braindecode 0.8__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (102) hide show
  1. braindecode/__init__.py +1 -2
  2. braindecode/augmentation/__init__.py +50 -0
  3. braindecode/augmentation/base.py +222 -0
  4. braindecode/augmentation/functional.py +1096 -0
  5. braindecode/augmentation/transforms.py +1274 -0
  6. braindecode/classifier.py +26 -24
  7. braindecode/datasets/__init__.py +34 -0
  8. braindecode/datasets/base.py +840 -0
  9. braindecode/datasets/bbci.py +694 -0
  10. braindecode/datasets/bcicomp.py +194 -0
  11. braindecode/datasets/bids.py +245 -0
  12. braindecode/datasets/mne.py +172 -0
  13. braindecode/datasets/moabb.py +209 -0
  14. braindecode/datasets/nmt.py +311 -0
  15. braindecode/datasets/sleep_physio_challe_18.py +412 -0
  16. braindecode/datasets/sleep_physionet.py +125 -0
  17. braindecode/datasets/tuh.py +588 -0
  18. braindecode/datasets/xy.py +95 -0
  19. braindecode/datautil/__init__.py +49 -0
  20. braindecode/datautil/serialization.py +342 -0
  21. braindecode/datautil/util.py +41 -0
  22. braindecode/eegneuralnet.py +63 -47
  23. braindecode/functional/__init__.py +10 -0
  24. braindecode/functional/functions.py +251 -0
  25. braindecode/functional/initialization.py +47 -0
  26. braindecode/models/__init__.py +52 -0
  27. braindecode/models/atcnet.py +652 -0
  28. braindecode/models/attentionbasenet.py +550 -0
  29. braindecode/models/base.py +296 -0
  30. braindecode/models/biot.py +483 -0
  31. braindecode/models/contrawr.py +296 -0
  32. braindecode/models/ctnet.py +450 -0
  33. braindecode/models/deep4.py +322 -0
  34. braindecode/models/deepsleepnet.py +295 -0
  35. braindecode/models/eegconformer.py +372 -0
  36. braindecode/models/eeginception_erp.py +304 -0
  37. braindecode/models/eeginception_mi.py +371 -0
  38. braindecode/models/eegitnet.py +301 -0
  39. braindecode/models/eegminer.py +255 -0
  40. braindecode/models/eegnet.py +473 -0
  41. braindecode/models/eegnex.py +247 -0
  42. braindecode/models/eegresnet.py +362 -0
  43. braindecode/models/eegsimpleconv.py +199 -0
  44. braindecode/models/eegtcnet.py +335 -0
  45. braindecode/models/fbcnet.py +221 -0
  46. braindecode/models/fblightconvnet.py +313 -0
  47. braindecode/models/fbmsnet.py +325 -0
  48. braindecode/models/hybrid.py +126 -0
  49. braindecode/models/ifnet.py +441 -0
  50. braindecode/models/labram.py +1166 -0
  51. braindecode/models/msvtnet.py +375 -0
  52. braindecode/models/sccnet.py +182 -0
  53. braindecode/models/shallow_fbcsp.py +208 -0
  54. braindecode/models/signal_jepa.py +1012 -0
  55. braindecode/models/sinc_shallow.py +337 -0
  56. braindecode/models/sleep_stager_blanco_2020.py +167 -0
  57. braindecode/models/sleep_stager_chambon_2018.py +157 -0
  58. braindecode/models/sleep_stager_eldele_2021.py +536 -0
  59. braindecode/models/sparcnet.py +378 -0
  60. braindecode/models/summary.csv +41 -0
  61. braindecode/models/syncnet.py +232 -0
  62. braindecode/models/tcn.py +273 -0
  63. braindecode/models/tidnet.py +395 -0
  64. braindecode/models/tsinception.py +258 -0
  65. braindecode/models/usleep.py +340 -0
  66. braindecode/models/util.py +133 -0
  67. braindecode/modules/__init__.py +38 -0
  68. braindecode/modules/activation.py +60 -0
  69. braindecode/modules/attention.py +757 -0
  70. braindecode/modules/blocks.py +108 -0
  71. braindecode/modules/convolution.py +274 -0
  72. braindecode/modules/filter.py +632 -0
  73. braindecode/modules/layers.py +133 -0
  74. braindecode/modules/linear.py +50 -0
  75. braindecode/modules/parametrization.py +38 -0
  76. braindecode/modules/stats.py +77 -0
  77. braindecode/modules/util.py +77 -0
