biopipen 0.22.0__py3-none-any.whl → 0.22.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

biopipen/__init__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.22.0"
1
+ __version__ = "0.22.1"
biopipen/ns/tcr.py CHANGED
@@ -40,11 +40,13 @@ class ImmunarchLoading(Proc):
40
40
 
41
41
  Output:
42
42
  rdsfile: The RDS file with the data and metadata
43
- metatxt: The meta data of the cells, used to attach to the Seurat object
43
+ metatxt: The meta data at cell level, which can be used to attach to the Seurat object
44
44
 
45
45
  Envs:
46
46
  prefix: The prefix to the barcodes. You can use placeholder like `{Sample}_`
47
- to use the meta data from the `immunarch` object.
47
+ to use the meta data from the `immunarch` object. The prefixed barcodes will
48
+ be saved in `out.metatxt`. The `immunarch` object keeps the original barcodes, but
49
+ the prefix is saved at `immdata$prefix`.
48
50
 
49
51
  /// Note
50
52
  This option is useful because the barcodes for the cells from scRNA-seq
@@ -65,10 +67,16 @@ class ImmunarchLoading(Proc):
65
67
  paired chain data. For `single`, only TRB chain will be kept
66
68
  at `immdata$data`, information for other chains will be
67
69
  saved at `immdata$tra` and `immdata$multi`.
68
- metacols (list): The columns to be exported to the text file.
70
+ extracols (list): The extra columns to be exported to the text file.
69
71
  You can refer to the
70
72
  [immunarch documentation](https://immunarch.com/articles/v2_data.html#immunarch-data-format)
71
- for the full list of the columns.
73
+ to get a sense for the full list of the columns.
74
+ The columns may vary depending on the data source.
75
+ The columns from `immdata$meta` and some core columns, including
76
+ `Barcode`, `CDR3.aa`, `Clones`, `Proportion`, `V.name`, `J.name`, and
77
+ `D.name` will be exported by default. You can use this option to
78
+ specify the extra columns to be exported.
79
+
72
80
  """ # noqa: E501
73
81
  input = "metafile:file"
74
82
  output = [
@@ -80,7 +88,7 @@ class ImmunarchLoading(Proc):
80
88
  "tmpdir": config.path.tmpdir,
81
89
  "prefix": "{Sample}_",
82
90
  "mode": "single",
83
- "metacols": ["Clones", "Proportion", "CDR3.aa"],
91
+ "extracols": [],
84
92
  }
85
93
  script = "file://../scripts/tcr/ImmunarchLoading.R"
86
94
 
@@ -322,6 +330,7 @@ class Immunarch(Proc):
322
330
  prefix: The prefix to the barcodes. You can use placeholder like `{Sample}_`
323
331
  The prefixed barcodes will be used to match the barcodes in `in.metafile`.
324
332
  Not used if `in.metafile` is not specified.
333
+ If `None` (default), `immdata$prefix` will be used.
325
334
  volumes (ns): Explore clonotype volume (sizes).
326
335
  - by: Groupings when visualize clonotype volumes, passed to the `.by` argument of `vis(imm_vol, .by = <values>)`.
327
336
  Multiple columns should be separated by `,`.
@@ -682,7 +691,7 @@ class Immunarch(Proc):
682
691
  lang = config.lang.rscript
683
692
  envs = {
684
693
  "mutaters": {},
685
- "prefix": "{Sample}_",
694
+ "prefix": None,
686
695
  # basic statistics
687
696
  "volumes": {
688
697
  "by": None,
@@ -1179,6 +1188,10 @@ class TCRClustering(Proc):
1179
1188
  For GIANA, using TRBV mutations is not supported
1180
1189
  - GIANA: by Li lab at UT Southwestern Medical Center
1181
1190
  - ClusTCR: by Sebastiaan Valkiers, etc
1191
+ prefix: The prefix to the barcodes. You can use placeholder like `{Sample}_`
1192
+ The prefixed barcodes will be used to match the barcodes in `in.metafile`.
1193
+ Not used if `in.metafile` is not specified.
1194
+ If `None` (default), `immdata$prefix` will be used.
1182
1195
  python: The path of python with `GIANA`'s dependencies installed
1183
1196
  or with `clusTCR` installed. Depending on the `tool` you choose.
1184
1197
  args (type=json): The arguments for the clustering tool
@@ -1202,6 +1215,7 @@ class TCRClustering(Proc):
1202
1215
  lang = config.lang.rscript
1203
1216
  envs = {
1204
1217
  "tool": "GIANA", # or ClusTCR
1218
+ "prefix": None,
1205
1219
  "on_multi": False,
1206
1220
  "python": config.lang.python,
1207
1221
  "args": {},
@@ -1507,7 +1521,8 @@ class TESSA(Proc):
1507
1521
  [link](https://www.nature.com/articles/s42256-021-00383-2)
1508
1522
 
