biopipen 0.22.0__py3-none-any.whl → 0.22.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/ns/tcr.py +30 -10
- biopipen/scripts/scrna/CellsDistribution.R +6 -0
- biopipen/scripts/scrna/SeuratMetadataMutater.R +13 -1
- biopipen/scripts/tcr/Attach2Seurat.R +2 -1
- biopipen/scripts/tcr/CDR3AAPhyschem.R +1 -1
- biopipen/scripts/tcr/Immunarch.R +3 -0
- biopipen/scripts/tcr/ImmunarchLoading.R +22 -23
- biopipen/scripts/tcr/TCRClustering.R +8 -9
- biopipen/scripts/tcr/TESSA.R +23 -30
- {biopipen-0.22.0.dist-info → biopipen-0.22.1.dist-info}/METADATA +1 -1
- {biopipen-0.22.0.dist-info → biopipen-0.22.1.dist-info}/RECORD +14 -14
- {biopipen-0.22.0.dist-info → biopipen-0.22.1.dist-info}/WHEEL +0 -0
- {biopipen-0.22.0.dist-info → biopipen-0.22.1.dist-info}/entry_points.txt +0 -0
biopipen/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.22.
|
|
1
|
+
__version__ = "0.22.1"
|
biopipen/ns/tcr.py
CHANGED
|
@@ -40,11 +40,13 @@ class ImmunarchLoading(Proc):
|
|
|
40
40
|
|
|
41
41
|
Output:
|
|
42
42
|
rdsfile: The RDS file with the data and metadata
|
|
43
|
-
metatxt: The meta data
|
|
43
|
+
metatxt: The meta data at cell level, which can be used to attach to the Seurat object
|
|
44
44
|
|
|
45
45
|
Envs:
|
|
46
46
|
prefix: The prefix to the barcodes. You can use placeholder like `{Sample}_`
|
|
47
|
-
to use the meta data from the `immunarch` object.
|
|
47
|
+
to use the meta data from the `immunarch` object. The prefixed barcodes will
|
|
48
|
+
be saved in `out.metatxt`. The `immunarch` object keeps the original barcodes, but
|
|
49
|
+
the prefix is saved at `immdata$prefix`.
|
|
48
50
|
|
|
49
51
|
/// Note
|
|
50
52
|
This option is useful because the barcodes for the cells from scRNA-seq
|
|
@@ -65,10 +67,16 @@ class ImmunarchLoading(Proc):
|
|
|
65
67
|
paired chain data. For `single`, only TRB chain will be kept
|
|
66
68
|
at `immdata$data`, information for other chains will be
|
|
67
69
|
saved at `immdata$tra` and `immdata$multi`.
|
|
68
|
-
|
|
70
|
+
extracols (list): The extra columns to be exported to the text file.
|
|
69
71
|
You can refer to the
|
|
70
72
|
[immunarch documentation](https://immunarch.com/articles/v2_data.html#immunarch-data-format)
|
|
71
|
-
for the full list of the columns.
|
|
73
|
+
to get a sense for the full list of the columns.
|
|
74
|
+
The columns may vary depending on the data source.
|
|
75
|
+
The columns from `immdata$meta` and some core columns, including
|
|
76
|
+
`Barcode`, `CDR3.aa`, `Clones`, `Proportion`, `V.name`, `J.name`, and
|
|
77
|
+
`D.name` will be exported by default. You can use this option to
|
|
78
|
+
specify the extra columns to be exported.
|
|
79
|
+
|
|
72
80
|
""" # noqa: E501
|
|
73
81
|
input = "metafile:file"
|
|
74
82
|
output = [
|
|
@@ -80,7 +88,7 @@ class ImmunarchLoading(Proc):
|
|
|
80
88
|
"tmpdir": config.path.tmpdir,
|
|
81
89
|
"prefix": "{Sample}_",
|
|
82
90
|
"mode": "single",
|
|
83
|
-
"
|
|
91
|
+
"extracols": [],
|
|
84
92
|
}
|
|
85
93
|
script = "file://../scripts/tcr/ImmunarchLoading.R"
|
|
86
94
|
|
|
@@ -322,6 +330,7 @@ class Immunarch(Proc):
|
|
|
322
330
|
prefix: The prefix to the barcodes. You can use placeholder like `{Sample}_`
|
|
323
331
|
The prefixed barcodes will be used to match the barcodes in `in.metafile`.
|
|
324
332
|
Not used if `in.metafile` is not specified.
|
|
333
|
+
If `None` (default), `immdata$prefix` will be used.
