecode/datautil/serialization.py +18 -13
  17. braindecode/eegneuralnet.py +2 -0
  18. braindecode/functional/functions.py +6 -2
  19. braindecode/functional/initialization.py +2 -3
  20. braindecode/models/__init__.py +12 -8
  21. braindecode/models/atcnet.py +156 -17
  22. braindecode/models/attentionbasenet.py +148 -16
  23. braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +14 -2
  24. braindecode/models/base.py +280 -2
  25. braindecode/models/bendr.py +469 -0
  26. braindecode/models/biot.py +3 -1
  27. braindecode/models/contrawr.py +2 -0
  28. braindecode/models/ctnet.py +9 -4
  29. braindecode/models/deep4.py +6 -2
  30. braindecode/models/deepsleepnet.py +127 -5
  31. braindecode/models/eegconformer.py +114 -15
  32. braindecode/models/eeginception_erp.py +82 -7
  33. braindecode/models/eeginception_mi.py +2 -0
  34. braindecode/models/eegitnet.py +2 -0
  35. braindecode/models/eegminer.py +2 -0
  36. braindecode/models/eegnet.py +64 -177
  37. braindecode/models/eegnex.py +113 -6
  38. braindecode/models/eegsimpleconv.py +2 -0
  39. braindecode/models/eegtcnet.py +3 -1
  40. braindecode/models/fbcnet.py +5 -1
  41. braindecode/models/fblightconvnet.py +2 -0
  42. braindecode/models/fbmsnet.py +20 -6
  43. braindecode/models/ifnet.py +2 -0
  44. braindecode/models/labram.py +193 -87
  45. braindecode/models/msvtnet.py +2 -0
  46. braindecode/models/patchedtransformer.py +640 -0
  47. braindecode/models/sccnet.py +81 -8
  48. braindecode/models/shallow_fbcsp.py +2 -0
  49. braindecode/models/signal_jepa.py +111 -27
  50. braindecode/models/sinc_shallow.py +12 -9
  51. braindecode/models/sleep_stager_blanco_2020.py +2 -0
  52. braindecode/models/sleep_stager_chambon_2018.py +2 -0
  53. braindecode/models/sparcnet.py +2 -0
  54. braindecode/models/sstdpn.py +869 -0
  55. braindecode/models/summary.csv +42 -41
  56. braindecode/models/syncnet.py +2 -0
  57. braindecode/models/tcn.py +2 -0
  58. braindecode/models/tidnet.py +2 -0
  59. braindecode/models/tsinception.py +15 -3
  60. braindecode/models/usleep.py +108 -9
  61. braindecode/models/util.py +8 -5
  62. braindecode/modules/attention.py +10 -10
  63. braindecode/modules/blocks.py +3 -3
  64. braindecode/modules/filter.py +2 -9
  65. braindecode/modules/layers.py +18 -17
  66. braindecode/preprocessing/__init__.py +24 -0
  67. braindecode/preprocessing/eegprep_preprocess.py +1202 -0
  68. braindecode/preprocessing/preprocess.py +42 -39
  69. braindecode/preprocessing/util.py +166 -0
  70. braindecode/preprocessing/windowers.py +26 -20
  71. braindecode/samplers/base.py +8 -8
  72. braindecode/version.py +1 -1
  73. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/METADATA +12 -3
  74. braindecode-1.3.0.dev168496007.dist-info/RECORD +106 -0
  75. braindecode/models/eegresnet.py +0 -362
  76. braindecode-1.2.0.dev184328194.dist-info/RECORD +0 -101
  77. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/WHEEL +0 -0
  78. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/licenses/LICENSE.txt +0 -0
  79. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/licenses/NOTICE.txt +0 -0
  80. {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/top_level.txt +0 -0
@@ -6,7 +6,7 @@ from __future__ import annotations
6
6
  from typing import Dict, Optional
7
7
 
8
8
  from einops.layers.torch import Rearrange
9
- from mne.utils import warn
9
+ from mne.utils import deprecated, warn
10
10
  from torch import nn
11
11
 
12
12
  from braindecode.functional import glorot_weight_zero_bias
@@ -19,14 +19,62 @@ from braindecode.modules import (
19
19
  )
20
20
 
