biopipen 0.34.0__py3-none-any.whl → 0.34.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

@@ -7,9 +7,9 @@ srtfile <- {{in.srtobj | r}} # nolint
7
7
  outdir <- {{out.outdir | r}} # nolint
8
8
  joboutdir <- {{job.outdir | r}} # nolint
9
9
  mutaters <- {{envs.mutaters | r}} # nolint
10
- group.by <- {{envs["group-by"] | r}} # nolint
11
- ident.1 <- {{envs["ident-1"] | r}} # nolint
12
- ident.2 <- {{envs["ident-2"] | r}} # nolint
10
+ group_by <- {{envs.group_by | default: envs["group-by"] | default: None | r}} # nolint
11
+ ident_1 <- {{envs.ident_1 | default: envs["ident-1"] | default: None | r}} # nolint
12
+ ident_2 <- {{envs.ident_2 | default: envs["ident-2"] | default: None | r}} # nolint
13
13
  each <- {{envs.each | r}} # nolint
14
14
  subset <- {{envs.subset | r}} # nolint
15
15
  gmtfile <- {{envs.gmtfile | r}} # nolint
@@ -18,6 +18,8 @@ top <- {{envs.top | r}} # nolint
18
18
  minsize <- {{envs.minSize | default: envs.minsize | r}} # nolint
19
19
  maxsize <- {{envs.maxSize | default: envs.maxsize | r}} # nolint
20
20
  eps <- {{envs.eps | r}} # nolint
21
+ alleach_plots_defaults <- {{envs.alleach_plots_defaults | r}} # nolint
22
+ alleach_plots <- {{envs.alleach_plots | r}} #
21
23
  ncores <- {{envs.ncores | r}} # nolint
22
24
  rest <- {{envs.rest | r: todot="-"}} # nolint
23
25
  cases <- {{envs.cases | r: todot="-"}} # nolint
@@ -25,6 +27,10 @@ cases <- {{envs.cases | r: todot="-"}} # nolint
25
27
  log <- get_logger()
26
28
  reporter <- get_reporter()
27
29
 
30
+ alleach_plots <- lapply(alleach_plots, function(x) {
31
+ list_update(alleach_plots_defaults, x)
32
+ })
33
+
28
34
  log$info("Reading Seurat object ...")
29
35
  srtobj <- read_obj(srtfile)
30
36
  if (!"Identity" %in% colnames(srtobj@meta.data)) {
@@ -37,9 +43,9 @@ if (!is.null(mutaters) && length(mutaters) > 0) {
37
43
  }
38
44
 
39
45
  defaults <- list(
40
- group.by = group.by,
41
- ident.1 = ident.1,
42
- ident.2 = ident.2,
46
+ group_by = group_by,
47
+ ident_1 = ident_1,
48
+ ident_2 = ident_2,
43
49
  each = each,
44
50
  subset = subset,
45
51
  gmtfile = gmtfile,
@@ -48,6 +54,8 @@ defaults <- list(
48
54
  minsize = minsize,
49
55
  maxsize = maxsize,
50
56
  eps = eps,
57
+ alleach_plots_defaults = alleach_plots_defaults,
58
+ alleach_plots = alleach_plots,
51
59
  ncores = ncores,
52
60
  rest = rest
53
61
  )
@@ -55,9 +63,13 @@ defaults <- list(
55
63
  expand_each <- function(name, case) {
56
64
  outcases <- list()
57
65
 
58
- case$group.by <- case$group.by %||% "Identity"
66
+ case$group_by <- case$group_by %||% "Identity"
59
67
 
60
68
  if (is.null(case$each) || is.na(case$each) || nchar(case$each) == 0 || isFALSE(each)) {
69
+ if (length(case$alleach_plots) > 0) {
70
+ stop("Cannot perform `alleach_plots` without `each` defined.")
71
+ }
72
+
61
73
  outcases[[name]] <- case
62
74
  } else {
63
75
  eachs <- if (!is.null(case$subset)) {
@@ -77,10 +89,13 @@ expand_each <- function(name, case) {
77
89
  newname <- paste0(case$each, "::", each)
78
90
  newcase <- case
79
91
 
80
- newcase$original_case <- name
92
+ newcase$original_case <- paste0(name, " (all ", case$each,")")
81
93
  newcase$each_name <- case$each
82
94
  newcase$each <- each
83
95
 
