braindecode 1.2.0.dev180217551__py3-none-any.whl → 1.2.0.dev182051616__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/models/__init__.py +1 -2
- braindecode/models/attentionbasenet.py +5 -4
- braindecode/models/eegnex.py +2 -7
- braindecode/models/summary.csv +40 -41
- braindecode/models/util.py +0 -1
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/METADATA +5 -1
- {braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/RECORD +12 -12
- {braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/top_level.txt +0 -0
braindecode/models/__init__.py
CHANGED
|
@@ -15,7 +15,7 @@ from .eeginception_erp import EEGInceptionERP
|
|
|
15
15
|
from .eeginception_mi import EEGInceptionMI
|
|
16
16
|
from .eegitnet import EEGITNet
|
|
17
17
|
from .eegminer import EEGMiner
|
|
18
|
-
from .eegnet import
|
|
18
|
+
from .eegnet import EEGNetv4
|
|
19
19
|
from .eegnex import EEGNeX
|
|
20
20
|
from .eegresnet import EEGResNet
|
|
21
21
|
from .eegsimpleconv import EEGSimpleConv
|
|
@@ -65,7 +65,6 @@ __all__ = [
|
|
|
65
65
|
"EEGInceptionMI",
|
|
66
66
|
"EEGITNet",
|
|
67
67
|
"EEGMiner",
|
|
68
|
-
"EEGNetv1",
|
|
69
68
|
"EEGNetv4",
|
|
70
69
|
"EEGNeX",
|
|
71
70
|
"EEGResNet",
|
|
@@ -24,7 +24,7 @@ from braindecode.modules.attention import (
|
|
|
24
24
|
|
|
25
25
|
|
|
26
26
|
class AttentionBaseNet(EEGModuleMixin, nn.Module):
|
|
27
|
-
"""
|
|
27
|
+
"""AttentionBaseNet from Wimpff M et al. (2023) [Martin2023]_.
|
|
28
28
|
|
|
29
29
|
:bdg-success:`Convolution` :bdg-info:`Small Attention`
|
|
30
30
|
|
|
@@ -165,10 +165,11 @@ class AttentionBaseNet(EEGModuleMixin, nn.Module):
|
|
|
165
165
|
Notes
|
|
166
166
|
-----
|
|
167
167
|
- Sequence length after each stage is computed internally; the final classifier expects
|
|
168
|
-
|
|
168
|
+
a flattened ``ch_dim x T₂`` vector.
|
|
169
169
|
- Attention operates on *channel* dimension by design; temporal gating exists only in
|
|
170
|
-
|
|
171
|
-
|
|
170
|
+
specific variants (CBAM/CAT).
|
|
171
|
+
- The paper and original code with more details about the methodological
|
|
172
|
+
choices are available at the [Martin2023]_ and [MartinCode]_.
|
|
172
173
|
.. versionadded:: 0.9
|
|
173
174
|
|
|
174
175
|
Parameters
|
braindecode/models/eegnex.py
CHANGED
|
@@ -129,7 +129,8 @@ class EEGNeX(EEGModuleMixin, nn.Module):
|
|
|
129
129
|
-----
|
|
130
130
|
- The braindecode implementation follows the paper's conv-only design with five blocks
|
|
131
131
|
and reproduces the depthwise spatial step and dilated temporal stack. See the class
|
|
132
|
-
reference for exact kernel sizes, dilations, and pooling defaults.
|
|
132
|
+
reference for exact kernel sizes, dilations, and pooling defaults. You can check the
|
|
133
|
+
original implementation at [EEGNexCode]_.
|
|
133
134
|
|
|
134
135
|
.. versionadded:: 1.1
|
|
135
136
|
|
|
@@ -159,12 +160,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
|
|
|
159
160
|
avg_pool_block5 : tuple[int, int], optional
|
|
160
161
|
Pooling size for block 5. Default is (1, 8).
|
|
161
162
|
|
|
162
|
-
Notes
|
|
163
|
-
-----
|
|
164
|
-
This implementation is not guaranteed to be correct, has not been checked
|
|
165
|
-
by original authors, only reimplemented from the paper description and
|
|
166
|
-
source code in tensorflow [EEGNexCode]_.