  78. braindecode/modules/wrapper.py +75 -0
  79. braindecode/preprocessing/__init__.py +37 -0
  80. braindecode/preprocessing/mne_preprocess.py +77 -0
  81. braindecode/preprocessing/preprocess.py +478 -0
  82. braindecode/preprocessing/windowers.py +1031 -0
  83. braindecode/regressor.py +23 -12
  84. braindecode/samplers/__init__.py +18 -0
  85. braindecode/samplers/base.py +401 -0
  86. braindecode/samplers/ssl.py +263 -0
  87. braindecode/training/__init__.py +23 -0
  88. braindecode/training/callbacks.py +23 -0
  89. braindecode/training/losses.py +105 -0
  90. braindecode/training/scoring.py +483 -0
  91. braindecode/util.py +55 -59
  92. braindecode/version.py +1 -1
  93. braindecode/visualization/__init__.py +8 -0
  94. braindecode/visualization/confusion_matrices.py +289 -0
  95. braindecode/visualization/gradients.py +57 -0
  96. {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info}/METADATA +39 -55
  97. braindecode-1.0.0.dist-info/RECORD +101 -0
  98. {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info}/WHEEL +1 -1
  99. {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info/licenses}/LICENSE.txt +1 -1
  100. braindecode-1.0.0.dist-info/licenses/NOTICE.txt +20 -0
  101. braindecode-0.8.dist-info/RECORD +0 -11
  102. {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,258 @@
1
+ # Authors: Bruno Aristimunha <b.aristimunha>
2
+ #
3
+ # License: BSD (3-clause)
4
+
5
+ from __future__ import annotations
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ from einops.layers.torch import Rearrange
10
+
11
+ from braindecode.models.base import EEGModuleMixin
12
+
13
+
14
+ class TSceptionV1(EEGModuleMixin, nn.Module):
15
+ """TSception model from Ding et al. (2020) from [ding2020]_.
16
+
17
+ TSception: A deep learning framework for emotion detection using EEG.
18
+
19
+ .. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
20
+ :align: center
21
+ :alt: TSceptionV1 Architecture
22
+
23
+ The model consists of temporal and spatial convolutional layers
24
+ (Tception and Sception) designed to learn temporal and spatial features
25
+ from EEG data.
26
+
27
+ Parameters
28
+ ----------
29
+ number_filter_temp : int
30
+ Number of temporal convolutional filters.
31
+ number_filter_spat : int
32
+ Number of spatial convolutional filters.
33
+ hidden_size : int
34
+ Number of units in the hidden fully connected layer.
35
+ drop_prob : float
36
+ Dropout rate applied after the hidden layer.
37
+ activation : nn.Module, optional
38
+ Activation function class to apply. Should be a PyTorch activation
39
+ module like ``nn.ReLU`` or ``nn.LeakyReLU``. Default is ``nn.LeakyReLU``.
40
+ pool_size : int, optional
41
+ Pooling size for the average pooling layers. Default is 8.
42
+ inception_windows : list[float], optional
43
+ List of window sizes (in seconds) for the inception modules.
44
+ Default is [0.5, 0.25, 0.125].
45
+
46
+ Notes
47
+ -----
48
+ This implementation is not guaranteed to be correct, has not been checked
49
+ by original authors. The modifications are minimal and the model is expected
50
+ to work as intended. the original code from [code2020]_.
51
+
52
+ References
53
+ ----------
54
+ .. [ding2020] Ding, Y., Robinson, N., Zeng, Q., Chen, D., Wai, A. A. P.,
55
+ Lee, T. S., & Guan, C. (2020, July). Tsception: a deep learning framework
56
+ for emotion detection using EEG. In 2020 international joint conference
57
+ on neural networks (IJCNN) (pp. 1-7). IEEE.
58
+ .. [code2020] Ding, Y., Robinson, N., Zeng, Q., Chen, D., Wai, A. A. P.,
59
+ Lee, T. S., & Guan, C. (2020, July). Tsception: a deep learning framework
60
+ for emotion detection using EEG.
