biomedisa 24.5.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- biomedisa/__init__.py +49 -0
- biomedisa/__main__.py +18 -0
- biomedisa/deeplearning.py +529 -0
- biomedisa/features/DataGenerator.py +299 -0
- biomedisa/features/DataGeneratorCrop.py +121 -0
- biomedisa/features/PredictDataGenerator.py +87 -0
- biomedisa/features/PredictDataGeneratorCrop.py +74 -0
- biomedisa/features/__init__.py +0 -0
- biomedisa/features/active_contour.py +430 -0
- biomedisa/features/amira_to_np/__init__.py +0 -0
- biomedisa/features/amira_to_np/amira_data_stream.py +980 -0
- biomedisa/features/amira_to_np/amira_grammar.py +369 -0
- biomedisa/features/amira_to_np/amira_header.py +290 -0
- biomedisa/features/amira_to_np/amira_helper.py +72 -0
- biomedisa/features/assd.py +167 -0
- biomedisa/features/biomedisa_helper.py +842 -0
- biomedisa/features/create_slices.py +277 -0
- biomedisa/features/crop_helper.py +581 -0
- biomedisa/features/curvop_numba.py +149 -0
- biomedisa/features/django_env.py +171 -0
- biomedisa/features/keras_helper.py +1195 -0
- biomedisa/features/nc_reader.py +179 -0
- biomedisa/features/pid.py +52 -0
- biomedisa/features/process_image.py +251 -0
- biomedisa/features/pycuda_test.py +85 -0
- biomedisa/features/random_walk/__init__.py +0 -0
- biomedisa/features/random_walk/gpu_kernels.py +184 -0
- biomedisa/features/random_walk/pycuda_large.py +826 -0
- biomedisa/features/random_walk/pycuda_large_allx.py +806 -0
- biomedisa/features/random_walk/pycuda_small.py +414 -0
- biomedisa/features/random_walk/pycuda_small_allx.py +493 -0
- biomedisa/features/random_walk/pyopencl_large.py +760 -0
- biomedisa/features/random_walk/pyopencl_small.py +441 -0
- biomedisa/features/random_walk/rw_large.py +389 -0
- biomedisa/features/random_walk/rw_small.py +307 -0
- biomedisa/features/remove_outlier.py +396 -0
- biomedisa/features/split_volume.py +167 -0
- biomedisa/interpolation.py +369 -0
- biomedisa/mesh.py +403 -0
- biomedisa-24.5.23.dist-info/LICENSE +191 -0
- biomedisa-24.5.23.dist-info/METADATA +261 -0
- biomedisa-24.5.23.dist-info/RECORD +44 -0
- biomedisa-24.5.23.dist-info/WHEEL +5 -0
- biomedisa-24.5.23.dist-info/top_level.txt +1 -0
@@ -0,0 +1,261 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: biomedisa
|
3
|
+
Version: 24.5.23
|
4
|
+
Summary: Segmentation of 3D volumetric image data
|
5
|
+
Author: Philipp Lösel
|
6
|
+
Author-email: philipp.loesel@anu.edu.au
|
7
|
+
Project-URL: Homepage, https://biomedisa.info
|
8
|
+
Project-URL: Issues, https://github.com/biomedisa/biomedisa/issues
|
9
|
+
Project-URL: GitHub, https://github.com/biomedisa/biomedisa
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: License :: OSI Approved :: European Union Public Licence 1.2 (EUPL 1.2)
|
12
|
+
Classifier: Operating System :: OS Independent
|
13
|
+
Requires-Python: >=3.8
|
14
|
+
Description-Content-Type: text/markdown
|
15
|
+
License-File: LICENSE
|
16
|
+
|
17
|
+
[](https://biomedisa.info)
|
18
|
+