|
|
325
334
|
volumes (ns): Explore clonotype volume (sizes).
|
|
326
335
|
- by: Groupings when visualize clonotype volumes, passed to the `.by` argument of `vis(imm_vol, .by = <values>)`.
|
|
327
336
|
Multiple columns should be separated by `,`.
|
|
@@ -682,7 +691,7 @@ class Immunarch(Proc):
|
|
|
682
691
|
lang = config.lang.rscript
|
|
683
692
|
envs = {
|
|
684
693
|
"mutaters": {},
|
|
685
|
-
"prefix":
|
|
694
|
+
"prefix": None,
|
|
686
695
|
# basic statistics
|
|
687
696
|
"volumes": {
|
|
688
697
|
"by": None,
|
|
@@ -1179,6 +1188,10 @@ class TCRClustering(Proc):
|
|
|
1179
1188
|
For GIANA, using TRBV mutations is not supported
|
|
1180
1189
|
- GIANA: by Li lab at UT Southwestern Medical Center
|
|
1181
1190
|
- ClusTCR: by Sebastiaan Valkiers, etc
|
|
1191
|
+
prefix: The prefix to the barcodes. You can use placeholder like `{Sample}_`
|
|
1192
|
+
The prefixed barcodes will be used to match the barcodes in `in.metafile`.
|
|
1193
|
+
Not used if `in.metafile` is not specified.
|
|
1194
|
+
If `None` (default), `immdata$prefix` will be used.
|
|
1182
1195
|
python: The path of python with `GIANA`'s dependencies installed
|
|
1183
1196
|
or with `clusTCR` installed. Depending on the `tool` you choose.
|
|
1184
1197
|
args (type=json): The arguments for the clustering tool
|
|
@@ -1202,6 +1215,7 @@ class TCRClustering(Proc):
|
|
|
1202
1215
|
lang = config.lang.rscript
|
|
1203
1216
|
envs = {
|
|
1204
1217
|
"tool": "GIANA", # or ClusTCR
|
|
1218
|
+
"prefix": None,
|
|
1205
1219
|
"on_multi": False,
|
|
1206
1220
|
"python": config.lang.python,
|
|
1207
1221
|
"args": {},
|
|
@@ -1507,7 +1521,8 @@ class TESSA(Proc):
|
|
|
1507
1521
|
[link](https://www.nature.com/articles/s42256-021-00383-2)
|
|
1508
1522
|
|
|
1509
1523
|
Input:
|
|
1510
|
-
immdata: The
|
|
1524
|
+
immdata: The immunarch object in RDS file or text file of TCR data loaded by
|
|
1525
|
+
[`ImmunarchLoading`](!!#biopipennstcrimmunarchloading)
|
|
1511
1526
|
srtobj: The `Seurat` object, saved in RDS format, with dimension
|
|
1512
1527
|
reduction performed if you want to use them to represent the
|
|
1513
1528
|
transcriptome of T cells.
|
|
@@ -1522,8 +1537,13 @@ class TESSA(Proc):
|
|
|
1522
1537
|
|
|
1523
1538
|
Envs:
|
|
1524
1539
|
python: The path of python with `TESSA`'s dependencies installed
|
|
1525
|
-
prefix: The prefix
|
|
1526
|
-
|
|
1540
|
+
prefix: The prefix of the cell barcodes in the `Seurat` object.
|
|
1541
|
+
Once could use a fixed prefix, or a placeholder with the column
|
|
1542
|
+
name in meta data. For example, `"{Sample}_"` will replace the
|
|
1543
|
+
placeholder with the value of the column `Sample` in meta data.
|
|
1544
|
+
If `in.immdata` is text file, the prefix will be ignored and the
|
|
1545
|
+
barcode should be already prefixed.
|
|
1546
|
+
If `None` and `in.immdata` is RDS file, `immdata$prefix` will be used.
|
|
1527
1547
|
within_sample (flag): Whether the TCR networks are constructed only
|
|
1528
1548
|
within TCRs from the same sample/patient (True) or with all the
|
|
1529
1549
|
TCRs in the meta data matrix (False).