61
+ https://github.com/deepBrains/TSception/blob/master/Models.py
62
+ """
63
+
64
+ def __init__(
65
+ self,
66
+ # Braindecode parameters
67
+ n_chans=None,
68
+ n_outputs=None,
69
+ input_window_seconds=None,
70
+ chs_info=None,
71
+ n_times=None,
72
+ sfreq=None,
73
+ # Model parameters
74
+ number_filter_temp: int = 9,
75
+ number_filter_spat: int = 6,
76
+ hidden_size: int = 128,
77
+ drop_prob: float = 0.5,
78
+ activation: nn.Module = nn.LeakyReLU,
79
+ pool_size: int = 8,
80
+ inception_windows: tuple[float, float, float] = (0.5, 0.25, 0.125),
81
+ ):
82
+ super().__init__(
83
+ n_outputs=n_outputs,
84
+ n_chans=n_chans,
85
+ chs_info=chs_info,
86
+ n_times=n_times,
87
+ input_window_seconds=input_window_seconds,
88
+ sfreq=sfreq,
89
+ )
90
+ del n_outputs, n_chans, chs_info, n_times, input_window_seconds, sfreq
91
+
92
+ self.activation = activation
93
+ self.pool_size = pool_size
94
+ self.inception_windows = inception_windows
95
+ self.number_filter_spat = number_filter_spat
96
+ self.number_filter_temp = number_filter_temp
97
+ self.drop_prob = drop_prob
98
+
99
+ ### Layers
100
+ self.ensuredim = Rearrange("batch nchans time -> batch 1 nchans time")
101
+ # Define temporal convolutional layers (Tception)
102
+ self.temporal_blocks = nn.ModuleList(
103
+ [
104
+ self._conv_block(
105
+ in_channels=1,
106
+ out_channels=number_filter_temp,
107
+ kernel_size=(1, int(window * self.sfreq)),
108
+ stride=1,
109
+ pool_size=self.pool_size,
110
+ activation=self.activation,
111
+ )
112
+ for window in self.inception_windows
113
+ ]
114
+ )
115
+ self.batch_temporal_lay = nn.BatchNorm2d(self.number_filter_temp)
116
+
117
+ # Define spatial convolutional layers (Sception)
118
+
119
+ pool_size_spat = self.pool_size // 4
120
+
121
+ self.spatial_block_1 = self._conv_block(
122
+ in_channels=self.number_filter_temp,
123
+ out_channels=self.number_filter_spat,
124
+ kernel_size=(self.n_chans, 1),
125
+ stride=1,
126
+ pool_size=pool_size_spat,
127
+ activation=self.activation,
128
+ )
129
+
130
+ kernel_size_spat_2 = (max(1, self.n_chans // 2), 1)
131
+
132
+ self.spatial_block_2 = self._conv_block(
133
+ in_channels=self.number_filter_temp,
134
+ out_channels=self.number_filter_spat,
135
+ kernel_size=kernel_size_spat_2,
136
+ stride=kernel_size_spat_2,
137
+ pool_size=pool_size_spat,
138
+ activation=self.activation,
139
+ )
140
+ self.batch_spatial_lay = nn.BatchNorm2d(self.number_filter_spat)
141
+
142
+ # Calculate the size of the features after convolution and pooling layers
143
+ self.feature_size = self._calculate_feature_size()
144
+ # self.feature_size = self.number_filter_spat *
145
+ # Define the final classification layers
146
+
147
+ self.dense_layer = nn.Sequential(
148
+ nn.Linear(self.feature_size, hidden_size),
149
+ self.activation(),
150
+ nn.Dropout(self.drop_prob),
151
+ )
152
+
153
+ self.final_layer = nn.Linear(hidden_size, self.n_outputs)
154
+
155
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
156
+ """
157
+ Forward pass of the TSception model.
158
+
159
+ Parameters
160
+ ----------
161
+ x : torch.Tensor
162
+ Input tensor of shape (batch_size, n_channels, n_times).
163
+
164
+ Returns
165
+ -------
166
+ torch.Tensor
167
+ Output tensor of shape (batch_size, n_classes).