|
|
167
|
-
|
|
168
163
|
References
|
|
169
164
|
----------
|
|
170
165
|
.. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
|
braindecode/models/summary.csv
CHANGED
|
@@ -1,41 +1,40 @@
|
|
|
1
|
-
Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters
|
|
2
|
-
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
3
|
-
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
4
|
-
BDTCN,Normal
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
|
|
6
|
-
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
|
|
7
|
-
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
|
|
8
|
-
Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)"
|
|
9
|
-
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
|
|
10
|
-
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)
|
|
11
|
-
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
|
|
12
|
-
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
|
|
13
|
-
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
1
|
+
Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
|
|
2
|
+
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
|
+
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
|
+
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
|
|
6
|
+
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
|
+
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
|
+
Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
9
|
+
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution"
|
|
10
|
+
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
11
|
+
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
|
|
12
|
+
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
|
|
13
|
+
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
|
|
14
|
+
EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)","Convolution"
|
|
15
|
+
EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
|
|
16
|
+
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution"
|
|
17
|
+
EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)","Interpretability"
|
|
18
|
+
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
19
|
+
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
20
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
|
|
21
|
+
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
22
|
+
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
23
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
24
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
25
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
26
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
27
|
+
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
28
|
+
ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
29
|
+
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
30
|
+
SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
|
|
31
|
+
SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
|
|
32
|
+
SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
|
|
33
|
+
SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
|
|
34
|
+
TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
|
|
35
|
+
TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
36
|
+
USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
37
|
+
FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
|
+
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
|
+
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
40
|
+
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
braindecode/models/util.py
CHANGED
|
@@ -55,7 +55,6 @@ models_mandatory_parameters = [
|
|
|
55
55
|
("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
56
56
|
("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
57
57
|
("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
58
|
-
("EEGNetv1", ["n_chans", "n_outputs", "n_times"], None),
|
|
59
58
|
("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
59
|
("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
61
60
|
("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.2.0.
|
|
1
|
+
__version__ = "1.2.0.dev182051616"
|
{braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: braindecode
|
|
3
|
-
Version: 1.2.0.
|
|
3
|
+
Version: 1.2.0.dev182051616
|
|
4
4
|
Summary: Deep learning software to decode EEG, ECG or MEG signals
|
|
5
5
|
Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
6
6
|
Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
@@ -49,6 +49,9 @@ Requires-Dist: mypy; extra == "tests"
|
|
|
49
49
|
Provides-Extra: docs
|
|
50
50
|
Requires-Dist: sphinx_gallery; extra == "docs"
|
|
51
51
|
Requires-Dist: sphinx_rtd_theme; extra == "docs"
|
|
52
|
+
Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
|
|
53
|
+
Requires-Dist: sphinx-autobuild; extra == "docs"
|
|
54
|
+
Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
|
|
52
55
|
Requires-Dist: pydata_sphinx_theme; extra == "docs"
|
|
53
56
|
Requires-Dist: numpydoc; extra == "docs"
|
|
54
57
|
Requires-Dist: memory_profiler; extra == "docs"
|
|
@@ -59,6 +62,7 @@ Requires-Dist: lightning; extra == "docs"
|
|
|
59
62
|
Requires-Dist: seaborn; extra == "docs"
|
|
60
63
|
Requires-Dist: pre-commit; extra == "docs"
|
|
61
