braindecode 1.2.0.dev180217551__py3-none-any.whl → 1.2.0.dev182051616__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

@@ -15,7 +15,7 @@ from .eeginception_erp import EEGInceptionERP
15
15
  from .eeginception_mi import EEGInceptionMI
16
16
  from .eegitnet import EEGITNet
17
17
  from .eegminer import EEGMiner
18
- from .eegnet import EEGNetv1, EEGNetv4
18
+ from .eegnet import EEGNetv4
19
19
  from .eegnex import EEGNeX
20
20
  from .eegresnet import EEGResNet
21
21
  from .eegsimpleconv import EEGSimpleConv
@@ -65,7 +65,6 @@ __all__ = [
65
65
  "EEGInceptionMI",
66
66
  "EEGITNet",
67
67
  "EEGMiner",
68
- "EEGNetv1",
69
68
  "EEGNetv4",
70
69
  "EEGNeX",
71
70
  "EEGResNet",
@@ -24,7 +24,7 @@ from braindecode.modules.attention import (
24
24
 
25
25
 
26
26
  class AttentionBaseNet(EEGModuleMixin, nn.Module):
27
- """
27
+ """AttentionBaseNet from Wimpff M et al. (2023) [Martin2023]_.
28
28
 
29
29
  :bdg-success:`Convolution` :bdg-info:`Small Attention`
30
30
 
@@ -165,10 +165,11 @@ class AttentionBaseNet(EEGModuleMixin, nn.Module):
165
165
  Notes
166
166
  -----
167
167
  - Sequence length after each stage is computed internally; the final classifier expects
168
- a flattened ``ch_dim x T₂`` vector.
168
+ a flattened ``ch_dim x T₂`` vector.
169
169
  - Attention operates on *channel* dimension by design; temporal gating exists only in
170
- specific variants (CBAM/CAT).
171
-
170
+ specific variants (CBAM/CAT).
171
+ - The paper and original code with more details about the methodological
172
+ choices are available at the [Martin2023]_ and [MartinCode]_.
172
173
  .. versionadded:: 0.9
173
174
 
174
175
  Parameters
@@ -129,7 +129,8 @@ class EEGNeX(EEGModuleMixin, nn.Module):
129
129
  -----
130
130
  - The braindecode implementation follows the paper's conv-only design with five blocks
131
131
  and reproduces the depthwise spatial step and dilated temporal stack. See the class
132
- reference for exact kernel sizes, dilations, and pooling defaults.
132
+ reference for exact kernel sizes, dilations, and pooling defaults. You can check the
133
+ original implementation at [EEGNexCode]_.
133
134
 
134
135
  .. versionadded:: 1.1
135
136
 
@@ -159,12 +160,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
159
160
  avg_pool_block5 : tuple[int, int], optional
160
161
  Pooling size for block 5. Default is (1, 8).
161
162
 