168
+ """
169
+ # Temporal Convolution
170
+ # shape: (batch_size, n_channels, n_times)
171
+ x = self.ensuredim(x)
172
+ # shape: (batch_size, 1, n_channels, n_times)
173
+
174
+ t_features = [layer(x) for layer in self.temporal_blocks]
175
+ # shape: (batch_size, number_filter_temp, n_channels,
176
+ #
177
+ t_out = torch.cat(t_features, dim=-1)
178
+
179
+ t_out = self.batch_temporal_lay(t_out)
180
+
181
+ # Spatial Convolution
182
+ s_out1 = self.spatial_block_1(t_out)
183
+ s_out2 = self.spatial_block_2(t_out)
184
+ s_out = torch.cat((s_out1, s_out2), dim=2)
185
+ s_out = self.batch_spatial_lay(s_out)
186
+
187
+ # Flatten and apply final layers
188
+ s_out = s_out.view(s_out.size(0), -1)
189
+ output = self.dense_layer(s_out)
190
+ output = self.final_layer(output)
191
+ return output
192
+
193
+ def _calculate_feature_size(self) -> int:
194
+ """
195
+ Calculates the size of the features after convolution and pooling layers.
196
+
197
+ Returns
198
+ -------
199
+ int
200
+ Flattened size of the features after convolution and pooling layers.
201
+ """
202
+ with torch.no_grad():
203
+ dummy_input = torch.ones(1, 1, self.n_chans, self.n_times)
204
+ t_features = [layer(dummy_input) for layer in self.temporal_blocks]
205
+ t_out = torch.cat(t_features, dim=-1)
206
+ t_out = self.batch_temporal_lay(t_out)
207
+
208
+ s_out1 = self.spatial_block_1(t_out)
209
+ s_out2 = self.spatial_block_2(t_out)
210
+ s_out = torch.cat((s_out1, s_out2), dim=2)
211
+ s_out = self.batch_spatial_lay(s_out)
212
+
213
+ feature_size = s_out.view(1, -1).size(1)
214
+ return feature_size
215
+
216
+ @staticmethod
217
+ def _conv_block(
218
+ in_channels: int,
219
+ out_channels: int,
220
+ kernel_size: tuple,
221
+ stride: tuple[int, int] | int,
222
+ pool_size: int,
223
+ activation: nn.Module,
224
+ ) -> nn.Sequential:
225
+ """
226
+ Creates a convolutional block with Conv2d, activation, and AvgPool2d layers.
227
+
228
+ Parameters
229
+ ----------
230
+ in_channels : int
231
+ Number of input channels.
232
+ out_channels : int
233
+ Number of output channels.
234
+ kernel_size : tuple
235
+ Size of the convolutional kernel.
236
+ stride : int
237
+ Stride of the convolution.
238
+ pool_size : int
239
+ Size of the pooling kernel.
240
+ activation : nn.Module
241
+ Activation function class.
242
+
243
+ Returns
244
+ -------
245
+ nn.Sequential
246
+ A sequential container of the convolutional block.
247
+ """
248
+ return nn.Sequential(
249
+ nn.Conv2d(
250
+ in_channels=in_channels,
251
+ out_channels=out_channels,
252
+ kernel_size=kernel_size,
253
+ stride=stride,
254
+ padding=0,
255
+ ),
256
+ activation(),
257
+ nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
258
+ )
@@ -0,0 +1,340 @@
1
+ # Authors: Theo Gnassounou <theo.gnassounou@inria.fr>
2
+ # Omar Chehab <l-emir-omar.chehab@inria.fr>
3
+ #
4
+ # License: BSD (3-clause)
5
+
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torch import nn
10
+
11
+ from braindecode.models.base import EEGModuleMixin
12
+
13
+
14
+ class USleep(EEGModuleMixin, nn.Module):
15
+ """
16
+ Sleep staging architecture from Perslev et al. (2021) [1]_.
17
+
18
+ .. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
19
+ :align: center
20
+ :alt: USleep Architecture
21
+
22
+ U-Net (autoencoder with skip connections) feature-extractor for sleep
23
+ staging described in [1]_.