21
21
 
22
- class EEGNetv4(EEGModuleMixin, nn.Sequential):
23
- """EEGNet v4 model from Lawhern et al. (2018) [EEGNet4]_.
22
+ class EEGNet(EEGModuleMixin, nn.Sequential):
23
+ """EEGNet model from Lawhern et al. (2018) [Lawhern2018]_.
24
+
25
+ :bdg-success:`Convolution`
24
26
 
25
27
  .. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
26
- :align: center
27
- :alt: EEGNet4 Architecture
28
+ :align: center
29
+ :alt: EEGNet Architecture
30
+ :width: 600px
31
+
32
+ .. rubric:: Architectural Overview
33
+
34
+ EEGNet is a compact convolutional network designed for EEG decoding with a pipeline that mirrors classical EEG processing:
35
+ - (i) learn temporal frequency-selective filters,
36
+ - (ii) learn spatial filters for those frequencies, and
37
+ - (iii) condense features with depthwise-separable convolutions before a lightweight classifier.
38
+
39
+ The architecture is deliberately small (temporal convolutional and spatial patterns) [Lawhern2018]_.
40
+
41
+ .. rubric:: Macro Components
42
+
43
+ - **Temporal convolution**
44
+ Temporal convolution applied per channel; learns ``F1`` kernels that act as data-driven band-pass filters.
45
+ - **Depthwise Spatial Filtering.**
46
+ Depthwise convolution spanning the channel dimension with ``groups = F1``,
47
+ yielding ``D`` spatial filters for each temporal filter (no cross-filter mixing).
48
+ - **Norm-Nonlinearity-Pooling (+ dropout).**
49
+ Batch normalization → ELU → temporal pooling, with dropout.
50
+ - **Depthwise-Separable Convolution Block.**
51
+ (a) depthwise temporal conv to refine temporal structure;
52
+ (b) pointwise 1x1 conv to mix feature maps into ``F2`` combinations.
53
+ - **Classifier Head.**
54
+ Lightweight 1x1 conv or dense layer (often with max-norm constraint).
55
+
56
+ .. rubric:: Convolutional Details
57
+
58
+ - **Temporal.** The initial temporal convs serve as a *learned filter bank*:
59
+ long 1-D kernels (implemented as 2-D with singleton spatial extent) emphasize oscillatory bands and transients.
60
+ Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each feature's spectrum [Lawhern2018]_.
61
+
62
+ - **Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
63
+ With ``groups = F1``, each temporal filter learns its own set of ``D`` spatial projections—akin to CSP, learned end-to-end and
64
+ typically regularized with max-norm.
65
+
66
+ - **Spectral.** No explicit Fourier/wavelet transform is used. Frequency structure
67
+ is captured implicitly by the temporal filter bank; later depthwise temporal kernels act as short-time integrators/refiners.
68
+
69
+ .. rubric:: Additional Comments
70
+
71
+ - **Filter-bank structure:** Parallel temporal kernels (``F1``) emulate classical filter banks; pairing them with frequency-specific spatial filters
72
+ yields features mappable to rhythms and topographies.
73
+ - **Depthwise & separable convs:** Parameter-efficient decomposition (depthwise + pointwise) retains power while limiting overfitting
74
+ [Chollet2017]_ and keeps temporal vs. mixing steps interpretable.
75
+ - **Regularization:** Batch norm, dropout, pooling, and optional max-norm on spatial kernels aid stability on small EEG datasets.
76
+ - The v4 means the version 4 at the arxiv paper [Lawhern2018]_.
28
77
 
29
- See details in [EEGNet4]_.
30
78
 
31
79
  Parameters
32
80
  ----------
@@ -68,10 +116,13 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
68
116
 
69
117
  References
70
118
  ----------
71
- .. [EEGNet4] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
119
+ .. [Lawhern2018] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
72
120
  Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional
73
121
  neural network for EEG-based brain–computer interfaces. Journal of
74
122
  neural engineering, 15(5), 056013.
123
+ .. [Chollet2017] Chollet, F., *Xception: Deep Learning with Depthwise Separable
124
+ Convolutions*, CVPR, 2017.
125
+
75
126
  """
76
127
 
