braindecode 1.2.0.dev184328194__py3-none-any.whl → 1.3.0.dev168496007__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/augmentation/base.py +1 -1
- braindecode/augmentation/functional.py +154 -54
- braindecode/augmentation/transforms.py +2 -2
- braindecode/datasets/__init__.py +10 -2
- braindecode/datasets/base.py +116 -152
- braindecode/datasets/bcicomp.py +4 -4
- braindecode/datasets/bids.py +3 -3
- braindecode/datasets/experimental.py +218 -0
- braindecode/datasets/mne.py +3 -5
- braindecode/datasets/moabb.py +2 -2
- braindecode/datasets/nmt.py +2 -2
- braindecode/datasets/sleep_physio_challe_18.py +4 -3
- braindecode/datasets/sleep_physionet.py +2 -2
- braindecode/datasets/tuh.py +2 -2
- braindecode/datasets/xy.py +2 -2
- braindecode/datautil/serialization.py +18 -13
- braindecode/eegneuralnet.py +2 -0
- braindecode/functional/functions.py +6 -2
- braindecode/functional/initialization.py +2 -3
- braindecode/models/__init__.py +12 -8
- braindecode/models/atcnet.py +156 -17
- braindecode/models/attentionbasenet.py +148 -16
- braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +14 -2
- braindecode/models/base.py +280 -2
- braindecode/models/bendr.py +469 -0
- braindecode/models/biot.py +3 -1
- braindecode/models/contrawr.py +2 -0
- braindecode/models/ctnet.py +9 -4
- braindecode/models/deep4.py +6 -2
- braindecode/models/deepsleepnet.py +127 -5
- braindecode/models/eegconformer.py +114 -15
- braindecode/models/eeginception_erp.py +82 -7
- braindecode/models/eeginception_mi.py +2 -0
- braindecode/models/eegitnet.py +2 -0
- braindecode/models/eegminer.py +2 -0
- braindecode/models/eegnet.py +64 -177
- braindecode/models/eegnex.py +113 -6
- braindecode/models/eegsimpleconv.py +2 -0
- braindecode/models/eegtcnet.py +3 -1
- braindecode/models/fbcnet.py +5 -1
- braindecode/models/fblightconvnet.py +2 -0
- braindecode/models/fbmsnet.py +20 -6
- braindecode/models/ifnet.py +2 -0
- braindecode/models/labram.py +193 -87
- braindecode/models/msvtnet.py +2 -0
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/sccnet.py +81 -8
- braindecode/models/shallow_fbcsp.py +2 -0
- braindecode/models/signal_jepa.py +111 -27
- braindecode/models/sinc_shallow.py +12 -9
- braindecode/models/sleep_stager_blanco_2020.py +2 -0
- braindecode/models/sleep_stager_chambon_2018.py +2 -0
- braindecode/models/sparcnet.py +2 -0
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +42 -41
- braindecode/models/syncnet.py +2 -0
- braindecode/models/tcn.py +2 -0
- braindecode/models/tidnet.py +2 -0
- braindecode/models/tsinception.py +15 -3
- braindecode/models/usleep.py +108 -9
- braindecode/models/util.py +8 -5
- braindecode/modules/attention.py +10 -10
- braindecode/modules/blocks.py +3 -3
- braindecode/modules/filter.py +2 -9
- braindecode/modules/layers.py +18 -17
- braindecode/preprocessing/__init__.py +24 -0
- braindecode/preprocessing/eegprep_preprocess.py +1202 -0
- braindecode/preprocessing/preprocess.py +42 -39
- braindecode/preprocessing/util.py +166 -0
- braindecode/preprocessing/windowers.py +26 -20
- braindecode/samplers/base.py +8 -8
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/METADATA +12 -3
- braindecode-1.3.0.dev168496007.dist-info/RECORD +106 -0
- braindecode/models/eegresnet.py +0 -362
- braindecode-1.2.0.dev184328194.dist-info/RECORD +0 -101
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev184328194.dist-info → braindecode-1.3.0.dev168496007.dist-info}/top_level.txt +0 -0
braindecode/datasets/mne.py
CHANGED
|
@@ -9,7 +9,7 @@ import mne
|
|
|
9
9
|
import numpy as np
|
|
10
10
|
import pandas as pd
|
|
11
11
|
|
|
12
|
-
from .base import BaseConcatDataset,
|
|
12
|
+
from .base import BaseConcatDataset, RawDataset, WindowsDataset
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
def create_from_mne_raw(
|
|
@@ -75,11 +75,9 @@ def create_from_mne_raw(
|
|
|
75
75
|
f"length of 'raws' ({len(raws)}) and 'description' "
