braindecode 0.8__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/__init__.py +1 -2
- braindecode/augmentation/__init__.py +50 -0
- braindecode/augmentation/base.py +222 -0
- braindecode/augmentation/functional.py +1096 -0
- braindecode/augmentation/transforms.py +1274 -0
- braindecode/classifier.py +26 -24
- braindecode/datasets/__init__.py +34 -0
- braindecode/datasets/base.py +840 -0
- braindecode/datasets/bbci.py +694 -0
- braindecode/datasets/bcicomp.py +194 -0
- braindecode/datasets/bids.py +245 -0
- braindecode/datasets/mne.py +172 -0
- braindecode/datasets/moabb.py +209 -0
- braindecode/datasets/nmt.py +311 -0
- braindecode/datasets/sleep_physio_challe_18.py +412 -0
- braindecode/datasets/sleep_physionet.py +125 -0
- braindecode/datasets/tuh.py +588 -0
- braindecode/datasets/xy.py +95 -0
- braindecode/datautil/__init__.py +49 -0
- braindecode/datautil/serialization.py +342 -0
- braindecode/datautil/util.py +41 -0
- braindecode/eegneuralnet.py +63 -47
- braindecode/functional/__init__.py +10 -0
- braindecode/functional/functions.py +251 -0
- braindecode/functional/initialization.py +47 -0
- braindecode/models/__init__.py +52 -0
- braindecode/models/atcnet.py +652 -0
- braindecode/models/attentionbasenet.py +550 -0
- braindecode/models/base.py +296 -0
- braindecode/models/biot.py +483 -0
- braindecode/models/contrawr.py +296 -0
- braindecode/models/ctnet.py +450 -0
- braindecode/models/deep4.py +322 -0
- braindecode/models/deepsleepnet.py +295 -0
- braindecode/models/eegconformer.py +372 -0
- braindecode/models/eeginception_erp.py +304 -0
- braindecode/models/eeginception_mi.py +371 -0
- braindecode/models/eegitnet.py +301 -0
- braindecode/models/eegminer.py +255 -0
- braindecode/models/eegnet.py +473 -0
- braindecode/models/eegnex.py +247 -0
- braindecode/models/eegresnet.py +362 -0
- braindecode/models/eegsimpleconv.py +199 -0
- braindecode/models/eegtcnet.py +335 -0
- braindecode/models/fbcnet.py +221 -0
- braindecode/models/fblightconvnet.py +313 -0
- braindecode/models/fbmsnet.py +325 -0
- braindecode/models/hybrid.py +126 -0
- braindecode/models/ifnet.py +441 -0
- braindecode/models/labram.py +1166 -0
- braindecode/models/msvtnet.py +375 -0
- braindecode/models/sccnet.py +182 -0
- braindecode/models/shallow_fbcsp.py +208 -0
- braindecode/models/signal_jepa.py +1012 -0
- braindecode/models/sinc_shallow.py +337 -0
- braindecode/models/sleep_stager_blanco_2020.py +167 -0
- braindecode/models/sleep_stager_chambon_2018.py +157 -0
- braindecode/models/sleep_stager_eldele_2021.py +536 -0
- braindecode/models/sparcnet.py +378 -0
- braindecode/models/summary.csv +41 -0
- braindecode/models/syncnet.py +232 -0
- braindecode/models/tcn.py +273 -0
- braindecode/models/tidnet.py +395 -0
- braindecode/models/tsinception.py +258 -0
- braindecode/models/usleep.py +340 -0
- braindecode/models/util.py +133 -0
- braindecode/modules/__init__.py +38 -0
- braindecode/modules/activation.py +60 -0
- braindecode/modules/attention.py +757 -0
- braindecode/modules/blocks.py +108 -0
- braindecode/modules/convolution.py +274 -0
- braindecode/modules/filter.py +632 -0
- braindecode/modules/layers.py +133 -0
- braindecode/modules/linear.py +50 -0
- braindecode/modules/parametrization.py +38 -0
- braindecode/modules/stats.py +77 -0
- braindecode/modules/util.py +77 -0
- braindecode/modules/wrapper.py +75 -0
- braindecode/preprocessing/__init__.py +37 -0
- braindecode/preprocessing/mne_preprocess.py +77 -0
- braindecode/preprocessing/preprocess.py +478 -0