|
|
@@ -1548,7 +1568,7 @@ class TESSA(Proc):
|
|
|
1548
1568
|
lang = config.lang.rscript
|
|
1549
1569
|
envs = {
|
|
1550
1570
|
"python": config.lang.python,
|
|
1551
|
-
"prefix":
|
|
1571
|
+
"prefix": None,
|
|
1552
1572
|
"assay": "RNA",
|
|
1553
1573
|
"within_sample": False,
|
|
1554
1574
|
"predefined_b": False,
|
|
@@ -229,10 +229,16 @@ do_case <- function(name, case) {
|
|
|
229
229
|
meta %>% select(
|
|
230
230
|
!!sym(cells_by),
|
|
231
231
|
!!sym(case$group_by),
|
|
232
|
+
seurat_clusters,
|
|
232
233
|
CloneSize,
|
|
233
234
|
CloneGroupSize,
|
|
234
235
|
CloneClusterSize,
|
|
235
236
|
CloneGroupClusterSize,
|
|
237
|
+
) %>% distinct(
|
|
238
|
+
!!sym(cells_by),
|
|
239
|
+
!!sym(case$group_by),
|
|
240
|
+
seurat_clusters,
|
|
241
|
+
.keep_all = TRUE
|
|
236
242
|
),
|
|
237
243
|
txtfile,
|
|
238
244
|
sep = "\t",
|
|
@@ -1,4 +1,6 @@
|
|
|
1
|
+
source("{{biopipen_dir}}/utils/misc.R")
|
|
1
2
|
source("{{biopipen_dir}}/utils/mutate_helpers.R")
|
|
3
|
+
|
|
2
4
|
library(rlang)
|
|
3
5
|
library(tibble)
|
|
4
6
|
library(dplyr)
|
|
@@ -14,7 +16,17 @@ metadata = srt@meta.data
|
|
|
14
16
|
|
|
15
17
|
if (!is.null(metafile)) {
|
|
16
18
|
mdata = read.table(metafile, header=TRUE, row.names=1, sep="\t", check.names=FALSE)
|
|
17
|
-
|
|
19
|
+
ov_cols = intersect(colnames(metadata), colnames(mdata))
|
|
20
|
+
if (length(ov_cols) > 0) {
|
|
21
|
+
log_warn(paste0(
|
|
22
|
+
"The following columns are already present in Seurat object and will be ignored: ",
|
|
23
|
+
paste(ov_cols, collapse=', ')
|
|
24
|
+
))
|
|
25
|
+
}
|
|
26
|
+
metadata = cbind(
|
|
27
|
+
metadata,
|
|
28
|
+
mdata[rownames(metadata), setdiff(colnames(mdata), ov_cols), drop=FALSE]
|
|
29
|
+
)
|
|
18
30
|
}
|
|
19
31
|
|
|
20
32
|
expr = list()
|
|
@@ -11,6 +11,7 @@ immfile = {{in.immfile | r}}
|
|
|
11
11
|
sobjfile = {{in.sobjfile | r}}
|
|
12
12
|
outfile = {{out.outfile | r}}
|
|
13
13
|
metacols = {{envs.metacols | r}}
|
|
14
|
+
prefix = {{envs.prefix | r}}
|
|
14
15
|
|
|
15
16
|
immdata = readRDS(immfile)
|
|
16
17
|
sobj = readRDS(sobjfile)
|
|
@@ -31,7 +32,7 @@ metadf = do_call(rbind, lapply(seq_len(nrow(immdata$meta)), function(i) {
|
|
|
31
32
|
|
|
32
33
|
cldata %>%
|
|
33
34
|
separate_rows(Barcode, sep=";") %>%
|
|
34
|
-
mutate(Barcode = glue("{
|
|
35
|
+
mutate(Barcode = glue(paste0(prefix, "{Barcode}")))
|
|
35
36
|
|
|
36
37
|
}))
|
|
37
38
|
|
|
@@ -193,7 +193,7 @@ merge_data = function(sam) {
|
|
|
193
193
|
if (!is.null(prefix) && nchar(prefix) > 0) {
|
|
194
194
|
# Replace the placeholder like {Sample} with the data in other columns
|
|
195
195
|
# in the same row
|
|
196
|
-
sdata = sdata %>% mutate(.prefix_len = nchar(glue(
|
|
196
|
+
sdata = sdata %>% mutate(.prefix_len = nchar(glue(prefix)))
|
|
197
197
|
# Remove the prefix in the rownames of sdata
|
|
198
198
|
rownames(sdata) = substring(rownames(sdata), sdata$.prefix_len + 1)
|
|
199
199
|
sdata = sdata %>% select(-.prefix_len)
|
biopipen/scripts/tcr/Immunarch.R
CHANGED
|
@@ -27,6 +27,9 @@ prefix = {{ envs.prefix | r }}
|
|
|
27
27
|
log_info("Loading immdata ...")