1509
1523
  Input:
1510
- immdata: The data loaded by `immunarch::repLoad()`, saved in RDS format
1524
+ immdata: The immunarch object in RDS file or text file of TCR data loaded by
1525
+ [`ImmunarchLoading`](!!#biopipennstcrimmunarchloading)
1511
1526
  srtobj: The `Seurat` object, saved in RDS format, with dimension
1512
1527
  reduction performed if you want to use them to represent the
1513
1528
  transcriptome of T cells.
@@ -1522,8 +1537,13 @@ class TESSA(Proc):
1522
1537
 
1523
1538
  Envs:
1524
1539
  python: The path of python with `TESSA`'s dependencies installed
1525
- prefix: The prefix to the barcodes of TCR data. You can use placeholder
1526
- like `{Sample}_` to use the meta data from the immunarch object.
1540
+ prefix: The prefix of the cell barcodes in the `Seurat` object.
1541
+ Once could use a fixed prefix, or a placeholder with the column
1542
+ name in meta data. For example, `"{Sample}_"` will replace the
1543
+ placeholder with the value of the column `Sample` in meta data.
1544
+ If `in.immdata` is text file, the prefix will be ignored and the
1545
+ barcode should be already prefixed.
1546
+ If `None` and `in.immdata` is RDS file, `immdata$prefix` will be used.
1527
1547
  within_sample (flag): Whether the TCR networks are constructed only
1528
1548
  within TCRs from the same sample/patient (True) or with all the
1529
1549
  TCRs in the meta data matrix (False).
@@ -1548,7 +1568,7 @@ class TESSA(Proc):
1548
1568
  lang = config.lang.rscript
1549
1569
  envs = {
1550
1570
  "python": config.lang.python,
1551
- "prefix": "{Sample}_",
1571
+ "prefix": None,
1552
1572
  "assay": "RNA",
1553
1573
  "within_sample": False,
1554
1574
  "predefined_b": False,
@@ -229,10 +229,16 @@ do_case <- function(name, case) {
229
229
  meta %>% select(
230
230
  !!sym(cells_by),
231
231
  !!sym(case$group_by),
232
+ seurat_clusters,
232
233
  CloneSize,
233
234
  CloneGroupSize,
234
235
  CloneClusterSize,
235
236
  CloneGroupClusterSize,
237
+ ) %>% distinct(
238
+ !!sym(cells_by),
239
+ !!sym(case$group_by),
240
+ seurat_clusters,
241
+ .keep_all = TRUE
236
242
  ),
237
243
  txtfile,
238
244
  sep = "\t",
@@ -1,4 +1,6 @@
1
+ source("{{biopipen_dir}}/utils/misc.R")
1
2
  source("{{biopipen_dir}}/utils/mutate_helpers.R")
3
+
2
4
  library(rlang)
3
5
  library(tibble)
4
6
  library(dplyr)
@@ -14,7 +16,17 @@ metadata = srt@meta.data
14
16
 