- braindecode/preprocessing/windowers.py +1031 -0
- braindecode/regressor.py +23 -12
- braindecode/samplers/__init__.py +18 -0
- braindecode/samplers/base.py +401 -0
- braindecode/samplers/ssl.py +263 -0
- braindecode/training/__init__.py +23 -0
- braindecode/training/callbacks.py +23 -0
- braindecode/training/losses.py +105 -0
- braindecode/training/scoring.py +483 -0
- braindecode/util.py +55 -59
- braindecode/version.py +1 -1
- braindecode/visualization/__init__.py +8 -0
- braindecode/visualization/confusion_matrices.py +289 -0
- braindecode/visualization/gradients.py +57 -0
- {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info}/METADATA +39 -55
- braindecode-1.0.0.dist-info/RECORD +101 -0
- {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info}/WHEEL +1 -1
- {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info/licenses}/LICENSE.txt +1 -1
- braindecode-1.0.0.dist-info/licenses/NOTICE.txt +20 -0
- braindecode-0.8.dist-info/RECORD +0 -11
- {braindecode-0.8.dist-info → braindecode-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,296 @@
|
|
|
1
|
+
# Authors: Pierre Guetschel
|
|
2
|
+
# Maciej Sliwowski
|
|
3
|
+
#
|
|
4
|
+
# License: BSD-3
|
|
5
|
+
|
|
6
|
+
from __future__ import annotations
|
|
7
|
+
|
|
8
|
+
import warnings
|
|
9
|
+
from collections import OrderedDict
|
|
10
|
+
from typing import Dict, Iterable, Optional
|
|
11
|
+
|
|
12
|
+
import numpy as np
|
|
13
|
+
import torch
|
|
14
|
+
from docstring_inheritance import NumpyDocstringInheritanceInitMeta
|
|
15
|
+
from torchinfo import ModelStatistics, summary
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def deprecated_args(obj, *old_new_args):
|
|
19
|
+
out_args = []
|
|
20
|
+
for old_name, new_name, old_val, new_val in old_new_args:
|
|
21
|
+
if old_val is None:
|
|
22
|
+
out_args.append(new_val)
|
|
23
|
+
else:
|
|
24
|
+
warnings.warn(
|
|
25
|
+
f"{obj.__class__.__name__}: {old_name!r} is depreciated. Use {new_name!r} instead."
|
|
26
|
+
)
|
|
27
|
+
if new_val is not None:
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"{obj.__class__.__name__}: Both {old_name!r} and {new_name!r} were specified."
|
|
30
|
+
)
|
|
31
|
+
out_args.append(old_val)
|
|
32
|
+
return out_args
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class EEGModuleMixin(metaclass=NumpyDocstringInheritanceInitMeta):
|
|
36
|
+
"""
|
|
37
|
+
Mixin class for all EEG models in braindecode.
|
|
38
|
+
|
|
39
|
+
Parameters
|
|
40
|
+
----------
|
|
41
|
+
n_outputs : int
|
|
42
|
+
Number of outputs of the model. This is the number of classes
|
|
43
|
+
in the case of classification.
|
|
44
|
+
n_chans : int
|
|
45
|
+
Number of EEG channels.
|
|
46
|
+
chs_info : list of dict
|
|
47
|
+
Information about each individual EEG channel. This should be filled with
|
|
48
|
+
``info["chs"]``. Refer to :class:`mne.Info` for more details.
|
|
49
|
+
n_times : int
|
|
50
|
+
Number of time samples of the input window.
|
|
51
|
+
input_window_seconds : float
|
|
52
|
+
Length of the input window in seconds.
|
|
53
|
+
sfreq : float
|
|
54
|
+
Sampling frequency of the EEG recordings.
|
|
55
|
+
|
|
56
|
+
Raises
|
|
57
|
+
------
|
|
58
|
+
ValueError: If some input signal-related parameters are not specified
|
|
59
|
+
and can not be inferred.
|
|
60
|
+
|
|
61
|
+
Notes
|
|
62
|
+
-----
|
|
63
|
+
If some input signal-related parameters are not specified,
|
|
64
|
+
there will be an attempt to infer them from the other parameters.