|
|
28
28
|
immdata = readRDS(immfile)
|
|
29
29
|
|
|
30
|
+
if (is.null(prefix)) { prefix = immdata$prefix }
|
|
31
|
+
if (is.null(prefix)) { prefix = "" }
|
|
32
|
+
|
|
30
33
|
log_info("Expanding immdata ...")
|
|
31
34
|
exdata = expand_immdata(immdata)
|
|
32
35
|
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
source("{{biopipen_dir}}/utils/misc.R")
|
|
2
|
+
source("{{biopipen_dir}}/utils/single_cell.R")
|
|
2
3
|
|
|
3
4
|
# Loading 10x data into immunarch
|
|
4
5
|
library(immunarch)
|
|
@@ -13,7 +14,8 @@ rdsfile = {{ out.rdsfile | quote }}
|
|
|
13
14
|
metatxt = {{ out.metatxt | quote }}
|
|
14
15
|
tmpdir = {{ envs.tmpdir | quote }}
|
|
15
16
|
mode = {{ envs.mode | quote }}
|
|
16
|
-
|
|
17
|
+
extracols = {{ envs.extracols | r}}
|
|
18
|
+
prefix = {{ envs.prefix | r }}
|
|
17
19
|
|
|
18
20
|
metadata = read.table(
|
|
19
21
|
metafile,
|
|
@@ -164,27 +166,24 @@ immdata$meta = left_join(
|
|
|
164
166
|
by = "Sample"
|
|
165
167
|
)
|
|
166
168
|
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
metadf = do_call(rbind, lapply(seq_len(nrow(immdata$meta)), function(i) {
|
|
170
|
-
# Clones Proportion CDR3.aa Barcode
|
|
171
|
-
# 5 4 0.008583691 CAVRDTGNTPLVF;CASSEYSNQPQHF GTTCGGGCACTTACGA-1;TCTCTAAGTACCAGTT-1
|
|
172
|
-
# 6 4 0.008583691 CALTQAAGNKLTF;CASRPEDLRGQPQHF GCTTGAAGTCGGCACT-1;TACTCGCTCCTAAGTG-1
|
|
173
|
-
cldata = immdata$data[[i]][, unique(c(metacols, "Barcode"))]
|
|
174
|
-
# # A tibble: 4 × 5
|
|
175
|
-
# Sample Patient Timepoint Tissue
|
|
176
|
-
# <chr> <chr> <chr> <chr>
|
|
177
|
-
# 1 MC1685Pt011-Baseline-PB MC1685Pt011 Baseline PB
|
|
178
|
-
mdata = as.list(immdata$meta[i, , drop=FALSE])
|
|
179
|
-
for (mname in names(mdata)) {
|
|
180
|
-
assign(mname, mdata[[mname]])
|
|
181
|
-
}
|
|
169
|
+
immdata$prefix = prefix
|
|
182
170
|
|
|
183
|
-
|
|
184
|
-
separate_rows(Barcode, sep=";") %>%
|
|
185
|
-
distinct(Barcode, .keep_all = TRUE) %>%
|
|
186
|
-
mutate(Barcode = glue("{{envs.prefix}}{Barcode}")) %>%
|
|
187
|
-
column_to_rownames("Barcode")
|
|
171
|
+
saveRDS(immdata, file=rdsfile)
|
|
188
172
|
|
|
189
|
-
|
|
190
|
-
|
|
173
|
+
exdata <- expand_immdata(immdata, cell_id = "Barcode") %>%
|
|
174
|
+
distinct(Sample, Barcode, .keep_all = TRUE) %>%
|
|
175
|
+
mutate(Barcode = glue(paste0(prefix, "{Barcode}"))) %>%
|
|
176
|
+
select(any_of(c(
|
|
177
|
+
colnames(immdata$meta),
|
|
178
|
+
"Barcode",
|
|
179
|
+
"CDR3.aa",
|
|
180
|
+
"Clones",
|
|
181
|
+
"Proportion",
|
|
182
|
+
"V.name",
|
|
183
|
+
"D.name",
|
|
184
|
+
"J.name",
|
|
185
|
+
extracols
|
|
186
|
+
))) %>%
|