15
17
  if (!is.null(metafile)) {
16
18
  mdata = read.table(metafile, header=TRUE, row.names=1, sep="\t", check.names=FALSE)
17
- metadata = cbind(metadata, mdata[rownames(metadata),,drop=FALSE])
19
+ ov_cols = intersect(colnames(metadata), colnames(mdata))
20
+ if (length(ov_cols) > 0) {
21
+ log_warn(paste0(
22
+ "The following columns are already present in Seurat object and will be ignored: ",
23
+ paste(ov_cols, collapse=', ')
24
+ ))
25
+ }
26
+ metadata = cbind(
27
+ metadata,
28
+ mdata[rownames(metadata), setdiff(colnames(mdata), ov_cols), drop=FALSE]
29
+ )
18
30
  }
19
31
 
20
32
  expr = list()
@@ -11,6 +11,7 @@ immfile = {{in.immfile | r}}
11
11
  sobjfile = {{in.sobjfile | r}}
12
12
  outfile = {{out.outfile | r}}
13
13
  metacols = {{envs.metacols | r}}
14
+ prefix = {{envs.prefix | r}}
14
15
 
15
16
  immdata = readRDS(immfile)
16
17
  sobj = readRDS(sobjfile)
@@ -31,7 +32,7 @@ metadf = do_call(rbind, lapply(seq_len(nrow(immdata$meta)), function(i) {
31
32
 
32
33
  cldata %>%
33
34
  separate_rows(Barcode, sep=";") %>%
34
- mutate(Barcode = glue("{{envs.prefix}}{Barcode}"))
35
+ mutate(Barcode = glue(paste0(prefix, "{Barcode}")))
35
36
 
36
37
  }))
37
38
 
@@ -193,7 +193,7 @@ merge_data = function(sam) {
193
193
  if (!is.null(prefix) && nchar(prefix) > 0) {
194
194
  # Replace the placeholder like {Sample} with the data in other columns
195
195
  # in the same row
196
- sdata = sdata %>% mutate(.prefix_len = nchar(glue("{{envs.prefix}}")))
196
+ sdata = sdata %>% mutate(.prefix_len = nchar(glue(prefix)))
197
197
  # Remove the prefix in the rownames of sdata
198
198
  rownames(sdata) = substring(rownames(sdata), sdata$.prefix_len + 1)
199
199
  sdata = sdata %>% select(-.prefix_len)
@@ -27,6 +27,9 @@ prefix = {{ envs.prefix | r }}
27
27
  log_info("Loading immdata ...")
28
28
  immdata = readRDS(immfile)
29
29
 
30
+ if (is.null(prefix)) { prefix = immdata$prefix }
31
+ if (is.null(prefix)) { prefix = "" }
32
+
30
33
  log_info("Expanding immdata ...")
31
34
  exdata = expand_immdata(immdata)
32
35
 
@@ -1,4 +1,5 @@
1
1
  source("{{biopipen_dir}}/utils/misc.R")
2
+ source("{{biopipen_dir}}/utils/single_cell.R")
2
3
 
3
4
  # Loading 10x data into immunarch
4
5
  library(immunarch)
@@ -13,7 +14,8 @@ rdsfile = {{ out.rdsfile | quote }}
13
14
  metatxt = {{ out.metatxt | quote }}
14
15
  tmpdir = {{ envs.tmpdir | quote }}
15
16
  mode = {{ envs.mode | quote }}
16
- metacols = {{ envs.metacols | r}}
17
+ extracols = {{ envs.extracols | r}}
18
+ prefix = {{ envs.prefix | r }}
17
19
 
18
20
  metadata = read.table(
19
21
  metafile,
@@ -164,27 +166,24 @@ immdata$meta = left_join(
164
166
  by = "Sample"
165
167
  )
166
168
 