77
128
  def __init__(
@@ -299,174 +350,10 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
299
350
  glorot_weight_zero_bias(self)
300
351
 
301
352
 
302
- class EEGNetv1(EEGModuleMixin, nn.Sequential):
303
- """EEGNet model from Lawhern et al. 2016 from [EEGNet]_.
304
-
305
- See details in [EEGNet]_.
306
-
307
- Parameters
308
- ----------
309
- in_chans :
310
- Alias for n_chans.
311
- n_classes:
312
- Alias for n_outputs.
313
- input_window_samples :
314
- Alias for n_times.
315
- activation: nn.Module, default=nn.ELU
316
- Activation function class to apply. Should be a PyTorch activation
317
- module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
318
-
319
- Notes
320
- -----
321
- This implementation is not guaranteed to be correct, has not been checked
322
- by original authors, only reimplemented from the paper description.
323
-
324
- References
325
- ----------
326
- .. [EEGNet] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
327
- S. M., Hung, C. P., & Lance, B. J. (2016).
328
- EEGNet: A Compact Convolutional Network for EEG-based
329
- Brain-Computer Interfaces.
330
- arXiv preprint arXiv:1611.08024.
331
- """
332
-
333
- def __init__(
334
- self,
335
- n_chans=None,
336
- n_outputs=None,
337
- n_times=None,
338
- final_conv_length="auto",
339
- pool_mode="max",
340
- second_kernel_size=(2, 32),
341
- third_kernel_size=(8, 4),
342
- drop_prob=0.25,
343
- activation: nn.Module = nn.ELU,
344
- chs_info=None,
345
- input_window_seconds=None,
346
- sfreq=None,
347
- ):
348
- super().__init__(
349
- n_outputs=n_outputs,
350
- n_chans=n_chans,
351
- chs_info=chs_info,
352
- n_times=n_times,
353
- input_window_seconds=input_window_seconds,
354
- sfreq=sfreq,
355
- )
356
- del n_outputs, n_chans, chs_info, n_times, input_window_seconds, sfreq
357
- warn(
358
- "The class EEGNetv1 is deprecated and will be removed in the "
359
- "release 1.0 of braindecode. Please use "
360
- "braindecode.models.EEGNetv4 instead in the future.",
361
- DeprecationWarning,
362
- )
363
- if final_conv_length == "auto":
364
- assert self.n_times is not None
365
- self.final_conv_length = final_conv_length
366
- self.pool_mode = pool_mode
367
- self.second_kernel_size = second_kernel_size
368
- self.third_kernel_size = third_kernel_size
369
- self.drop_prob = drop_prob
370
- # For the load_state_dict
371
- # When padronize all layers,
372
- # add the old's parameters here
373
- self.mapping = {
374
- "conv_classifier.weight": "final_layer.conv_classifier.weight",
375
- "conv_classifier.bias": "final_layer.conv_classifier.bias",
376
- }
377
-
378
- pool_class = dict(max=nn.MaxPool2d, mean=nn.AvgPool2d)[self.pool_mode]
379
- self.add_module("ensuredims", Ensure4d())
380
- n_filters_1 = 16
381
- self.add_module(
382
- "conv_1",
383
- nn.Conv2d(self.n_chans, n_filters_1, (1, 1), stride=1, bias=True),