|
187
|
+
column_to_rownames("Barcode")
|
|
188
|
+
|
|
189
|
+
write.table(exdata, metatxt, sep="\t", quote=FALSE, row.names=TRUE, col.names=TRUE)
|
|
@@ -3,11 +3,13 @@
|
|
|
3
3
|
# python = Sys.which({{envs.python | r}})
|
|
4
4
|
# Sys.setenv(RETICULATE_PYTHON = python)
|
|
5
5
|
# library(reticulate)
|
|
6
|
+
source("{{biopipen_dir}}/utils/single_cell.R")
|
|
6
7
|
|
|
7
8
|
library(immunarch)
|
|
8
9
|
library(dplyr)
|
|
9
10
|
library(tidyr)
|
|
10
11
|
library(tibble)
|
|
12
|
+
library(glue)
|
|
11
13
|
|
|
12
14
|
immfile = {{in.immfile | r}}
|
|
13
15
|
outdir = normalizePath({{job.outdir | r}})
|
|
@@ -17,6 +19,7 @@ tool = {{envs.tool | r}}
|
|
|
17
19
|
python = {{envs.python | r}}
|
|
18
20
|
on_multi = {{envs.on_multi | r}}
|
|
19
21
|
args = {{envs.args | r}}
|
|
22
|
+
prefix = {{envs.prefix | r}}
|
|
20
23
|
|
|
21
24
|
setwd(outdir)
|
|
22
25
|
|
|
@@ -26,17 +29,13 @@ if (on_multi) {
|
|
|
26
29
|
} else {
|
|
27
30
|
seqdata = immdata$data
|
|
28
31
|
}
|
|
32
|
+
if (is.null(prefix)) { prefix = immdata$prefix }
|
|
33
|
+
if (is.null(prefix)) { prefix = "" }
|
|
29
34
|
|
|
30
35
|
get_cdr3aa_df = function() {
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
select(Barcode, CDR3.aa) %>%
|
|
35
|
-
separate_rows(Barcode, sep = ";") %>%
|
|
36
|
-
mutate(Barcode = paste0(sample, "_", Barcode))
|
|
37
|
-
out = bind_rows(out, tmpdf)
|
|
38
|
-
}
|
|
39
|
-
out
|
|
36
|
+
expand_immdata(immdata, cell_id = "Barcode") %>%
|
|
37
|
+
mutate(Barcode = glue(paste0(prefix, "{Barcode}"))) %>%
|
|
38
|
+
select(Barcode, CDR3.aa)
|
|
40
39
|
}
|
|
41
40
|
cdr3aa_df = get_cdr3aa_df()
|
|
42
41
|
|
biopipen/scripts/tcr/TESSA.R
CHANGED
|
@@ -1,8 +1,10 @@
|
|
|
1
1
|
source("{{biopipen_dir}}/utils/misc.R")
|
|
2
|
+
source("{{biopipen_dir}}/utils/single_cell.R")
|
|
2
3
|
|
|
3
4
|
library(glue)
|
|
4
5
|
library(dplyr)
|
|
5
6
|
library(tidyr)
|
|
7
|
+
library(tibble)
|
|
6
8
|
library(immunarch)
|
|
7
9
|
library(Seurat)
|
|
8
10
|
library(ggplot2)
|
|
@@ -13,6 +15,7 @@ exprfile <- {{in.srtobj | r}}
|
|
|
13
15
|
outfile <- {{out.outfile | r}}
|
|
14
16
|
joboutdir <- {{job.outdir | r}}
|
|
15
17
|
python <- {{envs.python | r}}
|
|
18
|
+
prefix <- {{envs.prefix | r}}
|
|
16
19
|
within_sample <- {{envs.within_sample | r}}
|
|
17
20
|
assay <- {{envs.assay | r}}
|
|
18
21
|
predefined_b <- {{envs.predefined_b | r}}
|
|
@@ -29,34 +32,21 @@ if (!dir.exists(tessa_dir)) dir.create(tessa_dir)
|
|
|
29
32
|
### Start preparing input files for TESSA
|
|
30
33
|
# Prepare input files
|
|
31
34
|
log_info("Preparing TCR input file ...")