167
- saveRDS(immdata, file=rdsfile)
168
-
169
- metadf = do_call(rbind, lapply(seq_len(nrow(immdata$meta)), function(i) {
170
- # Clones Proportion CDR3.aa Barcode
171
- # 5 4 0.008583691 CAVRDTGNTPLVF;CASSEYSNQPQHF GTTCGGGCACTTACGA-1;TCTCTAAGTACCAGTT-1
172
- # 6 4 0.008583691 CALTQAAGNKLTF;CASRPEDLRGQPQHF GCTTGAAGTCGGCACT-1;TACTCGCTCCTAAGTG-1
173
- cldata = immdata$data[[i]][, unique(c(metacols, "Barcode"))]
174
- # # A tibble: 4 × 5
175
- # Sample Patient Timepoint Tissue
176
- # <chr> <chr> <chr> <chr>
177
- # 1 MC1685Pt011-Baseline-PB MC1685Pt011 Baseline PB
178
- mdata = as.list(immdata$meta[i, , drop=FALSE])
179
- for (mname in names(mdata)) {
180
- assign(mname, mdata[[mname]])
181
- }
169
+ immdata$prefix = prefix
182
170
 
183
- cldata %>%
184
- separate_rows(Barcode, sep=";") %>%
185
- distinct(Barcode, .keep_all = TRUE) %>%
186
- mutate(Barcode = glue("{{envs.prefix}}{Barcode}")) %>%
187
- column_to_rownames("Barcode")
171
+ saveRDS(immdata, file=rdsfile)
188
172
 
189
- }))
190
- write.table(metadf, metatxt, sep="\t", quote=FALSE, row.names=TRUE, col.names=TRUE)
173
+ exdata <- expand_immdata(immdata, cell_id = "Barcode") %>%
174
+ distinct(Sample, Barcode, .keep_all = TRUE) %>%
175
+ mutate(Barcode = glue(paste0(prefix, "{Barcode}"))) %>%
176
+ select(any_of(c(
177
+ colnames(immdata$meta),
178
+ "Barcode",
179
+ "CDR3.aa",
180
+ "Clones",
181
+ "Proportion",
182
+ "V.name",
183
+ "D.name",
184
+ "J.name",
185
+ extracols
186
+ ))) %>%
187
+ column_to_rownames("Barcode")
188
+
189
+ write.table(exdata, metatxt, sep="\t", quote=FALSE, row.names=TRUE, col.names=TRUE)
@@ -3,11 +3,13 @@
3
3
  # python = Sys.which({{envs.python | r}})
4
4
  # Sys.setenv(RETICULATE_PYTHON = python)
5
5
  # library(reticulate)
6
+ source("{{biopipen_dir}}/utils/single_cell.R")
6
7
 
7
8
  library(immunarch)
8
9
  library(dplyr)
9
10
  library(tidyr)
10
11
  library(tibble)
12
+ library(glue)
11
13
 
12
14
  immfile = {{in.immfile | r}}
13
15
  outdir = normalizePath({{job.outdir | r}})
@@ -17,6 +19,7 @@ tool = {{envs.tool | r}}
17
19
  python = {{envs.python | r}}
18
20
  on_multi = {{envs.on_multi | r}}
19
21
  args = {{envs.args | r}}
22
+ prefix = {{envs.prefix | r}}
20
23
 
21
24
  setwd(outdir)
22
25
 
@@ -26,17 +29,13 @@ if (on_multi) {
26
29
  } else {
27
30
  seqdata = immdata$data
28
31
  }
32
+ if (is.null(prefix)) { prefix = immdata$prefix }
33
+ if (is.null(prefix)) { prefix = "" }
29
34
 
30
35
  get_cdr3aa_df = function() {
31
- out = NULL
32
- for (sample in names(immdata$data)) {
33
- tmpdf = immdata$data[[sample]] %>%
34
- select(Barcode, CDR3.aa) %>%
35
- separate_rows(Barcode, sep = ";") %>%
36
- mutate(Barcode = paste0(sample, "_", Barcode))
37
- out = bind_rows(out, tmpdf)
38
- }
39
- out
36
+ expand_immdata(immdata, cell_id = "Barcode") %>%
37
+ mutate(Barcode = glue(paste0(prefix, "{Barcode}"))) %>%
38
+ select(Barcode, CDR3.aa)
40
39
  }
41
40
  cdr3aa_df = get_cdr3aa_df()
42
41
 