96
+ newcase$alleach_plots_defaults <- NULL
97
+ newcase$alleach_plots <- NULL
98
+
84
99
  if (!is.null(case$subset)) {
85
100
  newcase$subset <- paste0(case$subset, " & ", bQuote(case$each), " == '", each, "'")
86
101
  } else {
@@ -89,6 +104,18 @@ expand_each <- function(name, case) {
89
104
 
90
105
  outcases[[newname]] <- newcase
91
106
  }
107
+
108
+ if (length(case$alleach_plots) > 0) {
109
+ newcase <- case
110
+
111
+ newcase$gseas <- list()
112
+ newcase$alleach_plots <- lapply(
113
+ newcase$alleach_plots,
114
+ function(x) { list_update(newcase$alleach_plots_defaults, x) }
115
+ )
116
+
117
+ outcases[[paste0(name, " (all ", case$each,")")]] <- newcase
118
+ }
92
119
  }
93
120
  outcases
94
121
  }
@@ -108,21 +135,59 @@ ensure_sobj <- function(expr, allow_empty) {
108
135
  })
109
136
  }
110
137
 
111
-
112
138
  do_case <- function(name) {
113
139
  log$info("- Processing case: {name} ...")
114
140
  case <- cases[[name]]
115
141
  info <- case_info(name, outdir, create = TRUE)
116
142
 
143
+ if (!is.null(case$gseas)) {
144
+
145
+ each_levels <- names(case$gseas)
146
+ gseas <- do_call(rbind, lapply(each_levels, function(x) {
147
+ gsea_df <- case$gseas[[x]]
148
+ if (nrow(gsea_df) > 0) {
149
+ gsea_df[[case$each]] <- x
150
+ } else {
151
+ gsea_df[[case$each]] <- character(0) # Empty case
152
+ }
153
+ gsea_df
154
+ }))
155
+ gseas[[case$each]] <- factor(gseas[[case$each]], levels = each_levels)
156
+
157
+ for (plotname in names(case$alleach_plots)) {
158
+ plotargs <- case$alleach_plots[[plotname]]
159
+ plotargs <- extract_vars(plotargs, "devpars")
160
+ plotargs$gsea_results <- gseas
161
+ plotargs$group_by <- case$each
162
+ if (plotargs$plot_type == "heatmap") {
163
+ plotargs$show_row_names <- plotargs$show_row_names %||% TRUE
164
+ plotargs$show_column_names <- plotargs$show_column_names %||% TRUE
165
+ }
166
+
167
+ p <- do_call(VizGSEA, plotargs)
168
+
169
+ outprefix <- file.path(info$prefix, paste0("all.", slugify(plotname)))
170
+ save_plot(p, outprefix, devpars, formats = "png")
171
+ reporter$add2(
172
+ list(kind = "descr", content = paste0("Pathways for all ", case$each, ".")),
173
+ list(kind = "image", src = paste0(outprefix, ".png")),
174
+ hs = c(info$section, info$name),
175
+ hs2 = plotname
176
+ )
177
+ }
178
+
179
+ return(invisible(NULL))
180
+ }
181
+
117
182
  allow_empty = !is.null(case$each)
118
183
  # prepare expression matrix
119
184
  log$info(" Preparing expression matrix...")
120
- sobj <- ensure_sobj({ srtobj %>% filter(!is.na(!!sym(case$group.by))) }, allow_empty)
185
+ sobj <- ensure_sobj({ srtobj %>% filter(!is.na(!!sym(case$group_by))) }, allow_empty)
121
186
  if (is.null(sobj)) {
122
187
  reporter$add2(
123
188
  list(
124
189
  kind = "error",
125
- content = paste0("No cells with non-NA `", case$group.by, "` in the Seurat object.")
190
+ content = paste0("No cells with non-NA `", case$group_by, "` in the Seurat object.")
126
191
  ),
127
192
  hs = c(info$section, info$name)
128
193
  )
@@ -135,20 +200,20 @@ do_case <- function(name) {
135
200
  reporter$add2(
136
201
  list(
137
202
  kind = "error",
138
- content = paste0("No cells with non-NA `", case$group.by, "` in the Seurat object.")
203
+ content = paste0("No cells with non-NA `", case$group_by, "` in the Seurat object.")
139
204
  ),
140
205
  hs = c(info$section, info$name)
141
206
  )
142
207
  return(NULL)
143
208
  }
144
209
  }
145
- if (!is.null(case$ident.2)) {
146
- sobj <- ensure_sobj({ sobj %>% filter(!!sym(case$group.by) %in% c(case$ident.1, case$ident.2)) }, allow_empty)
210
+ if (!is.null(case$ident_2)) {
211
+ sobj <- ensure_sobj({ sobj %>% filter(!!sym(case$group_by) %in% c(case$ident_1, case$ident_2)) }, allow_empty)
147
212
  if (is.null(sobj)) {
148
213
  reporter$add2(
149
214
  list(
150
215
  kind = "error",
151
- content = paste0("No cells with non-NA `", case$group.by, "` in the Seurat object.")
216
+ content = paste0("No cells with non-NA `", case$group_by, "` in the Seurat object.")
152
217
  ),
153
218
  hs = c(info$section, info$name)
154
219
  )
@@ -156,20 +221,20 @@ do_case <- function(name) {
156
221
  }
157
222
  }
158
223
 
