biomedisa 2024.5.18__py3-none-any.whl → 2024.5.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. biomedisa/__init__.py +2 -6
  2. biomedisa/deeplearning.py +88 -91
  3. biomedisa/{biomedisa_features → features}/DataGenerator.py +1 -1
  4. biomedisa/{biomedisa_features → features}/DataGeneratorCrop.py +1 -1
  5. biomedisa/{biomedisa_features → features}/PredictDataGenerator.py +1 -1
  6. biomedisa/{biomedisa_features → features}/PredictDataGeneratorCrop.py +1 -1
  7. biomedisa/{biomedisa_features → features}/active_contour.py +15 -18
  8. biomedisa/{biomedisa_features → features}/assd.py +1 -1
  9. biomedisa/{biomedisa_features → features}/biomedisa_helper.py +107 -117
  10. biomedisa/{biomedisa_features → features}/create_slices.py +51 -60
  11. biomedisa/{biomedisa_features → features}/crop_helper.py +111 -116
  12. biomedisa/{biomedisa_features → features}/curvop_numba.py +1 -1
  13. biomedisa/{biomedisa_features → features}/django_env.py +9 -10
  14. biomedisa/{biomedisa_features → features}/keras_helper.py +143 -170
  15. biomedisa/{biomedisa_features → features}/nc_reader.py +1 -1
  16. biomedisa/{biomedisa_features → features}/pid.py +2 -2
  17. biomedisa/{biomedisa_features → features}/process_image.py +12 -14
  18. biomedisa/{biomedisa_features → features}/pycuda_test.py +2 -1
  19. biomedisa/{biomedisa_features → features}/random_walk/gpu_kernels.py +2 -1
  20. biomedisa/{biomedisa_features → features}/random_walk/pycuda_large.py +2 -2
  21. biomedisa/{biomedisa_features → features}/random_walk/pycuda_large_allx.py +2 -2
  22. biomedisa/{biomedisa_features → features}/random_walk/pycuda_small.py +2 -2
  23. biomedisa/{biomedisa_features → features}/random_walk/pycuda_small_allx.py +2 -2
  24. biomedisa/{biomedisa_features → features}/random_walk/pyopencl_large.py +1 -1
  25. biomedisa/{biomedisa_features → features}/random_walk/pyopencl_small.py +1 -1
  26. biomedisa/{biomedisa_features → features}/random_walk/rw_large.py +11 -11
  27. biomedisa/{biomedisa_features → features}/random_walk/rw_small.py +12 -12
  28. biomedisa/{biomedisa_features → features}/remove_outlier.py +13 -16
  29. biomedisa/features/split_volume.py +167 -0
  30. biomedisa/interpolation.py +10 -12
  31. biomedisa/mesh.py +9 -12
  32. {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/METADATA +15 -16
  33. biomedisa-2024.5.20.dist-info/RECORD +44 -0
  34. biomedisa/biomedisa_features/split_volume.py +0 -274
  35. biomedisa-2024.5.18.dist-info/RECORD +0 -44
  36. /biomedisa/{biomedisa_features → features}/__init__.py +0 -0
  37. /biomedisa/{biomedisa_features → features}/amira_to_np/__init__.py +0 -0
  38. /biomedisa/{biomedisa_features → features}/amira_to_np/amira_data_stream.py +0 -0
  39. /biomedisa/{biomedisa_features → features}/amira_to_np/amira_grammar.py +0 -0
  40. /biomedisa/{biomedisa_features → features}/amira_to_np/amira_header.py +0 -0
  41. /biomedisa/{biomedisa_features → features}/amira_to_np/amira_helper.py +0 -0
  42. /biomedisa/{biomedisa_features → features}/random_walk/__init__.py +0 -0