384
- )
385
- self.add_module(
386
- "bnorm_1",
387
- nn.BatchNorm2d(n_filters_1, momentum=0.01, affine=True, eps=1e-3),
388
- )
389
- self.add_module("elu_1", activation())
390
- # transpose to examples x 1 x (virtual, not EEG) channels x time
391
- self.add_module("permute_1", Rearrange("batch x y z -> batch z x y"))
392
-
393
- self.add_module("drop_1", nn.Dropout(p=self.drop_prob))
394
-
395
- n_filters_2 = 4
396
- # keras pads unequal padding more in front, so padding
397
- # too large should be ok.
398
- # Not padding in time so that cropped training makes sense
399
- # https://stackoverflow.com/questions/43994604/padding-with-even-kernel-size-in-a-convolutional-layer-in-keras-theano
400
-
401
- self.add_module(
402
- "conv_2",
403
- nn.Conv2d(
404
- 1,
405
- n_filters_2,
406
- self.second_kernel_size,
407
- stride=1,
408
- padding=(self.second_kernel_size[0] // 2, 0),
409
- bias=True,
410
- ),
411
- )
412
- self.add_module(
413
- "bnorm_2",
414
- nn.BatchNorm2d(n_filters_2, momentum=0.01, affine=True, eps=1e-3),
415
- )
416
- self.add_module("elu_2", activation())
417
- self.add_module("pool_2", pool_class(kernel_size=(2, 4), stride=(2, 4)))
418
- self.add_module("drop_2", nn.Dropout(p=self.drop_prob))
419
-
420
- n_filters_3 = 4
421
- self.add_module(
422
- "conv_3",
423
- nn.Conv2d(
424
- n_filters_2,
425
- n_filters_3,
426
- self.third_kernel_size,
427
- stride=1,
428
- padding=(self.third_kernel_size[0] // 2, 0),
429
- bias=True,
430
- ),
431
- )
432
- self.add_module(
433
- "bnorm_3",
434
- nn.BatchNorm2d(n_filters_3, momentum=0.01, affine=True, eps=1e-3),
435
- )
436
- self.add_module("elu_3", activation())
437
- self.add_module("pool_3", pool_class(kernel_size=(2, 4), stride=(2, 4)))
438
- self.add_module("drop_3", nn.Dropout(p=self.drop_prob))
439
-
440
- output_shape = self.get_output_shape()
441
- n_out_virtual_chans = output_shape[2]
442
-
443
- if self.final_conv_length == "auto":
444
- n_out_time = output_shape[3]
445
- self.final_conv_length = n_out_time
446
-
447
- # Incorporating classification module and subsequent ones in one final layer
448
- module = nn.Sequential()
449
-
450
- module.add_module(
451
- "conv_classifier",
452
- nn.Conv2d(
453
- n_filters_3,
454
- self.n_outputs,
455
- (n_out_virtual_chans, self.final_conv_length),
456
- bias=True,
457
- ),
458
- )
459
-
460
- # Transpose back to the logic of braindecode,
461
-
462
- # so time in third dimension (axis=2)
463
- module.add_module(
464
- "permute_2",
465
- Rearrange("batch x y z -> batch x z y"),
466
- )
467
-
468
- module.add_module("squeeze", SqueezeFinalOutput())
469
-
470
- self.add_module("final_layer", module)
353
+ @deprecated(
354
+ "`EEGNetv4` was renamed to `EEGNet` in v1.12; this alias will be removed in v1.14."
355
+ )
356
+ class EEGNetv4(EEGNet):
357
+ """Deprecated alias for EEGNet."""
471
358
 