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
# Sample Patient Timepoint Tissue
|
|
47
|
-
# <chr> <chr> <chr> <chr>
|
|
48
|
-
# 1 MC1685Pt011-Baseline-PB MC1685Pt011 Baseline PB
|
|
49
|
-
mdata = as.list(immdata$meta[i, , drop=FALSE])
|
|
50
|
-
for (mname in names(mdata)) {
|
|
51
|
-
assign(mname, mdata[[mname]])
|
|
52
|
-
}
|
|
35
|
+
# If immfile endswith .rds, then it is an immunarch object
|
|
36
|
+
if (endsWith(tolower(immfile), ".rds")) {
|
|
37
|
+
immdata <- readRDS(immfile)
|
|
38
|
+
if (is.null(prefix)) { prefix = immdata$prefix }
|
|
39
|
+
if (is.null(prefix)) { prefix = "" }
|
|
40
|
+
tcrdata <- expand_immdata(immdata) %>%
|
|
41
|
+
mutate(Barcode = glue(paste0(prefix, "{Barcode}")))
|
|
42
|
+
rm(immdata)
|
|
43
|
+
} else {
|
|
44
|
+
tcrdata <- read.table(immfile, sep="\t", header=TRUE, row.names=1) %>%
|
|
45
|
+
rownames_to_column("Barcode")
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
has_VJ <- "V.name" %in% colnames(tcrdata) && "J.name" %in% colnames(tcrdata)
|
|
53
49
|
|
|
54
|
-
cldata %>%
|
|
55
|
-
separate_rows(Barcode, sep=";") %>%
|
|
56
|
-
# Just in case there are duplicated barcodes
|
|
57
|
-
distinct(Barcode, .keep_all = TRUE) %>%
|
|
58
|
-
mutate(Barcode = glue("{{envs.prefix}}{Barcode}"), sample = Sample)
|
|
59
|
-
}))
|
|
60
50
|
if (has_VJ) {
|
|
61
51
|
tcrdata <- tcrdata %>% dplyr::mutate(
|
|
62
52
|
v_gene = sub("-\\d+$", "", V.name),
|
|
@@ -66,13 +56,13 @@ if (has_VJ) {
|
|
|
66
56
|
cdr3 = CDR3.aa,
|
|
67
57
|
v_gene,
|
|
68
58
|
j_gene,
|
|
69
|
-
sample
|
|
59
|
+
sample = Sample
|
|
70
60
|
)
|
|
71
61
|
} else {
|
|
72
62
|
tcrdata <- tcrdata %>% dplyr::select(
|
|
73
63
|
contig_id = Barcode,
|
|
74
64
|
cdr3 = CDR3.aa,
|
|
75
|
-
sample
|
|
65
|
+
sample = Sample
|
|
76
66
|
)
|
|
77
67
|
}
|
|
78
68
|
|
|
@@ -101,7 +91,10 @@ if (length(unused_expr_cells) > 0) {
|
|
|
101
91
|
log_warn(glue("{length(unused_expr_cells)}/{ncol(expr)} expression cells are not used."))
|
|
102
92
|
}
|
|
103
93
|
if (length(cell_ids) == 0) {
|
|
104
|
-
stop(
|
|
94
|
+
stop(paste0(
|
|
95
|
+
"No common cells between TCR and expression data. ",
|
|
96
|
+
"Are you using the correct `envs.prefix` here or in `ImmunarchLoading`?"
|
|
97
|
+
))
|
|
105
98
|
}
|
|
106
99
|
tcrdata <- tcrdata[tcrdata$contig_id %in% cell_ids, , drop=FALSE]
|
|
107
100
|
expr <- as.matrix(expr)[, tcrdata$contig_id, drop=FALSE]
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
biopipen/__init__.py,sha256=
|
|
1
|
+
biopipen/__init__.py,sha256=mjWPUw5WSKjOdLE532eMicR6Gvc0AStLxFjzYGRWcns,23
|
|
2
2
|
biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
|
|
4
4
|
biopipen/core/config.toml,sha256=JALO2S7TfmV3gIRPJ0cLTFWncPXXheQJS3vYQlyX6wQ,1600
|
|
@@ -23,7 +23,7 @@ biopipen/ns/scrna.py,sha256=F5j1TmjsS2swwm-uDyT6sTys5pldIJ_M2hNITAQdflc,82728
|
|
|
23
23
|
biopipen/ns/scrna_basic.py,sha256=Py90IveDI5Alm6FUeC89xp3W79VPRvAQctQpc5JtO2M,8639
|
|
24
24
|
biopipen/ns/scrna_metabolic_landscape.py,sha256=dSL-y1Gx1fcgebX7vk3wcSbm9aBALfCZKz0vjcDxQ_8,28139