|
|
76
76
|
f"({len(descriptions)}) has to match"
|
|
77
77
|
)
|
|
78
|
-
base_datasets = [
|
|
79
|
-
BaseDataset(raw, desc) for raw, desc in zip(raws, descriptions)
|
|
80
|
-
]
|
|
78
|
+
base_datasets = [RawDataset(raw, desc) for raw, desc in zip(raws, descriptions)]
|
|
81
79
|
else:
|
|
82
|
-
base_datasets = [
|
|
80
|
+
base_datasets = [RawDataset(raw) for raw in raws]
|
|
83
81
|
|
|
84
82
|
base_datasets = BaseConcatDataset(base_datasets)
|
|
85
83
|
windows_datasets = create_windows_from_events(
|
braindecode/datasets/moabb.py
CHANGED
|
@@ -18,7 +18,7 @@ import pandas as pd
|
|
|
18
18
|
|
|
19
19
|
from braindecode.util import _update_moabb_docstring
|
|
20
20
|
|
|
21
|
-
from .base import BaseConcatDataset,
|
|
21
|
+
from .base import BaseConcatDataset, RawDataset
|
|
22
22
|
|
|
23
23
|
|
|
24
24
|
def _find_dataset_in_moabb(dataset_name, dataset_kwargs=None):
|
|
@@ -164,7 +164,7 @@ class MOABBDataset(BaseConcatDataset):
|
|
|
164
164
|
dataset_load_kwargs=dataset_load_kwargs,
|
|
165
165
|
)
|
|
166
166
|
all_base_ds = [
|
|
167
|
-
|
|
167
|
+
RawDataset(raw, row) for raw, (_, row) in zip(raws, description.iterrows())
|
|
168
168
|
]
|
|
169
169
|
super().__init__(all_base_ds)
|
|
170
170
|
|
braindecode/datasets/nmt.py
CHANGED
|
@@ -31,7 +31,7 @@ import pandas as pd
|
|
|
31
31
|
from joblib import Parallel, delayed
|
|
32
32
|
from mne.datasets import fetch_dataset
|
|
33
33
|
|
|
34
|
-
from braindecode.datasets.base import BaseConcatDataset,
|
|
34
|
+
from braindecode.datasets.base import BaseConcatDataset, RawDataset
|
|
35
35
|
|
|
36
36
|
NMT_URL = "https://zenodo.org/record/10909103/files/NMT.zip"
|
|
37
37
|
NMT_archive_name = "NMT.zip"
|
|
@@ -172,7 +172,7 @@ class NMT(BaseConcatDataset):
|
|
|
172
172
|
d["n_samples"] = raw.n_times
|
|
173
173
|
d["sfreq"] = raw.info["sfreq"]
|
|
174
174
|
d["train"] = "train" in d.path.split(os.sep)
|
|
175
|
-
base_dataset =
|
|
175
|
+
base_dataset = RawDataset(raw, d, target_name)
|
|
176
176
|
return base_dataset
|
|
177
177
|
|
|
178
178
|
|
|
@@ -21,8 +21,7 @@ from mne.datasets.sleep_physionet._utils import _fetch_one
|
|
|
21
21
|
from mne.datasets.utils import _get_path
|
|
22
22
|
from mne.utils import warn
|
|
23
23
|
|
|
24
|
-
from braindecode.datasets import BaseConcatDataset,
|
|
25
|
-
from braindecode.preprocessing.preprocess import _preprocess
|
|
24
|
+
from braindecode.datasets import BaseConcatDataset, RawDataset
|
|
26
25
|
|
|
27
26
|
PC18_DIR = op.join(op.dirname(__file__), "data", "pc18")
|
|
28
27
|
PC18_RECORDS = op.join(PC18_DIR, "sleep_records.csv")
|
|
@@ -404,9 +403,11 @@ class SleepPhysionetChallenge2018(BaseConcatDataset):
|
|
|
404
403
|
},
|
|
405
404
|
name="",
|
|
406
405
|
)
|
|
407
|
-
base_dataset =
|
|
406
|
+
base_dataset = RawDataset(raw_file, desc)
|
|
408
407
|
|
|
409
408
|
if preproc is not None:
|
|
409
|
+
from braindecode.preprocessing.preprocess import _preprocess
|
|
410
|
+
|
|
410
411
|
_preprocess(base_dataset, None, preproc)
|
|
411
412
|
|
|
412
413
|
return base_dataset
|
|
@@ -12,7 +12,7 @@ import numpy as np
|
|
|
12
12
|
import pandas as pd
|
|
13
13
|
from mne.datasets.sleep_physionet.age import fetch_data
|
|
14
14
|
|
|
15
|
-
from .base import BaseConcatDataset,
|
|
15
|
+
from .base import BaseConcatDataset, RawDataset
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class SleepPhysionet(BaseConcatDataset):
|
|
@@ -71,7 +71,7 @@ class SleepPhysionet(BaseConcatDataset):
|
|
|
71
71
|
crop_wake_mins=crop_wake_mins,
|
|
72
72
|
crop=crop,
|
|
73
73
|
)
|
|
74
|
-
base_ds =
|
|
74
|
+
base_ds = RawDataset(raw, desc)
|
|
75
75
|
all_base_ds.append(base_ds)
|
|
76
76
|
super().__init__(all_base_ds)
|
|
77
77
|
|
braindecode/datasets/tuh.py
CHANGED
|
@@ -22,7 +22,7 @@ import numpy as np
|
|
|
22
22
|
import pandas as pd
|
|
23
23
|
from joblib import Parallel, delayed