162
- Notes
163
- -----
164
- This implementation is not guaranteed to be correct, has not been checked
165
- by original authors, only reimplemented from the paper description and
166
- source code in tensorflow [EEGNexCode]_.
167
-
168
163
  References
169
164
  ----------
170
165
  .. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
@@ -1,41 +1,40 @@
1
- Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters
2
- ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
3
- AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
4
- BDTCN,Normal/Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
6
- ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
7
- CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
8
- Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)"
9
- DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
10
- EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)."
11
- EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
12
- EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
13
- EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
14
- EEGNetv1,General,Classification,128,"n_chans, n_outputs, n_times",3052,"EEGNetv1(n_chans=22, n_outputs=4, n_times=512)"
15
- EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)"
16
- EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)"
17
- EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)"
18
- EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)"
19
- EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)"
20
- EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)"
21
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
22
- MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)"
23
- SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)"
24
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
25
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
26
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
27
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
28
- SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
29
- ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
30
- SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
31
- SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)"
32
- SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
33
- SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)"
34
- SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
35
- TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
36
- TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)"
37
- USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
38
- FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
39
- FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
40
- FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
41
- IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
1
+ Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
2
+ ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
+ AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
+ BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
6
+ ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
+ CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
+ Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
9
+ DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution"
10
+ EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
11
+ EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
12
+ EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
13
+ EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
14
+ EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)","Convolution"
15
+ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
16
+ EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution"
17
+ EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)","Interpretability"
18
+ EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
19
+ EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
20
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
21
+ MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
22
+ SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
23
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
25
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
26
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
27
+ SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
28
+ ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
29
+ SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
30
+ SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
31
+ SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
32
+ SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
33
+ SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
34
+ TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
35
+ TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
36
+ USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
37
+ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
38
+ FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
39
+ FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
40
+ IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
@@ -55,7 +55,6 @@ models_mandatory_parameters = [
55
55
  ("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
56
56
  ("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
57
57
  ("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
58
- ("EEGNetv1", ["n_chans", "n_outputs", "n_times"], None),
59
58
  ("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
60
59
  ("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
61
60
  ("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.0.dev180217551"
1
+ __version__ = "1.2.0.dev182051616"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.2.0.dev180217551
3
+ Version: 1.2.0.dev182051616
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -49,6 +49,9 @@ Requires-Dist: mypy; extra == "tests"