|
|
25
25
|
biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
|
|
26
|
-
biopipen/ns/tcr.py,sha256
|
|
26
|
+
biopipen/ns/tcr.py,sha256=ZCwL_1Of-F5xVJ0hgdVLAjHwwwfegqkW_SO66oYULqM,83738
|
|
27
27
|
biopipen/ns/vcf.py,sha256=cdkKroii0_nl_bSP2cnO09qESUAhHqu6btOiTSKS79Y,15314
|
|
28
28
|
biopipen/ns/web.py,sha256=3zucrDo-IVsSnIvlw-deoScuxqWa6OMTm8Vo-R4E44Q,2224
|
|
29
29
|
biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
|
|
@@ -110,7 +110,7 @@ biopipen/scripts/scrna/CellTypeAnnotation-hitype.R,sha256=6_DBAlLKcHqaMyWGZWvTd4
|
|
|
110
110
|
biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R,sha256=1ejye0hs-EOwzzdP9gFWSLPcF6dOAA6VmNKXEjmS11E,1654
|
|
111
111
|
biopipen/scripts/scrna/CellTypeAnnotation-sctype.R,sha256=u1eQsBWv1GKTbkwp6OFyiPuMFFcgwoa4-VI-d4q8nM4,3877
|
|
112
112
|
biopipen/scripts/scrna/CellTypeAnnotation.R,sha256=6Le1SvZcKI8D0SLkFZ5SibGsW9ZWqirnBl3Q1BNZOuU,513
|
|
113
|
-
biopipen/scripts/scrna/CellsDistribution.R,sha256=
|
|
113
|
+
biopipen/scripts/scrna/CellsDistribution.R,sha256=8bDwA1xQHCHnGRBW5XfW35BOpNLydxbWX93TId9vRa8,12908
|
|
114
114
|
biopipen/scripts/scrna/DimPlots.R,sha256=-mXOTMnpPxvR30XLjwcohFfFx7xTqWKKiICwJiD6yEo,1554
|
|
115
115
|
biopipen/scripts/scrna/ExprImpution-alra.R,sha256=8wcyZk1Whf45SXsYOM_ykl8m-iBxr27KEjtslbl2JQQ,782
|
|
116
116
|
biopipen/scripts/scrna/ExprImpution-rmagic.R,sha256=yYnkyVfqIaNynsbaZZLGS6DrAJ_XhVQj1Ox598w8yOY,651
|
|
@@ -131,7 +131,7 @@ biopipen/scripts/scrna/SeuratClustering.R,sha256=JBJkwZmdjMsWzHaa_WvYCN1tXQimgcl
|
|
|
131
131
|
biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
|
|
132
132
|
biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
|
|
133
133
|
biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=TkDSDc5do6BOtkAq3fS5HpjyqWUwsu8YqRC5in62oz8,3750
|
|
134
|
-
biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=
|
|
134
|
+
biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
|
|
135
135
|
biopipen/scripts/scrna/SeuratPreparing.R,sha256=j_t8EbPoNNRFPquerYd6BjtbIgdHCt8h2XXZax8_tXM,8453
|
|
136
136
|
biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
|
|
137
137
|
biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
|
|
@@ -146,8 +146,8 @@ biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha25
|
|
|
146
146
|
biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
|
|
147
147
|
biopipen/scripts/tcgamaf/MafAddChr.py,sha256=V10HMisl12O3ZfXuRmFNdy5p-3mr43WCvy0GHxSpwfA,494
|
|
148
148
|
biopipen/scripts/tcgamaf/maf2vcf.pl,sha256=hJKcH-NbgWK6fmK7f3qex7ozJJl-PqCNPXqpwfcHwJg,22707
|
|
149
|
-
biopipen/scripts/tcr/Attach2Seurat.R,sha256=
|
|
150
|
-
biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=
|
|
149
|
+
biopipen/scripts/tcr/Attach2Seurat.R,sha256=C91TAh1cLSxWkdFPf84pbxlpTYMuWq_rduG4eiIkXZI,1345
|
|
150
|
+
biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=rvXa9z7EY745Su0bzz0WpBd6QxXMGrzV_Eq7Ur9xb_g,16645
|
|
151
151
|
biopipen/scripts/tcr/CloneResidency.R,sha256=sH76jRg_5q0THsIlgcHMCucdQyeLsc4jixbF938ennI,21421