|
|
24
24
|
|
|
25
|
-
from .base import BaseConcatDataset,
|
|
25
|
+
from .base import BaseConcatDataset, RawDataset
|
|
26
26
|
|
|
27
27
|
|
|
28
28
|
class TUH(BaseConcatDataset):
|
|
@@ -214,7 +214,7 @@ class TUH(BaseConcatDataset):
|
|
|
214
214
|
d["report"] = physician_report
|
|
215
215
|
additional_description = pd.Series(d)
|
|
216
216
|
description = pd.concat([description, additional_description])
|
|
217
|
-
base_dataset =
|
|
217
|
+
base_dataset = RawDataset(raw, description, target_name=target_name)
|
|
218
218
|
return base_dataset
|
|
219
219
|
|
|
220
220
|
|
braindecode/datasets/xy.py
CHANGED
|
@@ -12,7 +12,7 @@ import numpy as np
|
|
|
12
12
|
import pandas as pd
|
|
13
13
|
from numpy.typing import ArrayLike, NDArray
|
|
14
14
|
|
|
15
|
-
from .base import BaseConcatDataset,
|
|
15
|
+
from .base import BaseConcatDataset, RawDataset
|
|
16
16
|
|
|
17
17
|
log = logging.getLogger(__name__)
|
|
18
18
|
|
|
@@ -69,7 +69,7 @@ def create_from_X_y(
|
|
|
69
69
|
n_samples_per_x.append(x.shape[1])
|
|
70
70
|
info = mne.create_info(ch_names=ch_names, sfreq=sfreq)
|
|
71
71
|
raw = mne.io.RawArray(x, info)
|
|
72
|
-
base_dataset =
|
|
72
|
+
base_dataset = RawDataset(
|
|
73
73
|
raw, pd.Series({"target": target}), target_name="target"
|
|
74
74
|
)
|
|
75
75
|
base_datasets.append(base_dataset)
|
|
@@ -19,8 +19,8 @@ from joblib import Parallel, delayed
|
|
|
19
19
|
|
|
20
20
|
from ..datasets.base import (
|
|
21
21
|
BaseConcatDataset,
|
|
22
|
-
BaseDataset,
|
|
23
22
|
EEGWindowsDataset,
|
|
23
|
+
RawDataset,
|
|
24
24
|
WindowsDataset,
|
|
25
25
|
)
|
|
26
26
|
|
|
@@ -35,7 +35,7 @@ def save_concat_dataset(path, concat_dataset, overwrite=False):
|
|
|
35
35
|
|
|
36
36
|
|
|
37
37
|
def _outdated_load_concat_dataset(path, preload, ids_to_load=None, target_name=None):
|
|
38
|
-
"""Load a stored BaseConcatDataset
|
|
38
|
+
"""Load a stored BaseConcatDataset from
|
|
39
39
|
files.
|
|
40
40
|
|
|
41
41
|
Parameters
|
|
@@ -52,7 +52,7 @@ def _outdated_load_concat_dataset(path, preload, ids_to_load=None, target_name=N
|
|
|
52
52
|
|
|
53
53
|
Returns
|
|
54
54
|
-------
|
|
55
|
-
concat_dataset: BaseConcatDataset
|
|
55
|
+
concat_dataset: BaseConcatDataset
|
|
56
56
|
"""
|
|
57
57
|
# assume we have a single concat dataset to load
|
|
58
58
|
is_raw = (path / "0-raw.fif").is_file()
|
|
@@ -87,7 +87,7 @@ def _outdated_load_concat_dataset(path, preload, ids_to_load=None, target_name=N
|
|
|
87
87
|
for i_signal, signal in enumerate(all_signals):
|
|
88
88
|
if is_raw:
|
|
89
89
|
datasets.append(
|
|
90
|
-
|
|
90
|
+
RawDataset(
|
|
91
91
|
signal, description.iloc[i_signal], target_name=target_name
|
|
92
92
|
)
|
|
93
93
|
)
|
|
@@ -138,12 +138,17 @@ def _load_signals(fif_file, preload, is_raw):
|
|
|
138
138
|
with open(pkl_file, "rb") as f:
|
|
139
139
|
signals = pickle.load(f)
|
|
140
140
|
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
141
|
+
if all(f.exists() for f in signals.filenames):
|
|
142
|
+
if preload:
|
|
143
|
+
signals.load_data()
|
|
144
|
+
return signals
|
|
145
|
+
else: # This may happen if the file has been moved together with the pickle file.
|
|
146
|
+
warnings.warn(
|
|
147
|
+
f"Pickle file {pkl_file} exists, but the referenced fif "
|
|
148
|
+
"file(s) do not exist. Will read the fif file(s) directly "
|
|
149
|
+
"and re-create the pickle file.",
|
|
150
|
+
UserWarning,
|
|
151
|
+
)
|
|
147
152
|
|
|
148
153
|
# If pickle didn't exist read via mne (likely slower) and save pkl after
|
|
149
154
|
if is_raw:
|
|
@@ -170,7 +175,7 @@ def _load_signals(fif_file, preload, is_raw):
|
|
|
170
175
|
|
|
171
176
|
|
|
172
177
|
def load_concat_dataset(path, preload, ids_to_load=None, target_name=None, n_jobs=1):
|
|
173
|
-
"""Load a stored BaseConcatDataset
|
|
178
|
+
"""Load a stored BaseConcatDataset from
|
|
174
179
|
files.