159
- allclasses <- sobj@meta.data[, case$group.by, drop = TRUE]
160
- if (is.null(case$ident.2)) {
161
- case$ident.2 <- "Other"
162
- allclasses[allclasses != case$ident.1] <- "Other"
224
+ allclasses <- sobj@meta.data[, case$group_by, drop = TRUE]
225
+ if (is.null(case$ident_2)) {
226
+ case$ident_2 <- "Other"
227
+ allclasses[allclasses != case$ident_1] <- "Other"
163
228
  }
164
229
  exprs <- GetAssayData(sobj, layer = "data")
165
230
 
166
231
  # get preranks
167
232
  log$info(" Getting preranks...")
168
- ranks <- RunGSEAPreRank(exprs, allclasses, case$ident.1, case$ident.2, case$method)
233
+ ranks <- RunGSEAPreRank(exprs, allclasses, case$ident_1, case$ident_2, case$method)
169
234
  write.table(
170
- ranks,
171
- file.path(info$prefix, "fgsea.rank"),
172
- row.names = FALSE,
235
+ as.data.frame(ranks),
236
+ file.path(info$prefix, "fgsea.rank.txt"),
237
+ row.names = TRUE,
173
238
  col.names = TRUE,
174
239
  sep = "\t",
175
240
  quote = FALSE
@@ -216,15 +281,17 @@ do_case <- function(name) {
216
281
  quote = FALSE
217
282
  )
218
283
 
284
+ aspect.ratio <- sqrt(case$top) / sqrt(10)
219
285
  p_summary <- VizGSEA(
220
286
  result,
221
287
  plot_type = "summary",
222
- top_term = case$top
288
+ top_term = case$top,
289
+ aspect.ratio = aspect.ratio
223
290
  )
224
291
  save_plot(
225
292
  p_summary,
226
293
  file.path(info$prefix, "summary"),
227
- devpars = list(res = 100, height = attr(p_summary, "height") * 100, width = attr(p_summary, "width") * 100),
294
+ devpars = list(res = 100, height = attr(p_summary, "height") * 100 / 1.5, width = attr(p_summary, "width") * 100),
228
295
  formats = "png"
229
296
  )
230
297
 
@@ -243,13 +310,13 @@ do_case <- function(name) {
243
310
 
244
311
  reporter$add2(
245
312
  list(
246
- name = "Table",
313
+ name = paste0("Table (", case$ident_1, " vs ", case$ident_2, ")"),
247
314
  contents = list(
248
315
  list(kind = "descr", content = paste0(
249
316
  "Showing top 50 pathways by padj in descending order. ",
250
317
  "Use 'Download the entire data' button to download all pathways."
251
318
  )),
252
- list(kind = "table", src = file.path(info$prefix, "fgsea"), data = list(nrows = 50))
319
+ list(kind = "table", src = file.path(info$prefix, "fgsea.tsv"), data = list(nrows = 50))
253
320
  )
254
321
  ),
255
322
  list(
@@ -269,8 +336,14 @@ do_case <- function(name) {
269
336
  hs = c(info$section, info$name),
270
337
  ui = "tabs"
271
338
  )
339
+
340
+ if (!is.null(case$original_case) && !is.null(cases[[case$original_case]])) {
341
+ cases[[case$original_case]]$gseas[[case$each]] <<- result
342
+ }
343
+
344
+ invisible()
272
345
  }
273
346
 