472
- glorot_weight_zero_bias(self)
359
+ pass
@@ -16,9 +16,122 @@ from braindecode.modules import Conv2dWithConstraint, LinearWithConstraint
16
16
  class EEGNeX(EEGModuleMixin, nn.Module):
17
17
  """EEGNeX model from Chen et al. (2024) [eegnex]_.
18
18
 
19
+ :bdg-success:`Convolution`
20
+
19
21
  .. figure:: https://braindecode.org/dev/_static/model/eegnex.jpg
20
22
  :align: center
21
23
  :alt: EEGNeX Architecture
24
+ :width: 620px
25
+
26
+ .. rubric:: Architectural Overview
27
+
28
+ EEGNeX is a **purely convolutional** architecture that refines the EEGNet-style stem
29
+ and deepens the temporal stack with **dilated temporal convolutions**. The end-to-end
30
+ flow is:
31
+
32
+ - (i) **Block-1/2**: two temporal convolutions ``(1 x L)`` with BN refine a
33
+ learned FIR-like *temporal filter bank* (no pooling yet);
34
+ - (ii) **Block-3**: depthwise **spatial** convolution across electrodes
35
+ ``(n_chans x 1)`` with max-norm constraint, followed by ELU → AvgPool (time) → Dropout;
36
+ - (iii) **Block-4/5**: two additional **temporal** convolutions with increasing **dilation**
37
+ to expand the receptive field; the last block applies ELU → AvgPool → Dropout → Flatten;
38
+ - (iv) **Classifier**: a max-norm–constrained linear layer.
39
+
40
+ The published work positions EEGNeX as a compact, conv-only alternative that consistently
41
+ outperforms prior baselines across MOABB-style benchmarks, with the popular
42
+ “EEGNeX-8,32” shorthand denoting *8 temporal filters* and *kernel length 32*.
43
+
44
+
45
+ .. rubric:: Macro Components
46
+
47
+ - **Block-1 / Block-2 — Temporal filter (learned).**
48
+
49
+ - *Operations.*
50
+ - :class:`torch.nn.Conv2d` with kernels ``(1, L)``
51
+ - :class:`torch.nn.BatchNorm2d` (no nonlinearity until Block-3, mirroring a linear FIR analysis stage).
52
+ These layers set up frequency-selective detectors before spatial mixing.
53
+
54
+ - *Interpretability.* Kernels can be inspected as FIR filters; two stacked temporal
55
+ convs allow longer effective kernels without parameter blow-up.
56
+
57
+ - **Block-3 — Spatial projection + condensation.**
58
+
59
+ - *Operations.*
60
+ - :class:`braindecode.modules.Conv2dWithConstraint` with kernel``(n_chans, 1)``
61
+ and ``groups = filter_2`` (depthwise across filters)
62
+ - :class:`torch.nn.BatchNorm2d`
63
+ - :class:`torch.nn.ELU`
64
+ - :class:`torch.nn.AvgPool2d` (time)
65
+ - :class:`torch.nn.Dropout`.
66
+
67
+ **Role**: Learns per-filter spatial patterns over the **full montage** while temporal
68
+ pooling stabilizes and compresses features; max-norm encourages well-behaved spatial
69
+ weights similar to EEGNet practice.
70
+
71
+ - **Block-4 / Block-5 — Dilated temporal integration.**
72
+
73
+ - *Operations.*
74
+ - :class:`torch.nn.Conv2d` with kernels ``(1, k)`` and **dilations**
75
+ (e.g., 2 then 4);
76
+ - :class:`torch.nn.BatchNorm2d`
77
+ - :class:`torch.nn.ELU`
78
+ - :class:`torch.nn.AvgPool2d` (time)
79
+ - :class:`torch.nn.Dropout`
80
+ - :class:`torch.nn.Flatten`.
81
+
82
+ **Role**: Expands the temporal receptive field efficiently to capture rhythms and
83
+ long-range context after condensation.
84
+
85
+ - **Final Classifier — Max-norm linear.**
86
+
87
+ - *Operations.*
88
+ - :class:`braindecode.modules.LinearWithConstraint` maps the flattened
89
+ vector to the target classes; the max-norm constraint regularizes the readout.
90
+
91
+
92
+ .. rubric:: Convolutional Details
93
+
94
+ - **Temporal (where time-domain patterns are learned).**
95
+ Blocks 1-2 learn the primary filter bank (oscillations/transients), while Blocks 4-5
96
+ use **dilation** to integrate over longer horizons without extra pooling. The final
97
+ AvgPool in Block-5 sets the output token rate and helps noise suppression.
98
+
99
+ - **Spatial (how electrodes are processed).**
100
+ A *single* depthwise spatial conv (Block-3) spans the entire electrode set
101
+ (kernel ``(n_chans, 1)``), producing per-temporal-filter topographies; no cross-filter
102
+ mixing occurs at this stage, aiding interpretability.
103
+
104
+ - **Spectral (how frequency content is captured).**
105
+ Frequency selectivity emerges from the learned temporal kernels; dilation broadens effective
106
+ bandwidth coverage by composing multiple scales.
107
+
108
+ .. rubric:: Additional Mechanisms
109
+
110
+ - **EEGNeX-8,32 naming.** “8,32” indicates *8 temporal filters* and *kernel length 32*,
111
+ reflecting the paper's ablation path from EEGNet-8,2 toward thicker temporal kernels
112
+ and a deeper conv stack.
113
+ - **Max-norm constraints.** Spatial (Block-3) and final linear layers use max-norm
114
+ regularization—standard in EEG CNNs—to reduce overfitting and encourage stable spatial
115
+ patterns.
116
+
117
+ .. rubric:: Usage and Configuration
118
+
119
+ - **Kernel schedule.** Start with the canonical **EEGNeX-8,32** (``filter_1=8``,
120
+ ``kernel_block_1_2=32``) and keep **Block-3** depth multiplier modest (e.g., 2) to match
121
+ the paper's “pure conv” profile.
122
+ - **Pooling vs. dilation.** Use pooling in Blocks 3 and 5 to control compute and variance;
123
+ increase dilations (Blocks 4-5) to widen temporal context when windows are short.
124
+ - **Regularization.** Combine dropout (Blocks 3 & 5) with max-norm on spatial and
125
+ classifier layers; prefer ELU activations for stable training on small EEG datasets.
126
+
127
+
128
+ - The braindecode implementation follows the paper's conv-only design with five blocks
129
+ and reproduces the depthwise spatial step and dilated temporal stack. See the class
130
+ reference for exact kernel sizes, dilations, and pooling defaults. You can check the
131
+ original implementation at [EEGNexCode]_.
132
+
133
+ .. versionadded:: 1.1
134
+
22
135
 