-----------
|
19
|
+
- [Overview](#overview)
|
20
|
+
- [Hardware Requirements](#hardware-requirements)
|
21
|
+
- [Installation (command-line based)](#installation-command-line-based)
|
22
|
+
- [Installation (browser based)](#installation-browser-based)
|
23
|
+
- [Download Data](#download-data)
|
24
|
+
- [Revisions](#revisions)
|
25
|
+
- [Quickstart](#quickstart)
|
26
|
+
- [Smart Interpolation](#smart-interpolation)
|
27
|
+
- [Deep Learning](#deep-learning)
|
28
|
+
- [Mesh Generator](#mesh-generator)
|
29
|
+
- [Biomedisa Features](#biomedisa-features)
|
30
|
+
- [Authors](#authors)
|
31
|
+
- [FAQ](#faq)
|
32
|
+
- [Citation](#citation)
|
33
|
+
- [License](#license)
|
34
|
+
|
35
|
+
## Overview
|
36
|
+
Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large volumetric images, e.g. CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's semi-automated segmentation is based on a smart interpolation of sparsely pre-segmented slices, taking into account the complete underlying image data. In addition, Biomedisa enables deep learning for the fully automated segmentation of series of similar samples. It can be used in combination with segmentation tools such as Amira/Avizo, ImageJ/Fiji and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
|
37
|
+
|
38
|
+
## Hardware Requirements
|
39
|
+
+ One or more NVIDIA GPUs with compute capability 3.0 or higher or an Intel CPU
|
40
|
+
|
41
|
+
## Installation (command-line based)
|
42
|
+
+ [Ubuntu 22.04 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
|
43
|
+
+ [Ubuntu 22.04 + OpenCL + CPU (smart interpolation only and very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_opencl_cpu_cli.md)
|
44
|
+
+ [Windows 10 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
|
45
|
+
+ [Windows 10 + OpenCL + GPU (easy to install but lacks features like allaxis, smoothing, uncertainty, optimized GPU memory usage)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_gpu_cli.md)
|
46
|
+
+ [Windows 10 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_cpu_cli.md)
|
47
|
+
|
48
|
+
## Installation (browser based)
|
49
|
+
+ [Ubuntu 22.04](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8.md)
|
50
|
+
|
51
|
+
## Download Data
|
52
|
+
+ Download test data from our [gallery](https://biomedisa.info/gallery/)
|
53
|
+
|
54
|
+
## Revisions
|
55
|
+
24.5.22
|
56
|
+
+ Pip is the preferred installation method
|
57
|
+
+ Commands, module names and imports have been changed to conform to the Pip standard
|
58
|
+
+ For versions <=23.9.1 please check [README](https://github.com/biomedisa/biomedisa/blob/master/README/deprecated/README_2023.09.1.md)
|
59
|
+
|
60
|
+
## Quickstart
|
61
|
+
Install the Biomedisa package from the [Python Package Index](https://pypi.org/project/biomedisa/):
|
62
|
+
```
|
63
|
+
python -m pip install -U biomedisa
|
64
|
+
```
|
65
|
+
For smart interpolation and deep Learning modules, follow the installation instructions above.