274
- sapply(sort(names(cases)), function(name) do_case(name))
347
+ sapply(names(cases), function(name) do_case(name))
275
348
 
276
349
  reporter$save(joboutdir)
@@ -53,6 +53,10 @@ hvf <- NULL
53
53
  }
54
54
  }
55
55
 
56
+ if (is.list(features)) {
57
+ return(lapply(features, function(x) {.get_features(x, object) }))
58
+ }
59
+
56
60
  return (trimws(unlist(strsplit(features, ","))))
57
61
  }
58
62
 
@@ -9,7 +9,7 @@ outdir <- {{out.outdir | r}}
9
9
  joboutdir <- {{job.outdir | r}}
10
10
  mutaters <- {{ envs.mutaters | r }}
11
11
  ident <- {{ envs.ident | r }}
12
- group.by <- {{ envs["group-by"] | r }} # nolint
12
+ group_by <- {{ envs.group_by | default: envs["group-by"] | default: None | r }} # nolint
13
13
  each <- {{ envs.each | r }}
14
14
  dbs <- {{ envs.dbs | r }}
15
15
  n <- {{ envs.n | r }}
@@ -41,7 +41,7 @@ enrich_plots <- lapply(enrich_plots, function(x) {
41
41
  })
42
42
  defaults <- list(
43
43
  ident = ident,
44
- group.by = group.by,
44
+ group_by = group_by,
45
45
  each = each,
46
46
  dbs = dbs,
47
47
  n = n,
@@ -144,7 +144,9 @@ process_markers <- function(markers, info, case) {
144
144
  p <- do_call(VizEnrichment, plotargs)
145
145
 
146
146
  outprefix <- file.path(info$prefix, paste0("enrich.", slugify(db), ".", slugify(plotname)))
147
- attr(p, "height") <- attr(p, "height") / 1.5
147
+ if (plotargs$plot_type == "bar") {
148
+ attr(p, "height") <- attr(p, "height") / 1.5
149
+ }
148
150
  save_plot(p, outprefix, plotargs$devpars, formats = "png")
149
151
  plots[[length(plots) + 1]] <- reporter$image(outprefix, c(), FALSE)
150
152
  }
@@ -169,17 +171,17 @@ run_case <- function(name) {
169
171
  } else {
170
172
  subobj <- srtobj
171
173
  }
172
- case$group.by <- case$group.by %||% "Identity"
174
+ case$group_by <- case$group_by %||% "Identity"
173
175
  if (is.null(case$ident)) {
174
- case$ident <- as.character(unique(subobj@meta.data[[case$group.by]]))
176
+ case$ident <- as.character(unique(subobj@meta.data[[case$group_by]]))
175
177
  }
176
178
  avgexpr <- AverageExpression(
177
179
  subobj,
178
- group.by = case$group.by,
180
+ group_by = case$group_by,
179
181
  assays = assay
180
182
  )[[assay]]
181
183
  # https://github.com/satijalab/seurat/issues/7893
182
- colnames(avgexpr) <- as.character(unique(subobj@meta.data[[case$group.by]]))
184
+ colnames(avgexpr) <- as.character(unique(subobj@meta.data[[case$group_by]]))
183
185
  avgexpr <- avgexpr[, case$ident, drop = FALSE]
184
186
 