23
136
  Parameters
24
137
  ----------
@@ -45,12 +158,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
45
158
  avg_pool_block5 : tuple[int, int], optional
46
159
  Pooling size for block 5. Default is (1, 8).
47
160
 
48
- Notes
49
- -----
50
- This implementation is not guaranteed to be correct, has not been checked
51
- by original authors, only reimplemented from the paper description and
52
- source code in tensorflow [EEGNexCode]_.
53
-
54
161
  References
55
162
  ----------
56
163
  .. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
@@ -21,6 +21,8 @@ from braindecode.models.base import EEGModuleMixin
21
21
  class EEGSimpleConv(EEGModuleMixin, torch.nn.Module):
22
22
  """EEGSimpleConv from Ouahidi, YE et al. (2023) [Yassine2023]_.
23
23
 
24
+ :bdg-success:`Convolution`
25
+
24
26
  .. figure:: https://raw.githubusercontent.com/elouayas/EEGSimpleConv/refs/heads/main/architecture.png
25
27
  :align: center
26
28
  :alt: EEGSimpleConv Architecture
@@ -15,6 +15,8 @@ from braindecode.modules import Chomp1d, MaxNormLinear
15
15
  class EEGTCNet(EEGModuleMixin, nn.Module):
16
16
  """EEGTCNet model from Ingolfsson et al. (2020) [ingolfsson2020]_.
17
17
 
18
+ :bdg-success:`Convolution` :bdg-secondary:`Recurrent`
19
+
18
20
  .. figure:: https://braindecode.org/dev/_static/model/eegtcnet.jpg
19
21
  :align: center
20
22
  :alt: EEGTCNet Architecture
@@ -157,7 +159,7 @@ class EEGTCNet(EEGModuleMixin, nn.Module):
157
159
  class _EEGNetTC(nn.Module):
158
160
  """EEGNet Temporal Convolutional Network (TCN) block.
159
161
 
160
- The main difference from our EEGNetV4 (braindecode) implementation is the
162
+ The main difference from our :class:`EEGNet` (braindecode) implementation is the
161
163
  kernel and dimensional order. Because of this, we decided to keep this
162
164
  implementation in a future issue; we will re-evaluate if it is necessary
163
165
  to maintain this separate implementation.
@@ -31,6 +31,8 @@ _valid_layers = {
31
31
  class FBCNet(EEGModuleMixin, nn.Module):
32
32
  """FBCNet from Mane, R et al (2021) [fbcnet2021]_.
33
33
 
34
+ :bdg-success:`Convolution` :bdg-primary:`Filterbank`
35
+
34
36
  .. figure:: https://raw.githubusercontent.com/ravikiran-mane/FBCNet/refs/heads/master/FBCNet-V2.png
35
37
  :align: center
36
38
  :alt: FBCNet Architecture
@@ -67,7 +69,9 @@ class FBCNet(EEGModuleMixin, nn.Module):
67
69
  linear_max_norm : float, default=0.5
68
70
  Maximum norm for the final linear layer.
69
71
  filter_parameters: dict, default None
70
- Parameters for the FilterBankLayer
72
+ Dictionary of parameters to use for the FilterBankLayer.
73
+ If None, a default Chebyshev Type II filter with transition bandwidth of
74
+ 2 Hz and stop-band ripple of 30 dB will be used.
71
75
 