  43. {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/LICENSE +0 -0
  44. {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/WHEEL +0 -0
  45. {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,44 @@
1
+ biomedisa/__init__.py,sha256=RxXuOh-e-W9k7pvmKDyYZz3bbze7AkB7RgRpUCzLbcE,1538
2
+ biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
3
+ biomedisa/deeplearning.py,sha256=dVwLkijm0ibtn6zUUV3t2WK6Fzvks4VlgzKNLqzDpAQ,27064
4
+ biomedisa/interpolation.py,sha256=R8UbBWt7vOuiQCPSeNIpEY0_yfQUg1oBfhAjXi91Hl4,17253
5
+ biomedisa/mesh.py,sha256=glvpTN0PPByb5j2IbLCdWQtc5O4VT-Pwu3en8EaYyTo,15819
6
+ biomedisa/features/DataGenerator.py,sha256=bGys6UZ0bnKb_k1Y3Spo6MNPk_goSAmptdZnI39smaw,12770
7
+ biomedisa/features/DataGeneratorCrop.py,sha256=23R4Z-8tB1CsjYTYfhHGovlJpAny_q9OV9hq8kc2GJg,5454
8
+ biomedisa/features/PredictDataGenerator.py,sha256=JH8SPGQm-Y7_Drec2fw3jBUupvpIkQ1FvkDXP7mUjDY,4074
9
+ biomedisa/features/PredictDataGeneratorCrop.py,sha256=HF5tJbGtlJMHr7lMT9IiIdLG2CTjXstbKoOjlZJ93Is,3431
10
+ biomedisa/features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ biomedisa/features/active_contour.py,sha256=n5_vAD8jvQjU6fQ6A9hxjSmtkLLo_1fl0S5q1H2pmVg,18096
12
+ biomedisa/features/assd.py,sha256=q9NUQXEoA4Pi3d8b5fmys615CWu06Sm0N9-OGwJOFnw,6537
13
+ biomedisa/features/biomedisa_helper.py,sha256=iLbt4RpCU3EK51uiMefkM0321AgBdeLgrT-X4d--YJY,32250
14
+ biomedisa/features/create_slices.py,sha256=tLDJmuJFN8teTiCYvMauExfVzT2ZUF28VcPXpo4sOsE,13001
15
+ biomedisa/features/crop_helper.py,sha256=si72n9Q-C7U0cXYOD9Ux2UqIbZdXbZSOARBYDeqRggI,24533
16
+ biomedisa/features/curvop_numba.py,sha256=AjKQJcUBoURTB8pq1HmugQYpBwBELthhcEu51_r_xPI,7049
17
+ biomedisa/features/django_env.py,sha256=pdiPcBpqu1BWuyvh-palIGVwHFaY-leQ4Gatlbm8hIg,8942
18
+ biomedisa/features/keras_helper.py,sha256=1rM5-fMj71oW99VxEt2U3SZey1EbO9q5CNVJlmN6YxA,50250
19
+ biomedisa/features/nc_reader.py,sha256=RoRMwu3ELSNfoV3qZtaT2OWACnXb2EhNFu_DAF1T93o,7406
20
+ biomedisa/features/pid.py,sha256=Jmn1VIp0fBlgBrqZ-yUIQVVb5-NAxNBdibXALVr2PPI,2545
21
+ biomedisa/features/process_image.py,sha256=VtS3fGDvglqJiiJLPK1toe76J58j914NJ8XQKg3CRwo,11091
22
+ biomedisa/features/pycuda_test.py,sha256=UGAGIz_dgcCJkzjyCqnMlflp-WJPzpCtFQmE9C5DwIo,3275
23
+ biomedisa/features/remove_outlier.py,sha256=XhbFPkazMmEUZiP0FERdCkrXaLhwO095x4wcn-B3SdU,16756
24
+ biomedisa/features/split_volume.py,sha256=l106WXlDSDut-PlP9_O7WmJCp6euoViPjYG7awoA9Y8,8926
25
+ biomedisa/features/amira_to_np/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
+ biomedisa/features/amira_to_np/amira_data_stream.py,sha256=JrZTyKP01CKDFB5d9BlGtSFwBgoAo0AJeAmn3pADH88,32618
27
+ biomedisa/features/amira_to_np/amira_grammar.py,sha256=z1yajLHmn-GDb-rzZ5iHlKmPZDDbO9fNqP2jXf8z3KE,14324
28
+ biomedisa/features/amira_to_np/amira_header.py,sha256=eWHECsTx3ls8c0RHjy5xO4s-BehRC-96wONj7n9IzrY,11553
29
+ biomedisa/features/amira_to_np/amira_helper.py,sha256=giuZKkX8eI_2MVAy3wwBvcmmmDxSOo8k9eAzu2QA6uo,2218
30
+ biomedisa/features/random_walk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
+ biomedisa/features/random_walk/gpu_kernels.py,sha256=IQDjq1H6iJCwdS-LCWx2S6F1TMEXjrN2veLcTLCeCoI,7191