185
187
  for (idt in case$ident) {
@@ -7,7 +7,7 @@ library(biopipen.utils)
7
7
  screpfile <- {{in.screpfile | r}}
8
8
  outdir <- {{out.outdir | r}}
9
9
  joboutdir <- {{job.outdir | r}}
10
- envs <- {{envs | r}}
10
+ envs <- {{envs | r: todot="-"}}
11
11
  mutaters <- envs$mutaters
12
12
  cases <- envs$cases
13
13
  envs$mutaters <- NULL
@@ -7,7 +7,7 @@ srtobjfile <- {{in.srtobj | r}}
7
7
  outfile <- {{out.outfile | r}}
8
8
  cloneCall <- {{envs.cloneCall | r}}
9
9
  chain <- {{envs.chain | r}}
10
- group.by <- {{envs["group-by"] | r}}
10
+ group_by <- {{envs.group_by | default: envs["group-by"] | default: None | r}}
11
11
  proportion <- {{envs.proportion | r}}
12
12
  filterNA <- {{envs.filterNA | r}}
13
13
  cloneSize <- {{envs.cloneSize | r}}
@@ -28,7 +28,7 @@ obj <- combineExpression(
28
28
  sc.data = srtobj,
29
29
  cloneCall = cloneCall,
30
30
  chain = chain,
31
- group.by = group.by,
31
+ group.by = group_by,
32
32
  proportion = proportion,
33
33
  filterNA = filterNA,
34
34
  cloneSize = unlist(cloneSize),
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: biopipen
3
- Version: 0.34.0
3
+ Version: 0.34.2
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -1,4 +1,4 @@
1
- biopipen/__init__.py,sha256=7wgjZxPxspP87CI4mDkFQuldkKgENXO5FaPiS8EXM88,23
1
+ biopipen/__init__.py,sha256=NtTwQ_23yhWzaTLoJ9fdSclacR1T9pyG3ntupTpaz6g,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=lZV_vbYWk6uqm19ZWJcsZCcSNqAdIfN2fOfamzxZpg4,2148
@@ -22,12 +22,12 @@ biopipen/ns/plot.py,sha256=N41_izb6zi-XArUly5WhLebapNXbTNSgGlOCCwtrDlY,18282
22
22
  biopipen/ns/protein.py,sha256=YJtlKoHI2p5yHdxKeQnNtm5QrbxDGOq1UXOdt_7tlTs,6391
23
23
  biopipen/ns/regulatory.py,sha256=gJjGVpJrdv-rg2t5UjK4AGuvtLNymaNYNvoD8PhlbvE,15929
24
24
  biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
25
- biopipen/ns/scrna.py,sha256=Ip0Kc2TEtlCqbWYpkLbY6T90Bz32pMoCoVjQB8K7zw8,128961
25
+ biopipen/ns/scrna.py,sha256=1z-PUPkQ6FpfC8RHWtuG8Mvw7w6zmI-Z3shkzO8cekY,143767
26
26
  biopipen/ns/scrna_metabolic_landscape.py,sha256=Q95KkHg5jC6eUMSUH-wioPxOzuArP59j3CPsfDTCBM0,22096
27
27
  biopipen/ns/snp.py,sha256=iXWrw7Lmhf4_ct57HGT7JGTClCXUD4sZ2FzOgsC2pTg,28123
28
28
  biopipen/ns/stats.py,sha256=DlPyK5Vsg6ZEkV9SDS3aAw21eXzvOHgqeZDkXPhg7go,20509
29
29
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
30
- biopipen/ns/tcr.py,sha256=Gzoz2FIFmeq_--6ppKVt26kjnPHnWHWAzdj1YvBhrRk,99036
30
+ biopipen/ns/tcr.py,sha256=dw6zEm5FNzf5ViVNxX81YwlzmXSAwWszxk6OL4Yh5p0,99036
31
31
  biopipen/ns/vcf.py,sha256=zjOH2qiSJsHACLmBqV-Tew-mn-peZgvYLAWjTLh7uTI,23823
32
32
  biopipen/ns/web.py,sha256=8VY4Xsb8UrzS4IkGUX_84GQP1JG6NcTZrV7f9tA1tUI,5458
33
33
  biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
@@ -51,8 +51,6 @@ biopipen/reports/scrna/DimPlots.svelte,sha256=ubIx8dgppzSB8WS_B4LN2T3bOTerP4Ck6o