72
76
  References
73
77
  ----------
@@ -18,6 +18,8 @@ from braindecode.modules import (
18
18
  class FBLightConvNet(EEGModuleMixin, nn.Module):
19
19
  """LightConvNet from Ma, X et al (2023) [lightconvnet]_.
20
20
 
21
+ :bdg-success:`Convolution` :bdg-primary:`Filterbank`
22
+
21
23
  .. figure:: https://raw.githubusercontent.com/Ma-Xinzhi/LightConvNet/refs/heads/main/network_architecture.png
22
24
  :align: center
23
25
  :alt: LightConvNet Neural Network
@@ -1,6 +1,6 @@
1
1
  from __future__ import annotations
2
2
 
3
- from typing import Optional, Sequence
3
+ from typing import Any, Sequence
4
4
 
5
5
  import torch
6
6
  from einops.layers.torch import Rearrange
@@ -19,6 +19,8 @@ from braindecode.modules import (
19
19
  class FBMSNet(EEGModuleMixin, nn.Module):
20
20
  """FBMSNet from Liu et al (2022) [fbmsnet]_.
21
21
 
22
+ :bdg-success:`Convolution` :bdg-primary:`Filterbank`
23
+
22
24
  .. figure:: https://raw.githubusercontent.com/Want2Vanish/FBMSNet/refs/heads/main/FBMSNet.png
23
25
  :align: center
24
26
  :alt: FBMSNet Architecture
@@ -55,16 +57,28 @@ class FBMSNet(EEGModuleMixin, nn.Module):
55
57
  ----------
56
58
  n_bands : int, default=9
57
59
  Number of input channels (e.g., number of frequency bands).
58
- stride_factor : int, default=4
59
- Stride factor for temporal segmentation.
60
- temporal_layer : str, default='LogVarLayer'
61
- Temporal aggregation layer to use.
62
60
  n_filters_spat : int, default=36
63
61
  Number of output channels from the MixedConv2d layer.
62
+ temporal_layer : str, default='LogVarLayer'
63
+ Temporal aggregation layer to use.
64
+ n_dim: int, default=3
65
+ Dimension of the temporal reduction layer.
66
+ stride_factor : int, default=4
67
+ Stride factor for temporal segmentation.
64
68
  dilatability : int, default=8
65
69
  Expansion factor for the spatial convolution block.
66
70
  activation : nn.Module, default=nn.SiLU
67
71
  Activation function class to apply.
72
+ kernels_weights : Sequence[int], default=(15, 31, 63, 125)
73
+ Kernel sizes for the MixedConv2d layer.
74
+ cnn_max_norm : float, default=2
75
+ Maximum norm constraint for the convolutional layers.
76
+ linear_max_norm : float, default=0.5
77
+ Maximum norm constraint for the linear layers.
78
+ filter_parameters : dict, default=None
79
+ Dictionary of parameters to use for the FilterBankLayer.
80
+ If None, a default Chebyshev Type II filter with transition bandwidth of
81
+ 2 Hz and stop-band ripple of 30 dB will be used.
68
82
  verbose: bool, default False
69
83
  Verbose parameter to create the filter using mne.
70
84
 
@@ -101,7 +115,7 @@ class FBMSNet(EEGModuleMixin, nn.Module):
101
115
  cnn_max_norm: float = 2,
102
116
  linear_max_norm: float = 0.5,
103
117
  verbose: bool = False,
104
- filter_parameters: Optional[dict] = None,
118
+ filter_parameters: dict[Any, Any] | None = None,
105
119
  ):
106
120
  super().__init__(
107
121
  n_chans=n_chans,
@@ -31,6 +31,8 @@ from braindecode.modules import (
31
31
  class IFNet(EEGModuleMixin, nn.Module):
32
32
  """IFNetV2 from Wang J et al (2023) [ifnet]_.
33
33
 
34
+ :bdg-success:`Convolution` :bdg-primary:`Filterbank`
35
+
34
36
  .. figure:: https://raw.githubusercontent.com/Jiaheng-Wang/IFNet/main/IFNet.png
35
37
  :align: center
36
38
  :alt: IFNetV2 Architecture