|
66
|
+
|
67
|
+
## Smart Interpolation
|
68
|
+
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
|
69
|
+
|
70
|
+
#### Python example
|
71
|
+
```python
|
72
|
+
from biomedisa.features.biomedisa_helper import load_data, save_data
|
73
|
+
from biomedisa.interpolation import smart_interpolation
|
74
|
+
|
75
|
+
# load data
|
76
|
+
img, _ = load_data('Downloads/trigonopterus.tif')
|
77
|
+
labels, header = load_data('Downloads/labels.trigonopterus_smart.am')
|
78
|
+
|
79
|
+
# run smart interpolation with optional smoothing result
|
80
|
+
results = smart_interpolation(img, labels, smooth=100)
|
81
|
+
|
82
|
+
# get results
|
83
|
+
regular_result = results['regular']
|
84
|
+
smooth_result = results['smooth']
|
85
|
+
|
86
|
+
# save results
|
87
|
+
save_data('Downloads/final.trigonopterus.am', regular_result, header=header)
|
88
|
+
save_data('Downloads/final.trigonopterus.smooth.am', smooth_result, header=header)
|
89
|
+
```
|
90
|
+
|
91
|
+
#### Command-line based
|
92
|
+
```
|
93
|
+
python -m biomedisa.interpolation C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
|
94
|
+
```
|
95
|
+
If pre-segmentation is not exclusively in the XY plane:
|
96
|
+
```
|
97
|
+
python -m biomedisa.interpolation C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif --allaxis
|
98
|
+
```
|
99
|
+
|
100
|
+
## Deep Learning
|
101
|
+
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/deep_learning.md)
|
102
|
+
|
103
|
+
#### Python example (training)
|
104
|
+
```python
|
105
|
+
from biomedisa.features.biomedisa_helper import load_data
|
106
|
+
from biomedisa.deeplearning import deep_learning
|
107
|
+
|
108
|
+
# load image data
|
109
|
+
img1, _ = load_data('Head1.am')
|
110
|
+
img2, _ = load_data('Head2.am')
|
111
|
+
img_data = [img1, img2]
|
112
|
+
|
113
|
+
# load label data and header information to be stored in the network file (optional)
|
114
|
+
label1, _ = load_data('Head1.labels.am')
|
115
|
+
label2, header, ext = load_data('Head2.labels.am',
|
116
|
+
return_extension=True)
|
117
|
+
label_data = [label1, label2]
|
118
|
+
|
119
|
+
# load validation data (optional)
|
120
|
+
img3, _ = load_data('Head3.am')
|
121
|
+
img4, _ = load_data('Head4.am')
|
122
|
+
label3, _ = load_data('Head3.labels.am')
|
123
|
+
label4, _ = load_data('Head4.labels.am')
|
124
|
+
val_img_data = [img3, img4]
|
125
|
+
val_label_data = [label3, label4]
|
126
|
+
|
127
|
+
# deep learning
|
128
|
+
deep_learning(img_data, label_data, train=True, batch_size=12,
|
129
|
+
val_img_data=val_img_data, val_label_data=val_label_data,
|
130
|
+
header=header, extension=ext, path_to_model='honeybees.h5')
|
131
|
+
```
|
132
|
+
|
133
|
+
#### Command-line based (training)
|
134
|
+
Start training with a batch size of 12:
|
135
|
+
```
|
136
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs=12
|
137
|
+
```
|
138
|
+
Monitor training progress using validation data:
|
139
|
+
```
|
140
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi=C:\Users\%USERNAME%\Downloads\val_img -vl=C:\Users\%USERNAME%\Downloads\val_labels
|
141
|
+
```
|
142
|
+
If running into ResourceExhaustedError due to out of memory (OOM), try to use a smaller batch size.
|
143
|
+
|
144
|
+
#### Python example (prediction)
|
145
|
+
```python
|
146
|
+
from biomedisa.features.biomedisa_helper import load_data, save_data
|
147
|
+
from biomedisa.deeplearning import deep_learning
|
148
|
+
|
149
|
+
# load data
|
150
|
+
img, _ = load_data('Head5.am')
|
151
|
+
|
152
|
+
# deep learning
|
153
|
+
results = deep_learning(img, predict=True,
|
154
|
+
path_to_model='honeybees.h5', batch_size=6)
|
155
|
+
|
156
|
+
# save result
|
157
|
+
save_data('final.Head5.am', results['regular'], results['header'])
|
158
|
+
```
|
159
|
+
|
160
|
+
#### Command-line based (prediction)
|
161
|
+
```
|
162
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p
|
163
|
+
```
|
164
|
+
|
165
|
+
## Mesh Generator
|
166
|
+
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/save_mesh.md)
|
167
|
+
|
168
|
+
#### Python example
|
169
|
+
Create STL mesh from segmentation (label values are saved as attributes)
|
170
|
+
```python
|
171
|
+
from biomedisa.features.biomedisa_helper import load_data, save_data
|
172
|
+
from biomedisa.mesh import get_voxel_spacing, save_mesh
|
173
|
+
|
174
|
+
# load segmentation
|
175
|
+
data, header, extension = load_data('final.Head5.am', return_extension=True)
|
176
|
+
|
177
|
+
# get voxel spacing
|
178
|
+
x_res, y_res, z_res = get_voxel_spacing(header, data, extension)
|
179
|
+
print(f'Voxel spacing: x_spacing, y_spacing, z_spacing = {x_res}, {y_res}, {z_res}')
|
180
|
+
|
181
|
+
# save stl file
|
182
|
+
save_mesh('final.Head5.stl', data, x_res, y_res, z_res, poly_reduction=0.9, smoothing_iterations=15)
|
183
|
+
```
|
184
|
+
|
185
|
+
#### Command-line based
|
186
|
+
```
|
187
|
+
python -m biomedisa.mesh 'final.Head5.am'
|
188
|
+
```
|
189
|
+
|
190
|
+
## Biomedisa Features
|
191
|
+
|
192
|
+
#### Load and save data (such as Amira Mesh, TIFF, NRRD, NIfTI or DICOM)
|
193
|
+
For DICOM, PNG files, or similar formats, file path must reference either a directory or a ZIP file containing the image slices.