@@ -1,8 +1,10 @@
1
1
  source("{{biopipen_dir}}/utils/misc.R")
2
+ source("{{biopipen_dir}}/utils/single_cell.R")
2
3
 
3
4
  library(glue)
4
5
  library(dplyr)
5
6
  library(tidyr)
7
+ library(tibble)
6
8
  library(immunarch)
7
9
  library(Seurat)
8
10
  library(ggplot2)
@@ -13,6 +15,7 @@ exprfile <- {{in.srtobj | r}}
13
15
  outfile <- {{out.outfile | r}}
14
16
  joboutdir <- {{job.outdir | r}}
15
17
  python <- {{envs.python | r}}
18
+ prefix <- {{envs.prefix | r}}
16
19
  within_sample <- {{envs.within_sample | r}}
17
20
  assay <- {{envs.assay | r}}
18
21
  predefined_b <- {{envs.predefined_b | r}}
@@ -29,34 +32,21 @@ if (!dir.exists(tessa_dir)) dir.create(tessa_dir)
29
32
  ### Start preparing input files for TESSA
30
33
  # Prepare input files
31
34
  log_info("Preparing TCR input file ...")
32
- immdata <- readRDS(immfile)
33
-
34
- has_VJ <- "V.name" %in% colnames(immdata$data[[1]]) && "J.name" %in% colnames(immdata$data[[1]])
35
- # Merge all samples
36
- tcrdata <- do_call(rbind, lapply(seq_len(nrow(immdata$meta)), function(i) {
37
- # Clones Proportion CDR3.aa Barcode
38
- # 5 4 0.008583691 CAVRDTGNTPLVF;CASSEYSNQPQHF GTTCGGGCACTTACGA-1;TCTCTAAGTACCAGTT-1
39
- # 6 4 0.008583691 CALTQAAGNKLTF;CASRPEDLRGQPQHF GCTTGAAGTCGGCACT-1;TACTCGCTCCTAAGTG-1
40
- if (has_VJ) {
41
- cldata = immdata$data[[i]][, c("Barcode", "CDR3.aa", "V.name", "J.name")]
42
- } else {
43
- cldata = immdata$data[[i]][, c("Barcode", "CDR3.aa")]
44
- }
45
- # # A tibble: 4 × 5
46
- # Sample Patient Timepoint Tissue
47
- # <chr> <chr> <chr> <chr>
48
- # 1 MC1685Pt011-Baseline-PB MC1685Pt011 Baseline PB
49
- mdata = as.list(immdata$meta[i, , drop=FALSE])
50
- for (mname in names(mdata)) {
51
- assign(mname, mdata[[mname]])
52
- }
35
+ # If immfile endswith .rds, then it is an immunarch object
36
+ if (endsWith(tolower(immfile), ".rds")) {
37
+ immdata <- readRDS(immfile)
38
+ if (is.null(prefix)) { prefix = immdata$prefix }
39
+ if (is.null(prefix)) { prefix = "" }
40
+ tcrdata <- expand_immdata(immdata) %>%
41
+ mutate(Barcode = glue(paste0(prefix, "{Barcode}")))
42
+ rm(immdata)
43
+ } else {
44
+ tcrdata <- read.table(immfile, sep="\t", header=TRUE, row.names=1) %>%
45
+ rownames_to_column("Barcode")
46
+ }
47
+
48
+ has_VJ <- "V.name" %in% colnames(tcrdata) && "J.name" %in% colnames(tcrdata)
53
49
 
54
- cldata %>%
55
- separate_rows(Barcode, sep=";") %>%
56
- # Just in case there are duplicated barcodes
57
- distinct(Barcode, .keep_all = TRUE) %>%
58
- mutate(Barcode = glue("{{envs.prefix}}{Barcode}"), sample = Sample)
59
- }))
60
50
  if (has_VJ) {
61
51
  tcrdata <- tcrdata %>% dplyr::mutate(
62
52
  v_gene = sub("-\\d+$", "", V.name),
@@ -66,13 +56,13 @@ if (has_VJ) {
66
56
  cdr3 = CDR3.aa,
67
57
  v_gene,
68
58
  j_gene,
69
- sample
59
+ sample = Sample
70
60
  )
71
61
  } else {
72
62
  tcrdata <- tcrdata %>% dplyr::select(
73
63
  contig_id = Barcode,
74
64
  cdr3 = CDR3.aa,
75
- sample
65
+ sample = Sample
76
66
  )
77
67
  }
78
68
 