|
|
175
180
|
|
|
176
181
|
Parameters
|
|
@@ -189,7 +194,7 @@ def load_concat_dataset(path, preload, ids_to_load=None, target_name=None, n_job
|
|
|
189
194
|
|
|
190
195
|
Returns
|
|
191
196
|
-------
|
|
192
|
-
concat_dataset: BaseConcatDataset
|
|
197
|
+
concat_dataset: BaseConcatDataset
|
|
193
198
|
"""
|
|
194
199
|
# Make sure we always work with a pathlib.Path
|
|
195
200
|
path = Path(path)
|
|
@@ -261,7 +266,7 @@ def _load_parallel(path, i, preload, is_raw, has_stored_windows):
|
|
|
261
266
|
target_name = json.load(open(target_file_path, "r"))["target_name"]
|
|
262
267
|
|
|
263
268
|
if is_raw and (not has_stored_windows):
|
|
264
|
-
dataset =
|
|
269
|
+
dataset = RawDataset(signals, description, target_name)
|
|
265
270
|
else:
|
|
266
271
|
window_kwargs = _load_kwargs_json("window_kwargs", sub_dir)
|
|
267
272
|
windows_ds_kwargs = [
|
braindecode/eegneuralnet.py
CHANGED
|
@@ -189,6 +189,8 @@ class _EEGNeuralNet(NeuralNet, abc.ABC):
|
|
|
189
189
|
"Skipping setting signal-related parameters from data."
|
|
190
190
|
)
|
|
191
191
|
return
|
|
192
|
+
if classes is None:
|
|
193
|
+
classes = getattr(self, "classes", None)
|
|
192
194
|
# get kwargs from signal:
|
|
193
195
|
signal_kwargs = dict()
|
|
194
196
|
# Using shape to work both with torch.tensor and numpy.array:
|
|
@@ -181,20 +181,24 @@ def plv_time(x, forward_fourier=True, epsilon: float = 1e-6):
|
|
|
181
181
|
The Phase Locking Value (PLV) is a measure of the synchronization between
|
|
182
182
|
different channels by evaluating the consistency of phase differences
|
|
183
183
|
over time. It ranges from 0 (no synchronization) to 1 (perfect
|
|
184
|
-
synchronization) [
|
|
184
|
+
synchronization) [Lachaux1999]_.
|
|
185
185
|
|
|
186
186
|
Parameters
|
|
187
187
|
----------
|
|
188
188
|
x : torch.Tensor
|
|
189
189
|
Input tensor containing the signal data.
|
|
190
|
+
|
|
190
191
|
- If `forward_fourier` is `True`, the shape should be `(..., channels, time)`.
|
|
191
192
|
- If `forward_fourier` is `False`, the shape should be `(..., channels, freqs, 2)`,
|
|
192
193
|
where the last dimension represents the real and imaginary parts.
|
|
194
|
+
|
|
193
195
|
forward_fourier : bool, optional
|
|
194
196
|
Specifies the format of the input tensor `x`.
|
|
197
|
+
|
|
195
198
|
- If `True`, `x` is assumed to be in the time domain.
|
|
196
199
|
- If `False`, `x` is assumed to be in the Fourier domain with separate real and
|
|
197
200
|
imaginary components.
|
|
201
|
+
|
|
198
202
|
Default is `True`.
|
|
199
203
|
epsilon : float, default 1e-6
|
|
200
204
|
Small numerical value to ensure positivity constraint on the complex part
|
|
@@ -207,7 +211,7 @@ def plv_time(x, forward_fourier=True, epsilon: float = 1e-6):
|
|
|
207
211
|
|
|
208
212
|
References
|
|
209
213
|
----------
|
|
210
|
-
[
|
|
214
|
+
.. [Lachaux1999] Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999).
|
|
211
215
|
Measuring phase synchrony in brain signals. Human brain mapping,
|
|
212
216
|
8(4), 194-208.
|
|
213
217
|
"""
|
|
@@ -5,9 +5,8 @@ from torch import nn
|
|
|
5
5
|
|
|
6
6
|
def glorot_weight_zero_bias(model):
|
|
7
7
|
"""Initialize parameters of all modules by initializing weights with
|
|
8
|
-
glorot
|
|
9
|
-
|
|
10
|
-
batch norm layers are set to 1.
|
|
8
|
+
glorot uniform/xavier initialization, and setting biases to zero. Weights from
|
|
9
|
+
batch norm layers are set to 1.
|
|
11
10
|
|
|
12
11
|
Parameters
|
|
13
12
|
----------
|
braindecode/models/__init__.py
CHANGED
|
@@ -4,7 +4,9 @@ Some predefined network architectures for EEG decoding.