|
194
|
+
```python
|
195
|
+
from biomedisa.features.biomedisa_helper import load_data, save_data
|
196
|
+
|
197
|
+
# load data as numpy array
|
198
|
+
data, header = load_data('temp.tif')
|
199
|
+
|
200
|
+
# save data (for TIFF, header=None)
|
201
|
+
save_data('temp.tif', data, header)
|
202
|
+
```
|
203
|
+
|
204
|
+
#### Resize data
|
205
|
+
```python
|
206
|
+
from biomedisa.features.biomedisa_helper import img_resize
|
207
|
+
|
208
|
+
# resize image data
|
209
|
+
zsh, ysh, xsh = data.shape
|
210
|
+
new_zsh, new_ysh, new_xsh = zsh//2, ysh//2, xsh//2
|
211
|
+
data = img_resize(data, new_zsh, new_ysh, new_xsh)
|
212
|
+
|
213
|
+
# resize label data
|
214
|
+
label_data = img_resize(label_data, new_zsh, new_ysh, new_xsh, labels=True)
|
215
|
+
```
|
216
|
+
|
217
|
+
#### Remove outliers and fill holes
|
218
|
+
```python
|
219
|
+
from biomedisa.features.biomedisa_helper import clean, fill
|
220
|
+
|
221
|
+
# delete outliers smaller than 90% of the segment
|
222
|
+
label_data = clean(label_data, 0.9)
|
223
|
+
|
224
|
+
# fill holes
|
225
|
+
label_data = fill(label_data, 0.9)
|
226
|
+
```
|
227
|
+
|
228
|
+
#### Accuracy assessment
|
229
|
+
```python
|
230
|
+
from biomedisa.features.biomedisa_helper import Dice_score, ASSD
|
231
|
+
dice = Dice_score(ground_truth, result)
|
232
|
+
assd = ASSD(ground_truth, result)
|
233
|
+
```
|
234
|
+
|
235
|
+
## Authors
|
236
|
+
|
237
|
+
* **Philipp D. Lösel**
|
238
|
+
|
239
|
+
See also the list of [contributors](https://github.com/biomedisa/biomedisa/blob/master/credits.md) who participated in this project.
|
240
|
+
|
241
|
+
## FAQ
|
242
|
+
Frequently asked questions can be found at: https://biomedisa.info/faq/.