32
+ biomedisa/features/random_walk/pycuda_large.py,sha256=Vfvd0uFRB-qLReDFKIyAAhdWDLflKMUEUAm_ZXSkPZs,32917
33
+ biomedisa/features/random_walk/pycuda_large_allx.py,sha256=zjy1Ai8D-foXjaT-6G33vGMANS1i00BBbLCTAMUfP5c,30677
34
+ biomedisa/features/random_walk/pycuda_small.py,sha256=rSwjq2DdtGyNGH1_EfiRQGSgEsCZqvVUrh1UN64AEc8,15786
35
+ biomedisa/features/random_walk/pycuda_small_allx.py,sha256=z4koEQNWqy3EYOhHbMkO8sP6mpl6R7i8mM6OEQQ4kUQ,18225
36
+ biomedisa/features/random_walk/pyopencl_large.py,sha256=q79AxG3p3qFjxfiAZfUK9I5BAYT2prq48yEEmpP1Yjk,31015
37
+ biomedisa/features/random_walk/pyopencl_small.py,sha256=opNlS-qzOa9qWafBNJdvf6r1aRAFf7_JXf6ISDnkdXE,17068
38
+ biomedisa/features/random_walk/rw_large.py,sha256=ZnITvk00Y11ZZlGuBRaJO1EwU0wYBdEwdpj9vvXCqF4,19805
39
+ biomedisa/features/random_walk/rw_small.py,sha256=RPzZe24YrEwYelJukDjvqaoD_SyhgdriEi7uV3kZGXI,14881
40
+ biomedisa-2024.5.20.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
+ biomedisa-2024.5.20.dist-info/METADATA,sha256=uM3KiOS5fzl6WFv8cNRgsCT-l4DnGzgZoBiDqPg_qXM,10677
42
+ biomedisa-2024.5.20.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
+ biomedisa-2024.5.20.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
+ biomedisa-2024.5.20.dist-info/RECORD,,
@@ -1,274 +0,0 @@
1
- ##########################################################################
2
- ## ##
3
- ## Copyright (c) 2024 Philipp Lösel. All rights reserved. ##
4
- ## ##
5
- ## This file is part of the open source project biomedisa. ##
6
- ## ##
7
- ## Licensed under the European Union Public Licence (EUPL) ##
8
- ## v1.2, or - as soon as they will be approved by the ##
9
- ## European Commission - subsequent versions of the EUPL; ##
10
- ## ##
11
- ## You may redistribute it and/or modify it under the terms ##
12
- ## of the EUPL v1.2. You may not use this work except in ##
13
- ## compliance with this Licence. ##
14
- ## ##
15
- ## You can obtain a copy of the Licence at: ##
16
- ## ##
17
- ## https://joinup.ec.europa.eu/page/eupl-text-11-12 ##
18
- ## ##
19
- ## Unless required by applicable law or agreed to in ##
20
- ## writing, software distributed under the Licence is ##
21
- ## distributed on an "AS IS" basis, WITHOUT WARRANTIES ##
22
- ## OR CONDITIONS OF ANY KIND, either express or implied. ##
23
- ## ##
24
- ## See the Licence for the specific language governing ##
25
- ## permissions and limitations under the Licence. ##
26
- ## ##
27
- ##########################################################################
28
-
29
- import sys, os
30
- BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
31
- sys.path.append(BASE_DIR)
32
- from biomedisa_features.biomedisa_helper import load_data, save_data
33
- import numpy as np
34
- import subprocess
35
- import platform
36
- import glob
37
-
38
- if __name__ == '__main__':
39
-
40
- # path to data
41
- path_to_data = sys.argv[1]
42
- path_to_labels = sys.argv[2]
43
-
44
- # get arguments
45
- nump = 1
46
- smooth = 0
47
- overlap = 100
48
- sub_z, sub_y, sub_x = 1, 1, 1
49