|
|
152
152
|
biopipen/scripts/tcr/CloneSizeQQPlot.R,sha256=5FPfWQjxTsv59KSDQaDWj3C95zPQMngKG7qOf95NEzI,4527
|
|
153
153
|
biopipen/scripts/tcr/GIANA/GIANA.py,sha256=0qLhgCWxT8K-4JvORA03CzBPTT5pd4Di5B_DgrHXbFA,47198
|
|
@@ -163,15 +163,15 @@ biopipen/scripts/tcr/Immunarch-overlap.R,sha256=6RxXTjGhWzUC_1BxojMFrbrTq2PI_EAo
|
|
|
163
163
|
biopipen/scripts/tcr/Immunarch-spectratyping.R,sha256=ICmCbsUDvwYjwL9kTiTEqQ7Fpmy7t7_GAJ5VTU9IeOU,2977
|
|
164
164
|
biopipen/scripts/tcr/Immunarch-tracking.R,sha256=j1w36v1YuzohW1Nd14m90wRtjzpJSD6OM5KbF_wVxcY,4443
|
|
165
165
|
biopipen/scripts/tcr/Immunarch-vjjunc.R,sha256=nOueF9l4_KVrKSZ1Sl0yObmjbd-5Hms2-RON6K23idg,3736
|
|
166
|
-
biopipen/scripts/tcr/Immunarch.R,sha256=
|
|
166
|
+
biopipen/scripts/tcr/Immunarch.R,sha256=L8rGJ4GODQ-anB8aIVmlPqRK01FBLhw6_ANT_4L6jhU,3030
|
|
167
167
|
biopipen/scripts/tcr/Immunarch2VDJtools.R,sha256=QB9ILGbnsfoWaRANK6ceb14wpSWy8F1V1EdEmfIqiks,706
|
|
168
168
|
biopipen/scripts/tcr/ImmunarchFilter.R,sha256=o25O36FwH_0w6F8DFQ0SfpcwDzlzaGefXqr9ESrvb4k,3974
|
|
169
|
-
biopipen/scripts/tcr/ImmunarchLoading.R,sha256=
|
|
169
|
+
biopipen/scripts/tcr/ImmunarchLoading.R,sha256=BNUJorjfF2R-j2ApUFKrAgqAJxzhzsDN9RUqzpkrfDY,5426
|
|
170
170
|
biopipen/scripts/tcr/ImmunarchSplitIdents.R,sha256=FGCeGV0uSmFU91lKkldUAeV4A2m3hHw5X4GNi8ffGzI,1873
|
|
171
171
|
biopipen/scripts/tcr/SampleDiversity.R,sha256=jQ1OU3b8vswD8tZhLt3fkcqJKrl2bhQX0giHM2rXz3Y,2643
|
|
172
172
|
biopipen/scripts/tcr/TCRClusterStats.R,sha256=3YxIfsTBbFFI6fBTU3gM60bGuVv52PmL7bs16_WciGw,12089
|
|
173
|
-
biopipen/scripts/tcr/TCRClustering.R,sha256=
|
|
174
|
-
biopipen/scripts/tcr/TESSA.R,sha256=
|
|
173
|
+
biopipen/scripts/tcr/TCRClustering.R,sha256=bW9cwVZCRlFIqO03LsUKu6qk6xZ_WxarHDUcnl_diT8,8592
|
|
174
|
+
biopipen/scripts/tcr/TESSA.R,sha256=nvzkhJHziTOjgZvAuU0L6qqCNgSp9f90P0i4tEMivwA,6798
|
|
175
175
|
biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv,sha256=SumqDOqP67P54uM7Cuc5_O_rySTWcGo7eX3psMSPX9s,763
|
|
176
176
|
biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py,sha256=z4_Q_6StymffuUGGjHP1-B3aTsXtamKao5Q1-Kg9has,6831
|
|
177
177
|
biopipen/scripts/tcr/TESSA_source/MCMC_control.R,sha256=93Nnz0IG8KfFnVscZDvmBp1qccZoSoG_jIVpOWBQLHE,2911
|
|
@@ -213,7 +213,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
|
|
|
213
213
|
biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
|
|
214
214
|
biopipen/utils/single_cell.R,sha256=bKduqOQjSC8BtZJuwfUShR49omoEMbB57n3Gi6dYlqA,4147
|
|
215
215
|
biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
|
|
216
|
-
biopipen-0.22.
|
|
217
|
-
biopipen-0.22.
|
|
218
|
-
biopipen-0.22.
|
|
219
|
-
biopipen-0.22.
|
|
216
|
+
biopipen-0.22.1.dist-info/METADATA,sha256=0PvmDBQ2Ffe1tvlcVMcEz5AdFbhLhPrswGpxHYXB5KM,886
|
|
217
|
+
biopipen-0.22.1.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
|
218
|
+
biopipen-0.22.1.dist-info/entry_points.txt,sha256=sfI6oDEEuMvAg0KNujE9uu-c29y7IwQQA1_A2sUjPhc,527
|
|
219
|
+
biopipen-0.22.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|