24
+
25
+ For the encoder ('down'):
26
+ - the temporal dimension shrinks (via maxpooling in the time-domain)
27
+ - the spatial dimension expands (via more conv1d filters in the time-domain)
28
+
29
+ For the decoder ('up'):
30
+ - the temporal dimension expands (via upsampling in the time-domain)
31
+ - the spatial dimension shrinks (via fewer conv1d filters in the time-domain)
32
+
33
+ Both do so at exponential rates.
34
+
35
+ Parameters
36
+ ----------
37
+ n_chans : int
38
+ Number of EEG or EOG channels. Set to 2 in [1]_ (1 EEG, 1 EOG).
39
+ sfreq : float
40
+ EEG sampling frequency. Set to 128 in [1]_.
41
+ depth : int
42
+ Number of conv blocks in encoding layer (number of 2x2 max pools).
43
+ Note: each block halves the spatial dimensions of the features.
44
+ n_time_filters : int
45
+ Initial number of convolutional filters. Set to 5 in [1]_.
46
+ complexity_factor : float
47
+ Multiplicative factor for the number of channels at each layer of the U-Net.
48
+ Set to 2 in [1]_.
49
+ with_skip_connection : bool
50
+ If True, use skip connections in decoder blocks.
51
+ n_outputs : int
52
+ Number of outputs/classes. Set to 5.
53
+ input_window_seconds : float
54
+ Size of the input, in seconds. Set to 30 in [1]_.
55
+ time_conv_size_s : float
56
+ Size of the temporal convolution kernel, in seconds. Set to 9 / 128 in
57
+ [1]_.
58
+ ensure_odd_conv_size : bool
59
+ If True and the size of the convolutional kernel is an even number, one
60
+ will be added to it to ensure it is odd, so that the decoder blocks can
61
+ work. This can be useful when using different sampling rates from 128
62
+ or 100 Hz.
63
+ activation : nn.Module, default=nn.ELU
64
+ Activation function class to apply. Should be a PyTorch activation
65
+ module class like ``nn.ReLU`` or ``nn.ELU``. Default is ``nn.ELU``.
66
+
67
+ References
68
+ ----------
69
+ .. [1] Perslev M, Darkner S, Kempfner L, Nikolic M, Jennum PJ, Igel C.
70
+ U-Sleep: resilient high-frequency sleep staging. *npj Digit. Med.* 4, 72 (2021).
71
+ https://github.com/perslev/U-Time/blob/master/utime/models/usleep.py
72
+ """
73
+
74
+ def __init__(
75
+ self,
76
+ n_chans=None,
77
+ sfreq=None,
78
+ depth=12,
79
+ n_time_filters=5,
80
+ complexity_factor=1.67,
81
+ with_skip_connection=True,
82
+ n_outputs=5,
83
+ input_window_seconds=None,
84
+ time_conv_size_s=9 / 128,
85
+ ensure_odd_conv_size=False,
86
+ activation: nn.Module = nn.ELU,
87
+ chs_info=None,
88
+ n_times=None,
89
+ ):
90
+ super().__init__(
91
+ n_outputs=n_outputs,
92
+ n_chans=n_chans,
93
+ chs_info=chs_info,
94
+ n_times=n_times,
95
+ input_window_seconds=input_window_seconds,
96
+ sfreq=sfreq,
97
+ )
98
+ del n_outputs, n_chans, chs_info, n_times, input_window_seconds, sfreq
99
+
100
+ self.mapping = {
101
+ "clf.3.weight": "final_layer.0.weight",
102
+ "clf.3.bias": "final_layer.0.bias",
103
+ "clf.5.weight": "final_layer.2.weight",
104
+ "clf.5.bias": "final_layer.2.bias",
105
+ }
106
+
107
+ max_pool_size = 2 # Hardcoded to avoid dimensional errors
108
+ time_conv_size = int(np.round(time_conv_size_s * self.sfreq))
109
+ if time_conv_size % 2 == 0:
110
+ if ensure_odd_conv_size:
111
+ time_conv_size += 1
112
+ else:
113
+ raise ValueError(
114
+ "time_conv_size must be an odd number to accommodate the "
115
+ "upsampling step in the decoder blocks."