- for i, val in enumerate(sys.argv):
50
- if val in ['--split_z','-sz']:
51
- sub_z = max(int(sys.argv[i+1]), 1)
52
- if val in ['--split_y','-sy']:
53
- sub_y = max(int(sys.argv[i+1]), 1)
54
- if val in ['--split_x','-sx']:
55
- sub_x = max(int(sys.argv[i+1]), 1)
56
- if val in ['--overlap','-ol']:
57
- overlap = max(int(sys.argv[i+1]), 0)
58
- if val in ['-n','-np']:
59
- nump = max(int(sys.argv[i+1]), 1)
60
- if val in ['--smooth','-s']:
61
- smooth = int(sys.argv[i+1])
62
- uq = True if any(x in sys.argv for x in ['--uncertainty','-uq']) else False
63
- allx = 1 if '-allx' in sys.argv else 0
64
-
65
- # base directory
66
- BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
67
-
68
- # clean tmp folder
69
- filelist = glob.glob(BASE_DIR+'/tmp/*.tif')
70
- for f in filelist:
71
- os.remove(f)
72
-
73
- # data shape
74
- data, _ = load_data(path_to_data, 'split_volume')
75
- shape = np.copy(np.array(data.shape), order='C')
76
- zsh, ysh, xsh = shape
77
- del data
78
-
79
- # split volume
80
- sub_size_z = np.ceil(zsh / sub_z)
81
- sub_size_y = np.ceil(ysh / sub_y)
82
- sub_size_x = np.ceil(xsh / sub_x)
83
-
84
- # iterate over subvolumes
85
- for sub_z_i in range(sub_z):
86
- for sub_y_i in range(sub_y):
87
- for sub_x_i in range(sub_x):
88
- subvolume = sub_z_i*sub_y*sub_x + sub_y_i*sub_x + sub_x_i + 1
89
- print('Subvolume:', subvolume, '/', sub_z*sub_y*sub_x)
90
-
91
- # determine z subvolume
92
- blockmin_z = int(sub_z_i * sub_size_z)
93
- blockmax_z = int((sub_z_i+1) * sub_size_z)
94
- datamin_z = max(blockmin_z - overlap, 0)
95
- datamax_z = min(blockmax_z + overlap, zsh)
96
-
97
- # determine y subvolume
98
- blockmin_y = int(sub_y_i * sub_size_y)
99
- blockmax_y = int((sub_y_i+1) * sub_size_y)
100
- datamin_y = max(blockmin_y - overlap, 0)
101
- datamax_y = min(blockmax_y + overlap, ysh)
102
-
103
- # determine x subvolume
104
- blockmin_x = int(sub_x_i * sub_size_x)
105
- blockmax_x = int((sub_x_i+1) * sub_size_x)
106
- datamin_x = max(blockmin_x - overlap, 0)
107
- datamax_x = min(blockmax_x + overlap, xsh)
108
-
109
- # extract image subvolume
110
- data, _ = load_data(path_to_data, 'split_volume')
111
- save_data(BASE_DIR+f'/tmp/sub_volume_{subvolume}.tif', data[datamin_z:datamax_z,datamin_y:datamax_y,datamin_x:datamax_x], False)
112
- del data
113
-
114
- # extract label subvolume
115
- labelData, header, final_image_type = load_data(path_to_labels, 'split_volume', True)
116
- save_data(BASE_DIR+'/tmp/labels.sub_volume.tif', labelData[datamin_z:datamax_z,datamin_y:datamax_y,datamin_x:datamax_x])
117
- del labelData
118
-
119
- # configure command
120
- cmd = ['mpiexec', '-np', f'{nump}', 'python3', 'biomedisa_interpolation.py', BASE_DIR+f'/tmp/sub_volume_{subvolume}.tif', BASE_DIR+'/tmp/labels.sub_volume.tif', '-s', f'{smooth}']
121
- if uq:
122
- cmd.append('-uq')
123
- if allx:
124
- cmd.append('-allx')
125
- cwd = BASE_DIR + '/demo/'
126
-
127
- # run segmentation
128
- if platform.system() == 'Windows':
129
- cmd[3] = 'python'
130
- cmd.insert(4, '-u')
131
- p = subprocess.Popen(cmd, cwd=cwd, stdout=subprocess.PIPE)