|
|
|
4
4
|
|
|
5
5
|
from .atcnet import ATCNet
|
|
6
6
|
from .attentionbasenet import AttentionBaseNet
|
|
7
|
+
from .attn_sleep import AttnSleep
|
|
7
8
|
from .base import EEGModuleMixin
|
|
9
|
+
from .bendr import BENDR
|
|
8
10
|
from .biot import BIOT
|
|
9
11
|
from .contrawr import ContraWR
|
|
10
12
|
from .ctnet import CTNet
|
|
@@ -15,9 +17,8 @@ from .eeginception_erp import EEGInceptionERP
|
|
|
15
17
|
from .eeginception_mi import EEGInceptionMI
|
|
16
18
|
from .eegitnet import EEGITNet
|
|
17
19
|
from .eegminer import EEGMiner
|
|
18
|
-
from .eegnet import
|
|
20
|
+
from .eegnet import EEGNet, EEGNetv4
|
|
19
21
|
from .eegnex import EEGNeX
|
|
20
|
-
from .eegresnet import EEGResNet
|
|
21
22
|
from .eegsimpleconv import EEGSimpleConv
|
|
22
23
|
from .eegtcnet import EEGTCNet
|
|
23
24
|
from .fbcnet import FBCNet
|
|
@@ -27,6 +28,7 @@ from .hybrid import HybridNet
|
|
|
27
28
|
from .ifnet import IFNet
|
|
28
29
|
from .labram import Labram
|
|
29
30
|
from .msvtnet import MSVTNet
|
|
31
|
+
from .patchedtransformer import PBT
|
|
30
32
|
from .sccnet import SCCNet
|
|
31
33
|
from .shallow_fbcsp import ShallowFBCSPNet
|
|
32
34
|
from .signal_jepa import (
|
|
@@ -38,12 +40,12 @@ from .signal_jepa import (
|
|
|
38
40
|
from .sinc_shallow import SincShallowNet
|
|
39
41
|
from .sleep_stager_blanco_2020 import SleepStagerBlanco2020
|
|
40
42
|
from .sleep_stager_chambon_2018 import SleepStagerChambon2018
|
|
41
|
-
from .sleep_stager_eldele_2021 import SleepStagerEldele2021
|
|
42
43
|
from .sparcnet import SPARCNet
|
|
44
|
+
from .sstdpn import SSTDPN
|
|
43
45
|
from .syncnet import SyncNet
|
|
44
46
|
from .tcn import BDTCN, TCN
|
|
45
47
|
from .tidnet import TIDNet
|
|
46
|
-
from .tsinception import
|
|
48
|
+
from .tsinception import TSception
|
|
47
49
|
from .usleep import USleep
|
|
48
50
|
from .util import _init_models_dict, models_mandatory_parameters
|
|
49
51
|
|
|
@@ -53,9 +55,11 @@ _init_models_dict()
|
|
|
53
55
|
|
|
54
56
|
__all__ = [
|
|
55
57
|
"ATCNet",
|
|
58
|
+
"AttnSleep",
|
|
56
59
|
"AttentionBaseNet",
|
|
57
60
|
"EEGModuleMixin",
|
|
58
61
|
"BIOT",
|
|
62
|
+
"BENDR",
|
|
59
63
|
"ContraWR",
|
|
60
64
|
"CTNet",
|
|
61
65
|
"Deep4Net",
|
|
@@ -65,10 +69,9 @@ __all__ = [
|
|
|
65
69
|
"EEGInceptionMI",
|
|
66
70
|
"EEGITNet",
|
|
67
71
|
"EEGMiner",
|
|
68
|
-
"
|
|
72
|
+
"EEGNet",
|
|
69
73
|
"EEGNetv4",
|
|
70
74
|
"EEGNeX",
|
|
71
|
-
"EEGResNet",
|
|
72
75
|
"EEGSimpleConv",
|
|
73
76
|
"EEGTCNet",
|
|
74
77
|
"FBCNet",
|
|
@@ -78,6 +81,7 @@ __all__ = [
|
|
|
78
81
|
"IFNet",
|
|
79
82
|
"Labram",
|
|
80
83
|
"MSVTNet",
|
|
84
|
+
"PBT",
|
|
81
85
|
"SCCNet",
|
|
82
86
|
"ShallowFBCSPNet",
|
|
83
87
|
"SignalJEPA",
|
|
@@ -85,15 +89,15 @@ __all__ = [
|
|
|
85
89
|
"SignalJEPA_PostLocal",
|
|
86
90
|
"SignalJEPA_PreLocal",
|
|
87
91
|
"SincShallowNet",
|
|
92
|
+
"SSTDPN",
|
|
88
93
|
"SleepStagerBlanco2020",
|
|
89
94
|
"SleepStagerChambon2018",
|
|
90
|
-
"SleepStagerEldele2021",
|
|
91
95
|
"SPARCNet",
|
|
92
96
|
"SyncNet",
|
|
93
97
|
"BDTCN",
|
|
94
98
|
"TCN",
|
|
95
99
|
"TIDNet",
|
|
96
|
-
"
|
|
100
|
+
"TSception",
|
|
97
101
|
"USleep",
|
|
98
102
|
"_init_models_dict",
|
|
99
103
|
"models_mandatory_parameters",
|
braindecode/models/atcnet.py
CHANGED
|
@@ -13,13 +13,153 @@ from braindecode.modules import CausalConv1d, Ensure4d, MaxNormLinear
|
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
class ATCNet(EEGModuleMixin, nn.Module):
|
|
16
|
-
"""ATCNet
|
|
16
|
+
"""ATCNet from Altaheri et al. (2022) [1]_.