|
243
|
+
|
244
|
+
## Citation
|
245
|
+
|
246
|
+
If you use Biomedisa or the data, please cite the following paper:
|
247
|
+
|
248
|
+
`Lösel, P.D. et al. Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nat. Commun. 11, 5577 (2020).` https://doi.org/10.1038/s41467-020-19303-w
|
249
|
+
|
250
|
+
If you use Biomedisa's Deep Learning, you may also cite:
|
251
|
+
|
252
|
+
`Lösel, P.D. et al. Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning. PLoS Comput. Biol. 19, e1011529 (2023).` https://doi.org/10.1371/journal.pcbi.1011529
|
253
|
+
|
254
|
+
If you use Biomedisa's Smart Interpolation, you can also cite the initial description of this method:
|
255
|
+
|
256
|
+
`Lösel, P. & Heuveline, V. Enhancing a diffusion algorithm for 4D image segmentation using local information. Proc. SPIE 9784, 97842L (2016).` https://doi.org/10.1117/12.2216202
|
257
|
+
|
258
|
+
## License
|
259
|
+
|
260
|
+
This project is covered under the **EUROPEAN UNION PUBLIC LICENCE v. 1.2 (EUPL)**.
|
261
|
+
|
@@ -0,0 +1,44 @@
|
|
1
|
+
biomedisa/__init__.py,sha256=hw4mzEjGFXm-vxus2DBfKFW0nKoG0ibL5SH6ShfchrY,1526
|
2
|
+
biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
|
3
|
+
biomedisa/deeplearning.py,sha256=UG5baX58CrO8YXe9pU6_Bp2OOvbC74LQw4S33HqM2iA,27828
|
4
|
+
biomedisa/interpolation.py,sha256=R8UbBWt7vOuiQCPSeNIpEY0_yfQUg1oBfhAjXi91Hl4,17253
|
5
|
+
biomedisa/mesh.py,sha256=glvpTN0PPByb5j2IbLCdWQtc5O4VT-Pwu3en8EaYyTo,15819
|
6
|
+
biomedisa/features/DataGenerator.py,sha256=bGys6UZ0bnKb_k1Y3Spo6MNPk_goSAmptdZnI39smaw,12770
|
7
|
+
biomedisa/features/DataGeneratorCrop.py,sha256=23R4Z-8tB1CsjYTYfhHGovlJpAny_q9OV9hq8kc2GJg,5454
|
8
|
+
biomedisa/features/PredictDataGenerator.py,sha256=JH8SPGQm-Y7_Drec2fw3jBUupvpIkQ1FvkDXP7mUjDY,4074
|
9
|
+
biomedisa/features/PredictDataGeneratorCrop.py,sha256=HF5tJbGtlJMHr7lMT9IiIdLG2CTjXstbKoOjlZJ93Is,3431
|
10
|
+
biomedisa/features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
|
+
biomedisa/features/active_contour.py,sha256=n5_vAD8jvQjU6fQ6A9hxjSmtkLLo_1fl0S5q1H2pmVg,18096
|
12
|
+
biomedisa/features/assd.py,sha256=q9NUQXEoA4Pi3d8b5fmys615CWu06Sm0N9-OGwJOFnw,6537
|
13
|
+
biomedisa/features/biomedisa_helper.py,sha256=iLbt4RpCU3EK51uiMefkM0321AgBdeLgrT-X4d--YJY,32250
|
14
|
+
biomedisa/features/create_slices.py,sha256=tLDJmuJFN8teTiCYvMauExfVzT2ZUF28VcPXpo4sOsE,13001
|
15
|
+
biomedisa/features/crop_helper.py,sha256=si72n9Q-C7U0cXYOD9Ux2UqIbZdXbZSOARBYDeqRggI,24533
|
16
|
+
biomedisa/features/curvop_numba.py,sha256=AjKQJcUBoURTB8pq1HmugQYpBwBELthhcEu51_r_xPI,7049
|
17
|
+
biomedisa/features/django_env.py,sha256=pdiPcBpqu1BWuyvh-palIGVwHFaY-leQ4Gatlbm8hIg,8942
|
18
|
+
biomedisa/features/keras_helper.py,sha256=muPwb_W7O63exzWACJ4oLdAc-AQitcxLeNwgHvxyhuE,50488