@@ -101,7 +91,10 @@ if (length(unused_expr_cells) > 0) {
101
91
  log_warn(glue("{length(unused_expr_cells)}/{ncol(expr)} expression cells are not used."))
102
92
  }
103
93
  if (length(cell_ids) == 0) {
104
- stop("No common cells between TCR and expression data. Are you using the correct prefix?")
94
+ stop(paste0(
95
+ "No common cells between TCR and expression data. ",
96
+ "Are you using the correct `envs.prefix` here or in `ImmunarchLoading`?"
97
+ ))
105
98
  }
106
99
  tcrdata <- tcrdata[tcrdata$contig_id %in% cell_ids, , drop=FALSE]
107
100
  expr <- as.matrix(expr)[, tcrdata$contig_id, drop=FALSE]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.22.0
3
+ Version: 0.22.1
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -1,4 +1,4 @@
1
- biopipen/__init__.py,sha256=0kk8efeJF41FZIYweGTJylbizaWrp9W3qN78RClCWIU,23
1
+ biopipen/__init__.py,sha256=mjWPUw5WSKjOdLE532eMicR6Gvc0AStLxFjzYGRWcns,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=JALO2S7TfmV3gIRPJ0cLTFWncPXXheQJS3vYQlyX6wQ,1600
@@ -23,7 +23,7 @@ biopipen/ns/scrna.py,sha256=F5j1TmjsS2swwm-uDyT6sTys5pldIJ_M2hNITAQdflc,82728
23
23
  biopipen/ns/scrna_basic.py,sha256=Py90IveDI5Alm6FUeC89xp3W79VPRvAQctQpc5JtO2M,8639
24
24
  biopipen/ns/scrna_metabolic_landscape.py,sha256=dSL-y1Gx1fcgebX7vk3wcSbm9aBALfCZKz0vjcDxQ_8,28139
25
25
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
26
- biopipen/ns/tcr.py,sha256=-cHx2VjfcYUIwWh1OpEfjHDe3RPH-GDlLnpS4pljUs8,82417
26
+ biopipen/ns/tcr.py,sha256=ZCwL_1Of-F5xVJ0hgdVLAjHwwwfegqkW_SO66oYULqM,83738
27
27
  biopipen/ns/vcf.py,sha256=cdkKroii0_nl_bSP2cnO09qESUAhHqu6btOiTSKS79Y,15314
28
28
  biopipen/ns/web.py,sha256=3zucrDo-IVsSnIvlw-deoScuxqWa6OMTm8Vo-R4E44Q,2224
29
29
  biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
@@ -110,7 +110,7 @@ biopipen/scripts/scrna/CellTypeAnnotation-hitype.R,sha256=6_DBAlLKcHqaMyWGZWvTd4
110
110
  biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R,sha256=1ejye0hs-EOwzzdP9gFWSLPcF6dOAA6VmNKXEjmS11E,1654
111
111
  biopipen/scripts/scrna/CellTypeAnnotation-sctype.R,sha256=u1eQsBWv1GKTbkwp6OFyiPuMFFcgwoa4-VI-d4q8nM4,3877
112
112
  biopipen/scripts/scrna/CellTypeAnnotation.R,sha256=6Le1SvZcKI8D0SLkFZ5SibGsW9ZWqirnBl3Q1BNZOuU,513
113
- biopipen/scripts/scrna/CellsDistribution.R,sha256=iuDGlfHNzenACW2y4KGRtwDQAI650XJ4SSMts7UDXS0,12734
113
+ biopipen/scripts/scrna/CellsDistribution.R,sha256=8bDwA1xQHCHnGRBW5XfW35BOpNLydxbWX93TId9vRa8,12908
114
114
  biopipen/scripts/scrna/DimPlots.R,sha256=-mXOTMnpPxvR30XLjwcohFfFx7xTqWKKiICwJiD6yEo,1554
115
115