|
|
17
17
|
|
|
18
|
-
|
|
18
|
+
:bdg-success:`Convolution` :bdg-secondary:`Recurrent` :bdg-info:`Small Attention`
|
|
19
19
|
|
|
20
20
|
.. figure:: https://user-images.githubusercontent.com/25565236/185449791-e8539453-d4fa-41e1-865a-2cf7e91f60ef.png
|
|
21
|
-
|
|
22
|
-
|
|
21
|
+
:align: center
|
|
22
|
+
:alt: ATCNet Architecture
|
|
23
|
+
:width: 650px
|
|
24
|
+
|
|
25
|
+
.. rubric:: Architectural Overview
|
|
26
|
+
|
|
27
|
+
ATCNet is a *convolution-first* architecture augmented with a *lightweight attention–TCN*
|
|
28
|
+
sequence module. The end-to-end flow is:
|
|
29
|
+
|
|
30
|
+
- (i) :class:`_ConvBlock` learns temporal filter-banks and spatial projections (EEGNet-style),
|
|
31
|
+
downsampling time to a compact feature map;
|
|
32
|
+
|
|
33
|
+
- (ii) Sliding Windows carve overlapping temporal windows from this map;
|
|
34
|
+
|
|
35
|
+
- (iii) for each window, :class:`_AttentionBlock` applies small multi-head self-attention
|
|
36
|
+
over time, followed by a :class:`_TCNResidualBlock` stack (causal, dilated);
|
|
37
|
+
|
|
38
|
+
- (iv) window-level features are aggregated (mean of window logits or concatenation)
|
|
39
|
+
and mapped via a max-norm–constrained linear layer.
|
|
40
|
+
|
|
41
|
+
Relative to ViT, ATCNet replaces linear patch projection with learned *temporal–spatial*
|
|
42
|
+
convolutions; it processes *parallel* window encoders (attention→TCN) instead of a deep
|
|
43
|
+
stack; and swaps the MLP head for a TCN suited to 1-D EEG sequences.
|
|
44
|
+
|
|
45
|
+
.. rubric:: Macro Components
|
|
46
|
+
|
|
47
|
+
- :class:`_ConvBlock` **(Shallow conv stem → feature map)**
|
|
48
|
+
|
|
49
|
+
- *Operations.*
|
|
50
|
+
- **Temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(L_t, 1)`` builds a
|
|
51
|
+
FIR-like filter bank (``F1`` maps).
|
|
52
|
+
- **Depthwise spatial conv** (:class:`torch.nn.Conv2d`, ``groups=F1``) with kernel
|
|
53
|
+
``(1, n_chans)`` learns per-filter spatial projections (akin to EEGNet's CSP-like step).
|
|
54
|
+
- **BN → ELU → AvgPool → Dropout** to stabilize and condense activations.
|
|
55
|
+
- **Refining temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(L_r, 1)`` +
|
|
56
|
+
**BN → ELU → AvgPool → Dropout**.
|
|
57
|
+
|
|
58
|
+
The output shape is ``(B, F2, T_c, 1)`` with ``F2 = F1·D`` and ``T_c = T/(P1·P2)``.
|
|
59
|
+
Temporal kernels behave as FIR filters; the depthwise-spatial conv yields frequency-specific
|
|
60
|
+
topographies. Pooling acts as a local integrator, reducing variance and imposing a
|
|
61
|
+
useful inductive bias on short EEG windows.
|
|
62
|
+
|
|
63
|
+
- **Sliding-Window Sequencer**
|
|
64
|
+
|
|
65
|
+
From the condensed time axis (length ``T_c``), ATCNet forms ``n`` overlapping windows
|
|
66
|
+
of width ``T_w = T_c - n + 1`` (one start per index). Each window produces a sequence
|
|
67
|
+
``(B, F2, T_w)`` forwarded to its own attention-TCN branch. This creates *parallel*
|
|
68
|
+
encoders over shifted contexts and is key to robustness on nonstationary EEG.
|
|
69
|
+
|
|
70
|
+
- :class:`_AttentionBlock` **(small MHA on temporal positions)**
|
|
71
|
+
|
|
72
|
+
Attention here is *local to a window* and purely temporal.
|
|
73
|
+
|
|
74
|
+
- *Operations.*
|
|
75
|
+
- Rearrange to ``(B, T_w, F2)``,
|
|
76
|
+
- Normalization :class:`torch.nn.LayerNorm`
|
|
77
|
+
- Custom MultiHeadAttention :class:`_MHA` (``num_heads=H``, per-head dim ``d_h``) + residual add,
|
|
78
|
+
- Dropout :class:`torch.nn.Dropout`
|
|
79
|
+
- Rearrange back to ``(B, F2, T_w)``.
|
|
80
|
+
|
|
81
|
+
*Role.* Re-weights evidence across the window, letting the model emphasize informative
|
|
82
|
+
segments (onsets, bursts) before causal convolutions aggregate history.