116
+ )
117
+
118
+ channels = [self.n_chans]
119
+ n_filters = n_time_filters
120
+ for _ in range(depth + 1):
121
+ channels.append(int(n_filters * np.sqrt(complexity_factor)))
122
+ n_filters = int(n_filters * np.sqrt(2))
123
+ self.channels = channels
124
+
125
+ # Instantiate encoder
126
+ self.encoder_blocks = nn.ModuleList(
127
+ _EncoderBlock(
128
+ in_channels=channels[idx],
129
+ out_channels=channels[idx + 1],
130
+ kernel_size=time_conv_size,
131
+ downsample=max_pool_size,
132
+ activation=activation,
133
+ )
134
+ for idx in range(depth)
135
+ )
136
+
137
+ # Instantiate bottom (channels increase, temporal dim stays the same)
138
+ self.bottom = nn.Sequential(
139
+ nn.Conv1d(
140
+ in_channels=channels[-2],
141
+ out_channels=channels[-1],
142
+ kernel_size=time_conv_size,
143
+ padding=(time_conv_size - 1) // 2,
144
+ ), # preserves dimension
145
+ activation(),
146
+ nn.BatchNorm1d(num_features=channels[-1]),
147
+ )
148
+
149
+ # Instantiate decoder
150
+ channels_reverse = channels[::-1]
151
+ self.decoder_blocks = nn.ModuleList(
152
+ _DecoderBlock(
153
+ in_channels=channels_reverse[idx],
154
+ out_channels=channels_reverse[idx + 1],
155
+ kernel_size=time_conv_size,
156
+ upsample=max_pool_size,
157
+ with_skip_connection=with_skip_connection,
158
+ activation=activation,
159
+ )
160
+ for idx in range(depth)
161
+ )
162
+
163
+ # The temporal dimension remains unchanged
164
+ # (except through the AvgPooling which collapses it to 1)
165
+ # The spatial dimension is preserved from the end of the UNet, and is mapped to n_classes
166
+
167
+ self.clf = nn.Sequential(
168
+ nn.Conv1d(
169
+ in_channels=channels[1],
170
+ out_channels=channels[1],
171
+ kernel_size=1,
172
+ stride=1,
173
+ padding=0,
174
+ ), # output is (B, C, 1, S * T)
175
+ nn.Tanh(),
176
+ nn.AvgPool1d(self.n_times), # output is (B, C, S)
177
+ )
178
+
179
+ self.final_layer = nn.Sequential(
180
+ nn.Conv1d(
181
+ in_channels=channels[1],
182
+ out_channels=self.n_outputs,
183
+ kernel_size=1,
184
+ stride=1,
185
+ padding=0,
186
+ ), # output is (B, n_classes, S)
187
+ activation(),
188
+ nn.Conv1d(
189
+ in_channels=self.n_outputs,
190
+ out_channels=self.n_outputs,
191
+ kernel_size=1,
192
+ stride=1,
193
+ padding=0,
194
+ ),
195
+ nn.Identity(),
196
+ # output is (B, n_classes, S)
197
+ )
198
+
199
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
200
+ """If input x has shape (B, S, C, T), return y_pred of shape (B, n_classes, S).
201
+ If input x has shape (B, C, T), return y_pred of shape (B, n_classes).
202
+ """
203
+ # reshape input
204
+ if x.ndim == 4: # input x has shape (B, S, C, T)
205
+ x = x.permute(0, 2, 1, 3) # (B, C, S, T)
206
+ x = x.flatten(start_dim=2) # (B, C, S * T)
207
+
208
+ # encoder
209
+ residuals = []
210
+ for down in self.encoder_blocks:
211
+ x, res = down(x)
212
+ residuals.append(res)
213
+
214
+ # bottom
215
+ x = self.bottom(x)
216
+
217
+ # decoder
218
+ num_blocks = len(self.decoder_blocks) # statically known
219
+ for idx, dec in enumerate(self.decoder_blocks):
220
+ # pick the matching residual in reverse order
221
+ res = residuals[num_blocks - 1 - idx]
222
+ x = dec(x, res)
223
+
224
+ # classifier
225
+ x = self.clf(x)
226
+ y_pred = self.final_layer(x) # (B, n_classes, seq_length)
227
+
228
+ if y_pred.shape[-1] == 1: # seq_length of 1
229
+ y_pred = y_pred[:, :, 0]
230
+
231
+ return y_pred
232
+
233
+
234
+ class _EncoderBlock(nn.Module):
235
+ """Encoding block for a timeseries x of shape (B, C, T)."""