  biopipen/scripts/scrna/ExprImpution-alra.R,sha256=8wcyZk1Whf45SXsYOM_ykl8m-iBxr27KEjtslbl2JQQ,782
116
116
  biopipen/scripts/scrna/ExprImpution-rmagic.R,sha256=yYnkyVfqIaNynsbaZZLGS6DrAJ_XhVQj1Ox598w8yOY,651
@@ -131,7 +131,7 @@ biopipen/scripts/scrna/SeuratClustering.R,sha256=JBJkwZmdjMsWzHaa_WvYCN1tXQimgcl
131
131
  biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
132
132
  biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
133
133
  biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=TkDSDc5do6BOtkAq3fS5HpjyqWUwsu8YqRC5in62oz8,3750
134
- biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=YvuhTKTWT7Se3hTqkgD3Ag_PKqKXiyDi6HcGCNIIKiM,723
134
+ biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
135
135
  biopipen/scripts/scrna/SeuratPreparing.R,sha256=j_t8EbPoNNRFPquerYd6BjtbIgdHCt8h2XXZax8_tXM,8453
136
136
  biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
137
137
  biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
@@ -146,8 +146,8 @@ biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha25
146
146
  biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
147
147
  biopipen/scripts/tcgamaf/MafAddChr.py,sha256=V10HMisl12O3ZfXuRmFNdy5p-3mr43WCvy0GHxSpwfA,494
148
148
  biopipen/scripts/tcgamaf/maf2vcf.pl,sha256=hJKcH-NbgWK6fmK7f3qex7ozJJl-PqCNPXqpwfcHwJg,22707
149
- biopipen/scripts/tcr/Attach2Seurat.R,sha256=kJck_jpjpLhUx1_9vjBeKWCrzI8Gb09nGwUOtp1Ztnk,1315
150
- biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=p5vBspsd0H3xgk2iptjbGlxfJZlW16BIy3lVcwiMfEI,16656
149
+ biopipen/scripts/tcr/Attach2Seurat.R,sha256=C91TAh1cLSxWkdFPf84pbxlpTYMuWq_rduG4eiIkXZI,1345
150
+ biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=rvXa9z7EY745Su0bzz0WpBd6QxXMGrzV_Eq7Ur9xb_g,16645
151
151
  biopipen/scripts/tcr/CloneResidency.R,sha256=sH76jRg_5q0THsIlgcHMCucdQyeLsc4jixbF938ennI,21421
152
152
  biopipen/scripts/tcr/CloneSizeQQPlot.R,sha256=5FPfWQjxTsv59KSDQaDWj3C95zPQMngKG7qOf95NEzI,4527
153
153
  biopipen/scripts/tcr/GIANA/GIANA.py,sha256=0qLhgCWxT8K-4JvORA03CzBPTT5pd4Di5B_DgrHXbFA,47198
@@ -163,15 +163,15 @@ biopipen/scripts/tcr/Immunarch-overlap.R,sha256=6RxXTjGhWzUC_1BxojMFrbrTq2PI_EAo
163
163
  biopipen/scripts/tcr/Immunarch-spectratyping.R,sha256=ICmCbsUDvwYjwL9kTiTEqQ7Fpmy7t7_GAJ5VTU9IeOU,2977
164
164
  biopipen/scripts/tcr/Immunarch-tracking.R,sha256=j1w36v1YuzohW1Nd14m90wRtjzpJSD6OM5KbF_wVxcY,4443
165
165
  biopipen/scripts/tcr/Immunarch-vjjunc.R,sha256=nOueF9l4_KVrKSZ1Sl0yObmjbd-5Hms2-RON6K23idg,3736
166
- biopipen/scripts/tcr/Immunarch.R,sha256=wddxHA4mGAdlQ_P7IXEiovVFYDTb9buGyFQ1MwwEHjI,2943