51
51
  biopipen/reports/scrna/MarkersFinder.svelte,sha256=77rD1psj0VJykPDhfwS-B8mubvaasREAE6RYR2atTN4,444
52
52
  biopipen/reports/scrna/MetaMarkers.svelte,sha256=iIFRKjvVYrM1AtDWqq8UfeS8q23R8FKg2yepKAw2KSE,508
53
53
  biopipen/reports/scrna/RadarPlots.svelte,sha256=g_fp9d3vdnzk-egXPhkhhfWXOeG569Rj8rYLRIKmlLc,396
54
- biopipen/reports/scrna/ScFGSEA.svelte,sha256=Gqt-XjqsB3XgdR3XukvphwyMExZpScwqgEo7AD-gK6g,491
55
- biopipen/reports/scrna/TopExpressingGenes.svelte,sha256=tt5_Vjym4coFT8Bvz0s6ZcCioTOIwCj83jdCGqPCmUw,491
56
54
  biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte,sha256=1RC-FuYr_M1xInPaNrEGyzPQGy2d1rZjYdKPfLAOPUs,2346
57
55
  biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte,sha256=VTU-D8iELO7zzK5cJg7oZTna2wu4O_gJ8d7G8N7Veg8,5473
58
56
  biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte,sha256=Fr9_DJPuv2hzac-zzqtVBir-FXwN-g2fyi7Le_7xfPs,2828
@@ -157,19 +155,20 @@ biopipen/scripts/scrna/ExprImputation-rmagic.R,sha256=ePgbMZ_3bKbeUrjsMdkdtBM_MS
157
155
  biopipen/scripts/scrna/ExprImputation-scimpute.R,sha256=MI_bYfvCDKJsuGntUxfx_-NdrssBoQgL95-DGwJVE5s,1191
158
156
  biopipen/scripts/scrna/ExprImputation.R,sha256=GcdZJpkDpq88hRQjtLZY5-byp8V43stEFm5T-pQbU6A,319
159
157
  biopipen/scripts/scrna/LoomTo10X.R,sha256=c6F0p1udsL5UOlb84-53K5BsjSDWkdFyYTt5NQmlIec,1059
160
- biopipen/scripts/scrna/MarkersFinder.R,sha256=qS5Dsv7iKtXYc2WwNjex5dHpfvLy1cX6CukBVwc_zkM,18479
158
+ biopipen/scripts/scrna/MarkersFinder.R,sha256=P6BgseCrXTeJR8X52hzD16qBUuCeHmPc96h5pKE_-qY,24207
161
159
  biopipen/scripts/scrna/MetaMarkers.R,sha256=BgYaWYEj6obwqaZaDWqNPtxb1IEEAnXAeBE0Ji9PvBA,12426
162
160
  biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=-tByCPk7i070LynAb0z2ANeRxr1QqiKP0dfrJm52jH4,4198
161
+ biopipen/scripts/scrna/PseudoBulkDEG.R,sha256=32Hd3x2WyTFv175Os4bxf6goAcIq7QN8m1i7i7emnMI,22308
163
162
  biopipen/scripts/scrna/RadarPlots.R,sha256=Kn1E-hpczuujpgNjR8MqeIIVN-S3PbpmfcKWGKcNCVY,14546
164
163
  biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
165
164
  biopipen/scripts/scrna/SCP-plot.R,sha256=QcR2zOjRlSA_z4L8l89FWPU7TGxpXlKUe4kPdZU9MuY,787291
166
- biopipen/scripts/scrna/ScFGSEA.R,sha256=AQu_buJVoRFltclhh3NyJakggRyZMuKj9q_tgzMgNwE,8655
165
+ biopipen/scripts/scrna/ScFGSEA.R,sha256=Cbr1RE4jD3CbR7K4Y1XWKfcqiqhZmzATCKEd3ysCnCc,11517
167
166
  biopipen/scripts/scrna/ScSimulation.R,sha256=q0-dXD9px1cApc_TxGmR-OdNHE8W1VSVWfSI57B96bo,1697
168
167
  biopipen/scripts/scrna/ScVelo.py,sha256=SPUZFgZW1Zhw-bnjJo98RK0vpuNFODQ8Q3eTguNc84k,21359
169
168
  biopipen/scripts/scrna/Seurat2AnnData.R,sha256=F8g5n2CqX4-KBggxd8ittz8TejYuqqNLMudAHdFt1QM,184
170
169
  biopipen/scripts/scrna/SeuratClusterStats-clustree.R,sha256=QmNJicjbLIXYg_RduXHGboCzPEqcFXq32flk5XAqQBg,2886