|
|
83
|
+
|
|
84
|
+
- :class:`_TCNResidualBlock` **(causal dilated temporal CNN)**
|
|
85
|
+
|
|
86
|
+
- *Operations.*
|
|
87
|
+
- Two :class:`braindecode.modules.CausalConv1d` layers per block with dilation ``1, 2, 4, …``
|
|
88
|
+
- Across blocks of `torch.nn.ELU` + `torch.nn.BatchNorm1d` + `torch.nn.Dropout`) +
|
|
89
|
+
a residual (identity or 1x1 mapping).
|
|
90
|
+
- The final feature used per window is the *last* causal step ``[..., -1]`` (forecast-style).
|
|
91
|
+
|
|
92
|
+
*Role.* Efficient long-range temporal integration with stable gradients; the dilated
|
|
93
|
+
receptive field complements attention's soft selection.
|
|
94
|
+
|
|
95
|
+
- **Aggregation & Classifier**
|
|
96
|
+
|
|
97
|
+
- *Operations.*
|
|
98
|
+
- Either (a) map each window feature ``(B, F2)`` to logits via :class:`braindecode.modules.MaxNormLinear`
|
|
99
|
+
and **average** across windows (default, matching official code), or
|
|
100
|
+
- (b) **concatenate** all window features ``(B, n·F2)`` and apply a single :class:`MaxNormLinear`.
|
|
101
|
+
The max-norm constraint regularizes the readout.
|
|
102
|
+
|
|
103
|
+
.. rubric:: Convolutional Details
|
|
104
|
+
|
|
105
|
+
- **Temporal.** Temporal structure is learned in three places:
|
|
106
|
+
- (1) the stem's wide ``(L_t, 1)`` conv (learned filter bank),
|
|
107
|
+
- (2) the refining ``(L_r, 1)`` conv after pooling (short-term dynamics), and
|
|
108
|
+
- (3) the TCN's causal 1-D convolutions with exponentially increasing dilation
|
|
109
|
+
(long-range dependencies). The minimum sequence length required by the TCN stack is
|
|
110
|
+
``(K_t - 1)·2^{L-1} + 1``; the implementation *auto-scales* kernels/pools/windows
|
|
111
|
+
when inputs are shorter to preserve feasibility.
|
|
112
|
+
|
|
113
|
+
- **Spatial.** A depthwise spatial conv spans the **full montage** (kernel ``(1, n_chans)``),
|
|
114
|
+
producing *per-temporal-filter* spatial projections (no cross-filter mixing at this step).
|
|
115
|
+
This mirrors EEGNet's interpretability: each temporal filter has its own spatial pattern.
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
.. rubric:: Attention / Sequential Modules
|
|
119
|
+
|
|
120
|
+
- **Type.** Multi-head self-attention with ``H`` heads and per-head dim ``d_h`` implemented
|
|
121
|
+
in :class:`_MHA`, allowing ``embed_dim = H·d_h`` independent of input and output dims.
|
|
122
|
+
- **Shapes.** ``(B, F2, T_w) → (B, T_w, F2) → (B, F2, T_w)``. Attention operates along
|
|
123
|
+
the **temporal** axis within a window; channels/features stay in the embedding dim ``F2``.
|
|
124
|
+
- **Role.** Highlights salient temporal positions prior to causal convolution; small attention
|
|
125
|
+
keeps compute modest while improving context modeling over pooled features.
|
|
126
|
+
|
|
127
|
+
.. rubric:: Additional Mechanisms
|
|
128
|
+
|
|
129
|
+
- **Parallel encoders over shifted windows.** Improves montage/phase robustness by
|
|
130
|
+
ensembling nearby contexts rather than committing to a single segmentation.
|
|
131
|
+
- **Max-norm classifier.** Enforces weight norm constraints at the readout, a common
|
|
132
|
+
stabilization trick in EEG decoding.
|
|
133
|
+
- **ViT vs. ATCNet (design choices).** Convolutional *nonlinear* projection rather than
|
|
134
|
+
linear patchification; attention followed by **TCN** (not MLP); *parallel* window
|
|
135
|
+
encoders rather than stacked encoders.
|
|
136
|
+
|
|
137
|
+
.. rubric:: Usage and Configuration
|
|
138
|
+
|
|
139
|
+
- ``conv_block_n_filters (F1)``, ``conv_block_depth_mult (D)`` → capacity of the stem
|
|
140
|
+
(with ``F2 = F1·D`` feeding attention/TCN), dimensions aligned to ``F2``, like :class:`EEGNet`.
|
|
141
|
+
- Pool sizes ``P1,P2`` trade temporal resolution for stability/compute; they set
|
|
142
|
+
``T_c = T/(P1·P2)`` and thus window width ``T_w``.
|
|
143
|
+
- ``n_windows`` controls the ensemble over shifts (compute ∝ windows).
|
|
144
|
+
- ``att_num_heads``, ``att_head_dim`` set attention capacity; keep ``H·d_h ≈ F2``.
|
|
145
|
+
- ``tcn_depth``, ``tcn_kernel_size`` govern receptive field; larger values demand
|
|
146
|
+
longer inputs (see minimum length above). The implementation warns and *rescales*
|
|
147
|
+
kernels/pools/windows if inputs are too short.
|
|
148
|
+
- **Aggregation choice.** ``concat=False`` (default, average of per-window logits) matches
|
|
149
|
+
the official code; ``concat=True`` mirrors the paper's concatenation variant.