64
|
Requires-Dist: openneuro-py; extra == "docs"
|
|
65
|
+
Requires-Dist: plotly; extra == "docs"
|
|
62
66
|
Provides-Extra: all
|
|
63
67
|
Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
|
|
64
68
|
Dynamic: license-file
|
{braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/RECORD
RENAMED
|
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
|
|
|
3
3
|
braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
|
|
4
4
|
braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
|
|
5
5
|
braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
|
|
6
|
-
braindecode/version.py,sha256=
|
|
6
|
+
braindecode/version.py,sha256=UBhbCtvDxXjja87T5xAaQL56WHDquQLzEwy-0_4QxRE,35
|
|
7
7
|
braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
|
|
8
8
|
braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
|
|
9
9
|
braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
|
|
@@ -26,9 +26,9 @@ braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,
|
|
|
26
26
|
braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
|
|
27
27
|
braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
|
|
28
28
|
braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
|
|
29
|
-
braindecode/models/__init__.py,sha256=
|
|
29
|
+
braindecode/models/__init__.py,sha256=tFnuWNTnQreNCpLGIOFYVqQ2hrXT0p8_Zcd11ln8zW4,2525
|
|
30
30
|
braindecode/models/atcnet.py,sha256=Pn5KzQjv7YxSNDr_CY6O_Yg9K4m9XJ7btCIqyzkcPxc,32102
|
|
31
|
-
braindecode/models/attentionbasenet.py,sha256=
|
|
31
|
+
braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
|
|
32
32
|
braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
|
|
33
33
|
braindecode/models/biot.py,sha256=T4PymX3penMJcrdfb5Nq6B3P-jyP2laAIu_R9o3uCXo,17512
|
|
34
34
|
braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
|
|
@@ -41,7 +41,7 @@ braindecode/models/eeginception_mi.py,sha256=aKJRFuYrpbcRbmmT2xVghKbK8pnl7fzu5hr
|
|
|
41
41
|
braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
|
|
42
42
|
braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
|
|
43
43
|
braindecode/models/eegnet.py,sha256=CtfQuw7iaxQh3j1dRmF_UhdjfO3uHOlObnmasHk_boM,19268
|
|
44
|
-
braindecode/models/eegnex.py,sha256=
|
|
44
|
+
braindecode/models/eegnex.py,sha256=JsQNFe5sXutgF6db2oOhqhQPubTdPRNIouEfUCOtE84,13614
|
|
45
45
|
braindecode/models/eegresnet.py,sha256=cqWOSGqfJN_dNYUU9l8nYd_S3T1N-UX5-encKQzfBlg,12057
|
|
46
46
|
braindecode/models/eegsimpleconv.py,sha256=sHpK-7ZGOCMuXsdkSVuarFTd1T0jMJUP_xwXP3gxQwc,7268
|
|
47
47
|
braindecode/models/eegtcnet.py,sha256=np-93Ttctp2uaEYpMrfXfH5bJmCOUZZHLjv8GJEEym4,10830
|
|
@@ -60,13 +60,13 @@ braindecode/models/sleep_stager_blanco_2020.py,sha256=qPKMDLuv4J7et4dZHyTe-j0oB6
|
|
|
60
60
|
braindecode/models/sleep_stager_chambon_2018.py,sha256=62x2Rdjd5UZDX8YlnfAtdRCrjLsPvPpnUweGElZLdkw,5213
|
|
61
61
|
braindecode/models/sleep_stager_eldele_2021.py,sha256=-4ISuznykDy9ZFzUM-OeiGCwmgM3U-LuyoDSrhPbRDw,17555
|
|
62
62
|
braindecode/models/sparcnet.py,sha256=eZMoJOxlcIyHPdQiX7KXUKuUBlAWkTwsXNWmNma_KAI,13941
|
|
63
|
-
braindecode/models/summary.csv,sha256=
|
|
63
|
+
braindecode/models/summary.csv,sha256=9AKKSeyp8mYV5RhbDxF599c-KZCiAMbKyjgIzz8qFZM,6910
|
|
64
64
|
braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
|
|
65
65
|
braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
|
|
66
66
|
braindecode/models/tidnet.py,sha256=k7Q0yAnEBmq1sqhsvoV4-g8wfYSUQ-C3iYxfLp5m8xQ,11805
|
|
67
67
|
braindecode/models/tsinception.py,sha256=EcfLDDJXZloh_vrKRuxAHYRZ1EVWlEKHNXqybTRrTbQ,10116
|
|
68
68
|
braindecode/models/usleep.py,sha256=dFh3KiZITu13gMxcbPGoK4hq2ySDWzVSCQXkj1006w0,11605
|
|
69
|
-
braindecode/models/util.py,sha256=
|
|
69
|
+
braindecode/models/util.py,sha256=mrfQz7srxcpHvZEOuCesMDkgrZUlfusnCvFLjDLAh5Y,5241
|
|
70
70
|
braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
|
|
71
71
|
braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
|
|
72
72
|
braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
|
|
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
|
|
|
93
93
|
braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
|
|
94
94
|
braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
|
|
95
95
|
braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
|
|
96
|
-
braindecode-1.2.0.
|
|
97
|
-
braindecode-1.2.0.
|
|
98
|
-
braindecode-1.2.0.
|
|
99
|
-
braindecode-1.2.0.
|
|
100
|
-
braindecode-1.2.0.
|
|
101
|
-
braindecode-1.2.0.
|
|
96
|
+
braindecode-1.2.0.dev182051616.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
|
|
97
|
+
braindecode-1.2.0.dev182051616.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
|
|
98
|
+
braindecode-1.2.0.dev182051616.dist-info/METADATA,sha256=EvvamvHaX0hF1VtnVroRL1_yXfpiuxNNXj8QI6iJDuk,7081
|
|
99
|
+
braindecode-1.2.0.dev182051616.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
100
|
+
braindecode-1.2.0.dev182051616.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
|
|
101
|
+
braindecode-1.2.0.dev182051616.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{braindecode-1.2.0.dev180217551.dist-info → braindecode-1.2.0.dev182051616.dist-info}/top_level.txt
RENAMED
|
File without changes
|