166
+ biopipen/scripts/tcr/Immunarch.R,sha256=L8rGJ4GODQ-anB8aIVmlPqRK01FBLhw6_ANT_4L6jhU,3030
167
167
  biopipen/scripts/tcr/Immunarch2VDJtools.R,sha256=QB9ILGbnsfoWaRANK6ceb14wpSWy8F1V1EdEmfIqiks,706
168
168
  biopipen/scripts/tcr/ImmunarchFilter.R,sha256=o25O36FwH_0w6F8DFQ0SfpcwDzlzaGefXqr9ESrvb4k,3974
169
- biopipen/scripts/tcr/ImmunarchLoading.R,sha256=vg3Pg_5JvcOiT3gOrWn98EpjGi8r7SYh52hhvfSyyzk,5836
169
+ biopipen/scripts/tcr/ImmunarchLoading.R,sha256=BNUJorjfF2R-j2ApUFKrAgqAJxzhzsDN9RUqzpkrfDY,5426
170
170
  biopipen/scripts/tcr/ImmunarchSplitIdents.R,sha256=FGCeGV0uSmFU91lKkldUAeV4A2m3hHw5X4GNi8ffGzI,1873
171
171
  biopipen/scripts/tcr/SampleDiversity.R,sha256=jQ1OU3b8vswD8tZhLt3fkcqJKrl2bhQX0giHM2rXz3Y,2643
172
172
  biopipen/scripts/tcr/TCRClusterStats.R,sha256=3YxIfsTBbFFI6fBTU3gM60bGuVv52PmL7bs16_WciGw,12089
173
- biopipen/scripts/tcr/TCRClustering.R,sha256=yfIiCMQuywjoJnAXwRJjlJsoYIA8swUMKIt_AsGvHQY,8566
174
- biopipen/scripts/tcr/TESSA.R,sha256=math-ZvkxYlZvXuHB0dNz3sv8hkx7p87EFW2PmEvJ60,7294
173
+ biopipen/scripts/tcr/TCRClustering.R,sha256=bW9cwVZCRlFIqO03LsUKu6qk6xZ_WxarHDUcnl_diT8,8592
174
+ biopipen/scripts/tcr/TESSA.R,sha256=nvzkhJHziTOjgZvAuU0L6qqCNgSp9f90P0i4tEMivwA,6798
175
175
  biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv,sha256=SumqDOqP67P54uM7Cuc5_O_rySTWcGo7eX3psMSPX9s,763
176
176
  biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py,sha256=z4_Q_6StymffuUGGjHP1-B3aTsXtamKao5Q1-Kg9has,6831
177
177
  biopipen/scripts/tcr/TESSA_source/MCMC_control.R,sha256=93Nnz0IG8KfFnVscZDvmBp1qccZoSoG_jIVpOWBQLHE,2911
@@ -213,7 +213,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
213
213
  biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
214
214
  biopipen/utils/single_cell.R,sha256=bKduqOQjSC8BtZJuwfUShR49omoEMbB57n3Gi6dYlqA,4147
215
215
  biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
216
- biopipen-0.22.0.dist-info/METADATA,sha256=Qc13J8hjCs_d1_nhm5emj93Knx889HqPT7ciqRVlKjQ,886
217
- biopipen-0.22.0.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
218
- biopipen-0.22.0.dist-info/entry_points.txt,sha256=sfI6oDEEuMvAg0KNujE9uu-c29y7IwQQA1_A2sUjPhc,527
219
- biopipen-0.22.0.dist-info/RECORD,,
216
+ biopipen-0.22.1.dist-info/METADATA,sha256=0PvmDBQ2Ffe1tvlcVMcEz5AdFbhLhPrswGpxHYXB5KM,886
217
+ biopipen-0.22.1.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
218
+ biopipen-0.22.1.dist-info/entry_points.txt,sha256=sfI6oDEEuMvAg0KNujE9uu-c29y7IwQQA1_A2sUjPhc,527
219
+ biopipen-0.22.1.dist-info/RECORD,,