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
Notes
|
|
153
|
+
-----
|
|
154
|
+
- Inputs substantially shorter than the implied minimum length trigger **automatic
|
|
155
|
+
downscaling** of kernels, pools, windows, and TCN kernel size to maintain validity.
|
|
156
|
+
- The attention–TCN sequence operates **per window**; the last causal step is used as the
|
|
157
|
+
window feature, aligning the temporal semantics across windows.
|
|
158
|
+
|
|
159
|
+
.. versionadded:: 1.1
|
|
160
|
+
|
|
161
|
+
- More detailed documentation of the model.
|
|
162
|
+
|
|
23
163
|
|
|
24
164
|
Parameters
|
|
25
165
|
----------
|
|
@@ -85,15 +225,13 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
85
225
|
Maximum L2-norm constraint imposed on weights of the last
|
|
86
226
|
fully-connected layer. Defaults to 0.25.
|
|
87
227
|
|
|
88
|
-
|
|
89
228
|
References
|
|
90
229
|
----------
|
|
91
|
-
.. [1] H. Altaheri, G. Muhammad
|
|
92
|
-
Physics-informed attention temporal convolutional network for EEG-based
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
https://github.com/Altaheri/EEG-ATCNet/blob/main/models.py
|
|
230
|
+
.. [1] H. Altaheri, G. Muhammad, M. Alsulaiman (2022).
|
|
231
|
+
*Physics-informed attention temporal convolutional network for EEG-based motor imagery classification.*
|
|
232
|
+
IEEE Transactions on Industrial Informatics. doi:10.1109/TII.2022.3197419.
|
|
233
|
+
.. [2] Official EEG-ATCNet implementation (TensorFlow):
|
|
234
|
+
https://github.com/Altaheri/EEG-ATCNet/blob/main/models.py
|
|
97
235
|
"""
|
|
98
236
|
|
|
99
237
|
def __init__(
|
|
@@ -231,7 +369,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
231
369
|
nn.Sequential(
|
|
232
370
|
*[
|
|
233
371
|
_TCNResidualBlock(
|
|
234
|
-
in_channels=self.F2,
|
|
372
|
+
in_channels=self.F2 if i == 0 else self.tcn_n_filters,
|
|
235
373
|
kernel_size=self.tcn_kernel_size,
|
|
236
374
|
n_filters=self.tcn_n_filters,
|
|
237
375
|
dropout=self.tcn_dropout,
|
|
@@ -249,7 +387,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
249
387
|
self.final_layer = nn.ModuleList(
|
|
250
388
|
[
|
|
251
389
|
MaxNormLinear(
|
|
252
|
-
in_features=self.
|
|
390
|
+
in_features=self.tcn_n_filters * self.n_windows,
|
|
253
391
|
out_features=self.n_outputs,
|
|
254
392
|
max_norm_val=self.max_norm_const,
|
|
255
393
|
)
|
|
@@ -259,7 +397,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
259
397
|
self.final_layer = nn.ModuleList(
|
|
260
398
|
[
|
|
261
399
|
MaxNormLinear(
|
|
262
|
-
in_features=self.
|
|
400
|
+
in_features=self.tcn_n_filters,
|
|
263
401
|
out_features=self.n_outputs,
|
|
264
402
|
max_norm_val=self.max_norm_const,
|
|
265
403
|
)
|
|
@@ -269,7 +407,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
269
407
|
|
|
270
408
|
self.out_fun = nn.Identity()
|
|
271
409
|
|
|
272
|
-
def forward(self, X):
|
|
410
|
+
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
|
273
411
|
# Dimension: (batch_size, C, T)
|
|
274
412
|
X = self.ensuredims(X)
|
|
275
413
|
# Dimension: (batch_size, C, T, 1)
|
|
@@ -556,7 +694,8 @@ class _TCNResidualBlock(nn.Module):
|
|
|
556
694
|
# Reshape the input for the residual connection when necessary
|
|
557
695
|
if in_channels != n_filters:
|
|
558
696
|
self.reshaping_conv = nn.Conv1d(
|
|
559
|
-
|
|
697
|
+
in_channels=in_channels, # Specify input channels
|
|
698
|
+
out_channels=n_filters, # Specify output channels
|
|
560
699
|
kernel_size=1,
|
|
561
700
|
padding="same",
|
|
562
701
|
)
|
|
@@ -576,7 +715,7 @@ class _TCNResidualBlock(nn.Module):
|
|
|
576
715
|
out = self.activation(out)
|
|
577
716
|
out = self.drop2(out)
|
|
578
717
|
|
|
579
|
-
|
|
718
|
+
X = self.reshaping_conv(X)
|
|
580
719
|
|
|
581
720
|
# ----- Residual connection -----
|
|
582
721
|
out = X + out
|