49
49
  Provides-Extra: docs
50
50
  Requires-Dist: sphinx_gallery; extra == "docs"
51
51
  Requires-Dist: sphinx_rtd_theme; extra == "docs"
52
+ Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
53
+ Requires-Dist: sphinx-autobuild; extra == "docs"
54
+ Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
52
55
  Requires-Dist: pydata_sphinx_theme; extra == "docs"
53
56
  Requires-Dist: numpydoc; extra == "docs"
54
57
  Requires-Dist: memory_profiler; extra == "docs"
@@ -59,6 +62,7 @@ Requires-Dist: lightning; extra == "docs"
59
62
  Requires-Dist: seaborn; extra == "docs"
60
63
  Requires-Dist: pre-commit; extra == "docs"
61
64
  Requires-Dist: openneuro-py; extra == "docs"
65
+ Requires-Dist: plotly; extra == "docs"
62
66
  Provides-Extra: all
63
67
  Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
64
68
  Dynamic: license-file
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
3
3
  braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
4
4
  braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
5
5
  braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
6
- braindecode/version.py,sha256=Y04aPFEYg6CFbsSt6BtmY3lNGnXYQ3FAwT0WYnn5X2Q,35
6
+ braindecode/version.py,sha256=UBhbCtvDxXjja87T5xAaQL56WHDquQLzEwy-0_4QxRE,35
7
7
  braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
8
8
  braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
9
9
  braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
@@ -26,9 +26,9 @@ braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,
26
26
  braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
27
27
  braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
28
28
  braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
29
- braindecode/models/__init__.py,sha256=xv1QPELZxocPgbc_mz-eYM5w08ZDNOsDV4pOnIFhUww,2551
29
+ braindecode/models/__init__.py,sha256=tFnuWNTnQreNCpLGIOFYVqQ2hrXT0p8_Zcd11ln8zW4,2525
30
30
  braindecode/models/atcnet.py,sha256=Pn5KzQjv7YxSNDr_CY6O_Yg9K4m9XJ7btCIqyzkcPxc,32102
31
- braindecode/models/attentionbasenet.py,sha256=zqSzrFAjl89EoacWHuPLbjBRY4RW2awdhWElb-d9JjY,30178
31
+ braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
32
32
  braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
33
33
  braindecode/models/biot.py,sha256=T4PymX3penMJcrdfb5Nq6B3P-jyP2laAIu_R9o3uCXo,17512
34
34
  braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
@@ -41,7 +41,7 @@ braindecode/models/eeginception_mi.py,sha256=aKJRFuYrpbcRbmmT2xVghKbK8pnl7fzu5hr
41
41
  braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
42
42
  braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
43
43
  braindecode/models/eegnet.py,sha256=CtfQuw7iaxQh3j1dRmF_UhdjfO3uHOlObnmasHk_boM,19268
44
- braindecode/models/eegnex.py,sha256=xfaISCgW5ShlUh9fFBHc5ylz80OhW5C69Fi-_0hVS5U,13767
44
+ braindecode/models/eegnex.py,sha256=JsQNFe5sXutgF6db2oOhqhQPubTdPRNIouEfUCOtE84,13614
45
45
  braindecode/models/eegresnet.py,sha256=cqWOSGqfJN_dNYUU9l8nYd_S3T1N-UX5-encKQzfBlg,12057
46
46
  braindecode/models/eegsimpleconv.py,sha256=sHpK-7ZGOCMuXsdkSVuarFTd1T0jMJUP_xwXP3gxQwc,7268
47
47
  braindecode/models/eegtcnet.py,sha256=np-93Ttctp2uaEYpMrfXfH5bJmCOUZZHLjv8GJEEym4,10830
@@ -60,13 +60,13 @@ braindecode/models/sleep_stager_blanco_2020.py,sha256=qPKMDLuv4J7et4dZHyTe-j0oB6
60
60
  braindecode/models/sleep_stager_chambon_2018.py,sha256=62x2Rdjd5UZDX8YlnfAtdRCrjLsPvPpnUweGElZLdkw,5213
61
61
  braindecode/models/sleep_stager_eldele_2021.py,sha256=-4ISuznykDy9ZFzUM-OeiGCwmgM3U-LuyoDSrhPbRDw,17555
62
62
  braindecode/models/sparcnet.py,sha256=eZMoJOxlcIyHPdQiX7KXUKuUBlAWkTwsXNWmNma_KAI,13941
63
- braindecode/models/summary.csv,sha256=l7HYYwv3Z69JRPVIhVq-wr_nC1J1KIz6IGw_zeRSk58,6110
63
+ braindecode/models/summary.csv,sha256=9AKKSeyp8mYV5RhbDxF599c-KZCiAMbKyjgIzz8qFZM,6910
64
64
  braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
65
65
  braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
66
66
  braindecode/models/tidnet.py,sha256=k7Q0yAnEBmq1sqhsvoV4-g8wfYSUQ-C3iYxfLp5m8xQ,11805
67
67
  braindecode/models/tsinception.py,sha256=EcfLDDJXZloh_vrKRuxAHYRZ1EVWlEKHNXqybTRrTbQ,10116
68
68
  braindecode/models/usleep.py,sha256=dFh3KiZITu13gMxcbPGoK4hq2ySDWzVSCQXkj1006w0,11605
69
- braindecode/models/util.py,sha256=VrhwG1YBGwKohCej6TmhrNAIoleQHRu3YdiBPuHFY_E,5302
69
+ braindecode/models/util.py,sha256=mrfQz7srxcpHvZEOuCesMDkgrZUlfusnCvFLjDLAh5Y,5241
70
70
  braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
71
71
  braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
72
72
  braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
93
93
  braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
94
94
  braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
95
95
  braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
96
- braindecode-1.2.0.dev180217551.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
- braindecode-1.2.0.dev180217551.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
- braindecode-1.2.0.dev180217551.dist-info/METADATA,sha256=3_WlN-hqNZ-mvQRBABpJzmU2cIb_RKSpjWtgghqT4A0,6883
99
- braindecode-1.2.0.dev180217551.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
- braindecode-1.2.0.dev180217551.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
- braindecode-1.2.0.dev180217551.dist-info/RECORD,,
96
+ braindecode-1.2.0.dev182051616.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
+ braindecode-1.2.0.dev182051616.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
+ braindecode-1.2.0.dev182051616.dist-info/METADATA,sha256=EvvamvHaX0hF1VtnVroRL1_yXfpiuxNNXj8QI6iJDuk,7081
99
+ braindecode-1.2.0.dev182051616.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
+ braindecode-1.2.0.dev182051616.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
+ braindecode-1.2.0.dev182051616.dist-info/RECORD,,