171
170
  biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=tCf3BVoXroeGuMcix8BiB1CA7wUpirBow4T6P3HM02k,1541
172
- biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=Ua4dCqekb2nmx9EEgiQamju4c0p96KWLJWAmiziwiec,5197
171
+ biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=vFLTzF4hje-7JXy-hYxCZgsasbVByvVkqrTFlxzMTB0,5307
173
172
  biopipen/scripts/scrna/SeuratClusterStats-ngenes.R,sha256=BN8HSl1HoZp8ibESaCVEJPCBWzmu1AFLMgW5ZeZphS0,3077
174
173
  biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=u8KOeWLDk7i-ZGGcgZPyNqmchkrePdKq5JLrl4ZCCT8,2297
175
174
  biopipen/scripts/scrna/SeuratClusterStats.R,sha256=lQfl97ARx_l8YNJ1rEdaU-G6EIS-mbFf2rtWLaA6unE,1824
@@ -185,7 +184,7 @@ biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi
185
184
  biopipen/scripts/scrna/SeuratTo10X.R,sha256=1mh1R0Qlo1iHVrpMLUXyLDOA92QKJ4GzTMURTFRqsWg,901
186
185
  biopipen/scripts/scrna/Slingshot.R,sha256=wo1zq2Wl6u1HODNzZGjjQLcqKeh9sh7FXPs_iKu6tqw,1750
187
186
  biopipen/scripts/scrna/Subset10X.R,sha256=dT1QY5mHaDcqOMgAtTfyU1FRBNFtfg3nMGCubvBJcSQ,2671
188
- biopipen/scripts/scrna/TopExpressingGenes.R,sha256=4z6BWnZdijN9aZaNjhwI04Vectzk01LqAYmvf_ksFag,6796
187
+ biopipen/scripts/scrna/TopExpressingGenes.R,sha256=9xXx7U6ZLNeZslqhYuxWYQJmgUsTD3qXFew-7zYCJu8,6910
189
188
  biopipen/scripts/scrna/celltypist-wrapper.py,sha256=upyh035IqDHxljbTaoXwdDmctcx-fDwN56kGvC2xsbw,1776
190
189
  biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
191
190
  biopipen/scripts/scrna/seurat_anndata_conversion.py,sha256=Ya0Wn2TLg1j66N41PdiXXGE8LtE51eC8XnkGi_q2ey8,2437
@@ -214,7 +213,7 @@ biopipen/scripts/tcgamaf/MafAddChr.py,sha256=uo1utaK3Df88aU7xubKw85Ni7W06md8bQlw
214
213
  biopipen/scripts/tcgamaf/maf2vcf.pl,sha256=hJKcH-NbgWK6fmK7f3qex7ozJJl-PqCNPXqpwfcHwJg,22707
215
214
  biopipen/scripts/tcr/Attach2Seurat.R,sha256=0KZaBkuPvqOBXq4ZG3pzIIua5HL-161K5dVXRoCysy4,1366
216
215
  biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=vU-5sjFZktSzBBj4f1frIGChOV8P8Uf0mMWS2Njdsww,15204
217
- biopipen/scripts/tcr/ClonalStats.R,sha256=89bow8pli4v26nZITPmcFT1cFkL4hZr-s8gxCod-X-0,29329
216
+ biopipen/scripts/tcr/ClonalStats.R,sha256=skqPMTHL8zMGIZ2Q_gKXm9UDFRR-wFRurtrmvbQp7pg,29340
218
217
  biopipen/scripts/tcr/CloneResidency.R,sha256=3pong__cdn2bW7pctq4TLcEdcj_xNigzyKnznnmc1i8,22021
219
218
  biopipen/scripts/tcr/CloneSizeQQPlot.R,sha256=zw5WPgq_lbfdDb9Ou07boh9D2FYjXZtCQKZCP0PKMYw,4561
220
219
  biopipen/scripts/tcr/GIANA/GIANA.py,sha256=jo0d58K57CF4W6mc2Q-hQn9rLl6oLHTsr5JceP8xqN0,54874
@@ -236,7 +235,7 @@ biopipen/scripts/tcr/ImmunarchFilter.R,sha256=-en-zi0ZB1JjuqhPlaEAN8YvHrELZNJ1V7
236
235
  biopipen/scripts/tcr/ImmunarchLoading.R,sha256=u3o2aag_7cZ17HA8RxpN58wvrII0Uh-q6FY6dA8MWeQ,5756
237
236