236
+
237
+ def __init__(
238
+ self,
239
+ in_channels=2,
240
+ out_channels=2,
241
+ kernel_size=9,
242
+ downsample=2,
243
+ activation: nn.Module = nn.ELU,
244
+ ):
245
+ super().__init__()
246
+ self.in_channels = in_channels
247
+ self.out_channels = out_channels
248
+ self.kernel_size = kernel_size
249
+ self.downsample = downsample
250
+
251
+ self.block_prepool = nn.Sequential(
252
+ nn.Conv1d(
253
+ in_channels=in_channels,
254
+ out_channels=out_channels,
255
+ kernel_size=kernel_size,
256
+ padding="same",
257
+ ),
258
+ activation(),
259
+ nn.BatchNorm1d(num_features=out_channels),
260
+ )
261
+
262
+ self.pad = nn.ConstantPad1d(padding=1, value=0.0)
263
+ self.maxpool = nn.MaxPool1d(kernel_size=self.downsample, stride=self.downsample)
264
+
265
+ def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
266
+ x = self.block_prepool(x)
267
+ residual = x
268
+ if x.shape[-1] % 2:
269
+ x = self.pad(x)
270
+ x = self.maxpool(x)
271
+ return x, residual
272
+
273
+
274
+ class _DecoderBlock(nn.Module):
275
+ """Decoding block for a timeseries x of shape (B, C, T)."""
276
+
277
+ def __init__(
278
+ self,
279
+ in_channels=2,
280
+ out_channels=2,
281
+ kernel_size=9,
282
+ upsample=2,
283
+ with_skip_connection=True,
284
+ activation: nn.Module = nn.ELU,
285
+ ):
286
+ super().__init__()
287
+ self.in_channels = in_channels
288
+ self.out_channels = out_channels
289
+ self.kernel_size = kernel_size
290
+ self.upsample = upsample
291
+ self.with_skip_connection = with_skip_connection
292
+
293
+ self.block_preskip = nn.Sequential(
294
+ nn.Upsample(scale_factor=upsample),
295
+ nn.Conv1d(
296
+ in_channels=in_channels,
297
+ out_channels=out_channels,
298
+ kernel_size=2,
299
+ padding="same",
300
+ ),
301
+ activation(),
302
+ nn.BatchNorm1d(num_features=out_channels),
303
+ )
304
+ self.block_postskip = nn.Sequential(
305
+ nn.Conv1d(
306
+ in_channels=(
307
+ 2 * out_channels if with_skip_connection else out_channels
308
+ ),
309
+ out_channels=out_channels,
310
+ kernel_size=kernel_size,
311
+ padding="same",
312
+ ),
313
+ activation(),
314
+ nn.BatchNorm1d(num_features=out_channels),
315
+ )
316
+
317
+ def forward(self, x: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
318
+ x = self.block_preskip(x)
319
+ if self.with_skip_connection:
320
+ x, residual = self._crop_tensors_to_match(
321
+ x, residual, axis=-1
322
+ ) # in case of mismatch
323
+ x = torch.cat([x, residual], dim=1) # (B, 2 * C, T)
324
+ x = self.block_postskip(x)
325
+ return x
326
+
327
+ @staticmethod
328
+ def _crop_tensors_to_match(
329
+ x1: torch.Tensor, x2: torch.Tensor, axis: int = -1
330
+ ) -> tuple[torch.Tensor, torch.Tensor]:
331
+ """Crops two tensors to their lowest-common-dimension along an axis."""
332
+ dim_cropped = min(x1.shape[axis], x2.shape[axis])
333
+
334
+ x1_cropped = torch.index_select(
335
+ x1, dim=axis, index=torch.arange(dim_cropped).to(device=x1.device)
336
+ )
337
+ x2_cropped = torch.index_select(
338
+ x2, dim=axis, index=torch.arange(dim_cropped).to(device=x1.device)
339
+ )
340
+ return x1_cropped, x2_cropped