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
def __init__(
|
|
68
|
+
self,
|
|
69
|
+
n_outputs: Optional[int] = None, # type: ignore[assignment]
|
|
70
|
+
n_chans: Optional[int] = None, # type: ignore[assignment]
|
|
71
|
+
chs_info=None, # type: ignore[assignment]
|
|
72
|
+
n_times: Optional[int] = None, # type: ignore[assignment]
|
|
73
|
+
input_window_seconds: Optional[float] = None, # type: ignore[assignment]
|
|
74
|
+
sfreq: Optional[float] = None, # type: ignore[assignment]
|
|
75
|
+
):
|
|
76
|
+
if n_chans is not None and chs_info is not None and len(chs_info) != n_chans:
|
|
77
|
+
raise ValueError(f"{n_chans=} different from {chs_info=} length")
|
|
78
|
+
if (
|
|
79
|
+
n_times is not None
|
|
80
|
+
and input_window_seconds is not None
|
|
81
|
+
and sfreq is not None
|
|
82
|
+
and n_times != int(input_window_seconds * sfreq)
|
|
83
|
+
):
|
|
84
|
+
raise ValueError(
|
|
85
|
+
f"{n_times=} different from {input_window_seconds=} * {sfreq=}"
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
self._input_window_seconds = input_window_seconds # type: ignore[assignment]
|
|
89
|
+
self._chs_info = chs_info # type: ignore[assignment]
|
|
90
|
+
self._n_outputs = n_outputs # type: ignore[assignment]
|
|
91
|
+
self._n_chans = n_chans # type: ignore[assignment]
|
|
92
|
+
self._n_times = n_times # type: ignore[assignment]
|
|
93
|
+
self._sfreq = sfreq # type: ignore[assignment]
|
|
94
|
+
|
|
95
|
+
super().__init__()
|
|
96
|
+
|
|
97
|
+
@property
|
|
98
|
+
def n_outputs(self) -> int:
|
|
99
|
+
if self._n_outputs is None:
|
|
100
|
+
raise ValueError("n_outputs not specified.")
|
|
101
|
+
return self._n_outputs
|
|
102
|
+
|
|
103
|
+
@property
|
|
104
|
+
def n_chans(self) -> int:
|
|
105
|
+
if self._n_chans is None and self._chs_info is not None:
|
|
106
|
+
return len(self._chs_info)
|
|
107
|
+
elif self._n_chans is None:
|
|
108
|
+
raise ValueError(
|
|
109
|
+
"n_chans could not be inferred. Either specify n_chans or chs_info."
|
|
110
|
+
)
|
|
111
|
+
return self._n_chans
|
|
112
|
+
|
|
113
|
+
@property
|
|
114
|
+
def chs_info(self) -> list[str]:
|
|
115
|
+
if self._chs_info is None:
|
|
116
|
+
raise ValueError("chs_info not specified.")
|
|
117
|
+
return self._chs_info
|
|
118
|
+
|
|
119
|
+
@property
|
|
120
|
+
def n_times(self) -> int:
|
|
121
|
+
if (
|
|
122
|
+
self._n_times is None
|
|
123
|
+
and self._input_window_seconds is not None
|
|
124
|
+
and self._sfreq is not None
|
|
125
|
+
):
|
|
126
|
+
return int(self._input_window_seconds * self._sfreq)
|
|
127
|
+
elif self._n_times is None:
|
|
128
|
+
raise ValueError(
|
|
129
|
+
"n_times could not be inferred. "
|
|
130
|
+
"Either specify n_times or input_window_seconds and sfreq."
|
|
131
|
+
)
|
|
132
|
+
return self._n_times
|
|
133
|
+
|
|
134
|
+
@property
|
|
135
|
+
def input_window_seconds(self) -> float:
|
|
136
|
+
if (
|
|
137
|
+
self._input_window_seconds is None
|
|
138
|
+
and self._n_times is not None
|
|
139
|
+
and self._sfreq is not None
|
|
140
|
+
):
|
|
141
|
+
return float(self._n_times / self._sfreq)
|
|
142
|
+
elif self._input_window_seconds is None:
|
|
143
|
+
raise ValueError(
|
|
144
|
+
"input_window_seconds could not be inferred. "
|
|
145
|
+
"Either specify input_window_seconds or n_times and sfreq."