|
19
|
+
biomedisa/features/nc_reader.py,sha256=RoRMwu3ELSNfoV3qZtaT2OWACnXb2EhNFu_DAF1T93o,7406
|
20
|
+
biomedisa/features/pid.py,sha256=Jmn1VIp0fBlgBrqZ-yUIQVVb5-NAxNBdibXALVr2PPI,2545
|
21
|
+
biomedisa/features/process_image.py,sha256=VtS3fGDvglqJiiJLPK1toe76J58j914NJ8XQKg3CRwo,11091
|
22
|
+
biomedisa/features/pycuda_test.py,sha256=UGAGIz_dgcCJkzjyCqnMlflp-WJPzpCtFQmE9C5DwIo,3275
|
23
|
+
biomedisa/features/remove_outlier.py,sha256=XhbFPkazMmEUZiP0FERdCkrXaLhwO095x4wcn-B3SdU,16756
|
24
|
+
biomedisa/features/split_volume.py,sha256=UgMpHhZPvH90xFo-mJ0Oc0tBXbrf8FQF0kzVySAlO8g,8917
|
25
|
+
biomedisa/features/amira_to_np/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
26
|
+
biomedisa/features/amira_to_np/amira_data_stream.py,sha256=JrZTyKP01CKDFB5d9BlGtSFwBgoAo0AJeAmn3pADH88,32618
|
27
|
+
biomedisa/features/amira_to_np/amira_grammar.py,sha256=z1yajLHmn-GDb-rzZ5iHlKmPZDDbO9fNqP2jXf8z3KE,14324
|
28
|
+
biomedisa/features/amira_to_np/amira_header.py,sha256=eWHECsTx3ls8c0RHjy5xO4s-BehRC-96wONj7n9IzrY,11553
|
29
|
+
biomedisa/features/amira_to_np/amira_helper.py,sha256=giuZKkX8eI_2MVAy3wwBvcmmmDxSOo8k9eAzu2QA6uo,2218
|
30
|
+
biomedisa/features/random_walk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
31
|
+
biomedisa/features/random_walk/gpu_kernels.py,sha256=IQDjq1H6iJCwdS-LCWx2S6F1TMEXjrN2veLcTLCeCoI,7191
|
32
|
+
biomedisa/features/random_walk/pycuda_large.py,sha256=Vfvd0uFRB-qLReDFKIyAAhdWDLflKMUEUAm_ZXSkPZs,32917
|
33
|
+
biomedisa/features/random_walk/pycuda_large_allx.py,sha256=zjy1Ai8D-foXjaT-6G33vGMANS1i00BBbLCTAMUfP5c,30677
|
34
|
+
biomedisa/features/random_walk/pycuda_small.py,sha256=rSwjq2DdtGyNGH1_EfiRQGSgEsCZqvVUrh1UN64AEc8,15786
|
35
|
+
biomedisa/features/random_walk/pycuda_small_allx.py,sha256=z4koEQNWqy3EYOhHbMkO8sP6mpl6R7i8mM6OEQQ4kUQ,18225
|
36
|
+
biomedisa/features/random_walk/pyopencl_large.py,sha256=q79AxG3p3qFjxfiAZfUK9I5BAYT2prq48yEEmpP1Yjk,31015
|
37
|
+
biomedisa/features/random_walk/pyopencl_small.py,sha256=opNlS-qzOa9qWafBNJdvf6r1aRAFf7_JXf6ISDnkdXE,17068
|
38
|
+
biomedisa/features/random_walk/rw_large.py,sha256=ZnITvk00Y11ZZlGuBRaJO1EwU0wYBdEwdpj9vvXCqF4,19805
|
39
|
+
biomedisa/features/random_walk/rw_small.py,sha256=RPzZe24YrEwYelJukDjvqaoD_SyhgdriEi7uV3kZGXI,14881
|
40
|
+
biomedisa-24.5.23.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
|
41
|
+
biomedisa-24.5.23.dist-info/METADATA,sha256=XIEKdnTY54QTALYPtNambyN7NP7_e76S2Mo99Ubifv8,10475
|
42
|
+
biomedisa-24.5.23.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
43
|
+
biomedisa-24.5.23.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
|
44
|
+
biomedisa-24.5.23.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
biomedisa
|