  biopipen/scripts/tcr/ImmunarchSplitIdents.R,sha256=FGCeGV0uSmFU91lKkldUAeV4A2m3hHw5X4GNi8ffGzI,1873
238
237
  biopipen/scripts/tcr/SampleDiversity.R,sha256=oipN4-2nQZe8bYjI0lZ0SvZ7T8GZ_FWkpkobi1cwmWE,2664
239
- biopipen/scripts/tcr/ScRepCombiningExpression.R,sha256=IJ7wHFKL5STWPv-mtWWt1-Ly_Evei146U0y0ZB9jCGE,933
238
+ biopipen/scripts/tcr/ScRepCombiningExpression.R,sha256=sPkCycfB0TrjqduFjZaeVG7MLi6RntXrihyjq5MDeDM,974
240
239
  biopipen/scripts/tcr/ScRepLoading.R,sha256=eqJXTXn_HyLRo98Hv6xI_AmYp5l2LxHsyrMSXWZ_HmM,5167
241
240
  biopipen/scripts/tcr/TCRClusterStats.R,sha256=ns3S95DVDBuhSe1YgTZ1OksbfBgREO2Tnp1d4QzbTw0,13530
242
241
  biopipen/scripts/tcr/TCRClustering.R,sha256=b-IZeE3Rcue4Ntn9H7FLljELzycbWCyKP17LlBCuMW0,9658
@@ -286,7 +285,7 @@ biopipen/utils/misc.py,sha256=pDZ-INWVNqHuXYvcjmu8KqNAigkh2lsHy0BxX44CPvc,4048
286
285
  biopipen/utils/reference.py,sha256=Oc6IlA1giLxymAuI7DO-IQLHQ7-DbsWzOQE86oTDfMU,5955
287
286
  biopipen/utils/reporter.py,sha256=VwLl6xyVDWnGY7NEXyqBlkW8expKJoNQ5iTyZSELf5c,4922
288
287
  biopipen/utils/vcf.py,sha256=MmMbAtLUcKPp02jUdk9TzuET2gWSeoWn7xgoOXFysK0,9393
289
- biopipen-0.34.0.dist-info/METADATA,sha256=s814Vi4vNzzMRB4tNOx-fEDPLHv1CiUHxN7Ls1GTyPc,975
290
- biopipen-0.34.0.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
291
- biopipen-0.34.0.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
292
- biopipen-0.34.0.dist-info/RECORD,,
288
+ biopipen-0.34.2.dist-info/METADATA,sha256=J4QZVcGfOyn69By9_QajoSA8UQvPzWFqsFaEwDvUv2I,975
289
+ biopipen-0.34.2.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
290
+ biopipen-0.34.2.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
291
+ biopipen-0.34.2.dist-info/RECORD,,
@@ -1,16 +0,0 @@
1
- {% from "utils/gsea.liq" import fgsea_report -%}
2
- {% from "utils/misc.liq" import report_jobs -%}
3
- <script>
4
- import { Image, DataTable, Descr } from "$libs";
5
- import { Accordion, AccordionItem, Tabs, Tab, TabContent, InlineNotification } from "$ccs";
6
- </script>
7
-
8
- {%- macro report_job(job, h=1) -%}
9
- {{ job | render_job: h=h }}
10
- {%- endmacro -%}
11
-
12
- {%- macro head_job(job) -%}
13
- <h1>{{job.in.srtobj | stem0 | escape}}</h1>
14
- {%- endmacro -%}
15
-
16
- {{ report_jobs(jobs, head_job, report_job) }}
@@ -1,17 +0,0 @@
1
- {% from "utils/misc.liq" import report_jobs -%}
2
- {% from "utils/gsea.liq" import enrichr_report -%}
3
- <script>
4
- import { Image, DataTable, Descr } from "$libs";
5
- import { Accordion, AccordionItem, Tabs, Tab, TabContent, InlineNotification } from "$ccs";
6
- </script>
7
-
8
-
9
- {%- macro report_job(job, h=1) -%}
10
- {{ job | render_job: h=h }}
11
- {%- endmacro -%}
12
-
13
- {%- macro head_job(job) -%}
14
- <h1>{{job.in.srtobj | stem0 | escape}}</h1>
15
- {%- endmacro -%}
16
-
17
- {{ report_jobs(jobs, head_job, report_job) }}