|
|
146
|
+
)
|
|
147
|
+
return self._input_window_seconds
|
|
148
|
+
|
|
149
|
+
@property
|
|
150
|
+
def sfreq(self) -> float:
|
|
151
|
+
if (
|
|
152
|
+
self._sfreq is None
|
|
153
|
+
and self._input_window_seconds is not None
|
|
154
|
+
and self._n_times is not None
|
|
155
|
+
):
|
|
156
|
+
return float(self._n_times / self._input_window_seconds)
|
|
157
|
+
elif self._sfreq is None:
|
|
158
|
+
raise ValueError(
|
|
159
|
+
"sfreq could not be inferred. "
|
|
160
|
+
"Either specify sfreq or input_window_seconds and n_times."
|
|
161
|
+
)
|
|
162
|
+
return self._sfreq
|
|
163
|
+
|
|
164
|
+
@property
|
|
165
|
+
def input_shape(self) -> tuple[int, int, int]:
|
|
166
|
+
"""Input data shape."""
|
|
167
|
+
return (1, self.n_chans, self.n_times)
|
|
168
|
+
|
|
169
|
+
def get_output_shape(self) -> tuple[int, ...]:
|
|
170
|
+
"""Returns shape of neural network output for batch size equal 1.
|
|
171
|
+
|
|
172
|
+
Returns
|
|
173
|
+
-------
|
|
174
|
+
output_shape: tuple[int, ...]
|
|
175
|
+
shape of the network output for `batch_size==1` (1, ...)
|
|
176
|
+
"""
|
|
177
|
+
with torch.inference_mode():
|
|
178
|
+
try:
|
|
179
|
+
return tuple(
|
|
180
|
+
self.forward( # type: ignore
|
|
181
|
+
torch.zeros(
|
|
182
|
+
self.input_shape,
|
|
183
|
+
dtype=next(self.parameters()).dtype, # type: ignore
|
|
184
|
+
device=next(self.parameters()).device, # type: ignore
|
|
185
|
+
)
|
|
186
|
+
).shape
|
|
187
|
+
)
|
|
188
|
+
except RuntimeError as exc:
|
|
189
|
+
if str(exc).endswith(
|
|
190
|
+
(
|
|
191
|
+
"Output size is too small",
|
|
192
|
+
"Kernel size can't be greater than actual input size",
|
|
193
|
+
)
|
|
194
|
+
):
|
|
195
|
+
msg = (
|
|
196
|
+
"During model prediction RuntimeError was thrown showing that at some "
|
|
197
|
+
f"layer `{str(exc).split('.')[-1]}` (see above in the stacktrace). This "
|
|
198
|
+
"could be caused by providing too small `n_times`/`input_window_seconds`. "
|
|
199
|
+
"Model may require longer chunks of signal in the input than "
|
|
200
|
+
f"{self.input_shape}."
|
|
201
|
+
)
|
|
202
|
+
raise ValueError(msg) from exc
|
|
203
|
+
raise exc
|
|
204
|
+
|
|
205
|
+
mapping: Optional[Dict[str, str]] = None
|
|
206
|
+
|
|
207
|
+
def load_state_dict(self, state_dict, *args, **kwargs):
|
|
208
|
+
mapping = self.mapping if self.mapping else {}
|
|
209
|
+
new_state_dict = OrderedDict()
|
|
210
|
+
for k, v in state_dict.items():
|
|
211
|
+
if k in mapping:
|
|
212
|
+
new_state_dict[mapping[k]] = v
|
|
213
|
+
else:
|
|
214
|
+
new_state_dict[k] = v
|
|
215
|
+
|
|
216
|
+
return super().load_state_dict(new_state_dict, *args, **kwargs)
|
|
217
|
+
|
|
218
|
+
def to_dense_prediction_model(self, axis: tuple[int, ...] | int = (2, 3)) -> None:
|
|
219
|
+
"""
|
|
220
|
+
Transform a sequential model with strides to a model that outputs
|
|
221
|
+
dense predictions by removing the strides and instead inserting dilations.
|
|
222
|
+
Modifies model in-place.
|
|
223
|
+
|
|
224
|
+
Parameters
|
|
225
|
+
----------
|
|
226
|
+
axis: int or (int,int)
|
|
227
|
+
Axis to transform (in terms of intermediate output axes)
|
|
228
|
+
can either be 2, 3, or (2,3).
|
|
229
|
+
|
|
230
|
+
Notes
|
|
231
|
+
-----
|
|
232
|
+
Does not yet work correctly for average pooling.
|
|
233
|
+
Prior to version 0.1.7, there had been a bug that could move strides
|
|
234
|
+
backwards one layer.
|
|
235
|
+
|
|
236
|
+
"""
|
|
237
|
+
if not hasattr(axis, "__iter__"):
|
|
238
|
+
axis = (axis,)
|
|
239
|
+
assert all([ax in [2, 3] for ax in axis]), "Only 2 and 3 allowed for axis" # type: ignore[union-attr]
|
|
240
|
+
axis = np.array(axis) - 2
|
|
241
|
+
stride_so_far = np.array([1, 1])
|
|
242
|
+
for module in self.modules(): # type: ignore
|
|
243
|
+
if hasattr(module, "dilation"):
|
|
244
|
+
assert module.dilation == 1 or (module.dilation == (1, 1)), (
|
|
245
|
+
"Dilation should equal 1 before conversion, maybe the model is "
|
|
246
|
+
"already converted?"
|
|
247
|
+
)
|
|
248
|
+
new_dilation = [1, 1]
|
|
249
|
+
for ax in axis: # type: ignore[union-attr]
|
|
250
|
+
new_dilation[ax] = int(stride_so_far[ax])
|
|
251
|
+
module.dilation = tuple(new_dilation)
|
|
252
|
+
if hasattr(module, "stride"):
|
|
253
|
+
if not hasattr(module.stride, "__len__"):
|
|
254
|
+
module.stride = (module.stride, module.stride)
|
|
255
|
+
stride_so_far *= np.array(module.stride)
|
|
256
|
+
new_stride = list(module.stride)
|
|
257
|
+
for ax in axis: # type: ignore[union-attr]
|
|
258
|
+
new_stride[ax] = 1
|
|
259
|
+
module.stride = tuple(new_stride)
|
|
260
|
+
|
|
261
|
+
def get_torchinfo_statistics(
|
|
262
|
+
self,
|
|
263
|
+
col_names: Optional[Iterable[str]] = (
|
|
264
|
+
"input_size",
|
|
265
|
+
"output_size",
|
|
266
|
+
"num_params",
|
|
267
|
+
"kernel_size",
|
|
268
|
+
),
|
|
269
|
+
row_settings: Optional[Iterable[str]] = ("var_names", "depth"),
|
|
270
|
+
) -> ModelStatistics:
|
|
271
|
+
"""Generate table describing the model using torchinfo.summary.
|
|
272
|
+
|
|
273
|
+
Parameters
|
|
274
|
+
----------
|
|
275
|
+
col_names : tuple, optional
|
|
276
|
+
Specify which columns to show in the output, see torchinfo for details, by default
|
|
277
|
+
("input_size", "output_size", "num_params", "kernel_size")
|
|
278
|
+
row_settings : tuple, optional
|
|
279
|
+
Specify which features to show in a row, see torchinfo for details, by default
|
|
280
|
+
("var_names", "depth")
|
|
281
|
+
|
|
282
|
+
Returns
|
|
283
|
+
-------
|
|
284
|
+
torchinfo.ModelStatistics
|
|
285
|
+
ModelStatistics generated by torchinfo.summary.
|
|
286
|
+
"""
|
|
287
|
+
return summary(
|
|
288
|
+
self,
|
|
289
|
+
input_size=(1, self.n_chans, self.n_times),
|
|
290
|
+
col_names=col_names,
|
|
291
|
+
row_settings=row_settings,
|
|
292
|
+
verbose=0,
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
def __str__(self) -> str:
|
|
296
|
+
return str(self.get_torchinfo_statistics())
|