132
- for line in iter(p.stdout.readline, b''):
133
- line = str(line,'utf-8')
134
- print(line.rstrip())
135
- p.stdout.close()
136
- else:
137
- p = subprocess.Popen(cmd, cwd=cwd)
138
- p.wait()
139
-
140
- # remove tmp files
141
- os.remove(BASE_DIR+f'/tmp/sub_volume_{subvolume}.tif')
142
- os.remove(BASE_DIR+'/tmp/labels.sub_volume.tif')
143
-
144
- # create path_to_final
145
- filename, extension = os.path.splitext(os.path.basename(path_to_data))
146
- if extension == '.gz':
147
- filename = filename[:-4]
148
- filename = 'final.' + filename
149
- path_to_final = path_to_data.replace(os.path.basename(path_to_data), filename + final_image_type)
150
-
151
- # path_to_uq and path_to_smooth
152
- filename, extension = os.path.splitext(path_to_final)
153
- if extension == '.gz':
154
- filename = filename[:-4]
155
- path_to_smooth = filename + '.smooth' + final_image_type
156
- path_to_uq = filename + '.uncertainty.tif'
157
-
158
- # iterate over subvolumes
159
- final = np.zeros((zsh, ysh, xsh), dtype=np.uint8)
160
- for sub_z_i in range(sub_z):
161
- for sub_y_i in range(sub_y):
162
- for sub_x_i in range(sub_x):
163
- subvolume = sub_z_i*sub_y*sub_x + sub_y_i*sub_x + sub_x_i + 1
164
- print('Subvolume:', subvolume, '/', sub_z*sub_y*sub_x)
165
-
166
- # determine z subvolume
167
- blockmin_z = int(sub_z_i * sub_size_z)
168
- blockmax_z = int((sub_z_i+1) * sub_size_z)
169
- datamin_z = max(blockmin_z - overlap, 0)
170
- datamax_z = min(blockmax_z + overlap, zsh)
171
-
172
- # determine y subvolume
173
- blockmin_y = int(sub_y_i * sub_size_y)
174
- blockmax_y = int((sub_y_i+1) * sub_size_y)
175
- datamin_y = max(blockmin_y - overlap, 0)
176
- datamax_y = min(blockmax_y + overlap, ysh)
177
-
178
- # determine x subvolume
179
- blockmin_x = int(sub_x_i * sub_size_x)
180
- blockmax_x = int((sub_x_i+1) * sub_size_x)
181
- datamin_x = max(blockmin_x - overlap, 0)
182
- datamax_x = min(blockmax_x + overlap, xsh)
183
-
184
- # load subvolume
185
- path_to_subvolume = BASE_DIR+f'/tmp/final.sub_volume_{subvolume}.tif'
186
- if os.path.isfile(path_to_subvolume):
187
- tmp, _ = load_data(path_to_subvolume)
188
- final[blockmin_z:blockmax_z,blockmin_y:blockmax_y,blockmin_x:blockmax_x] \
189
- = tmp[blockmin_z-datamin_z:blockmax_z-datamin_z,blockmin_y-datamin_y:blockmax_y-datamin_y,blockmin_x-datamin_x:blockmax_x-datamin_x]
190
- os.remove(path_to_subvolume)
191
-
192
- # save result
193
- save_data(path_to_final, final, header)
194
-
195
- # iterate over subvolumes (smooth)
196
- smooth = 0
197
- final.fill(0)
198
- for sub_z_i in range(sub_z):
199
- for sub_y_i in range(sub_y):
200
- for sub_x_i in range(sub_x):
201
- subvolume = sub_z_i*sub_y*sub_x + sub_y_i*sub_x + sub_x_i + 1
202
- print('Subvolume:', subvolume, '/', sub_z*sub_y*sub_x)
203
-
204
- # determine z subvolume
205
- blockmin_z = int(sub_z_i * sub_size_z)
206
- blockmax_z = int((sub_z_i+1) * sub_size_z)
207
- datamin_z = max(blockmin_z - overlap, 0)
208
- datamax_z = min(blockmax_z + overlap, zsh)
209
-
210
- # determine y subvolume
211
- blockmin_y = int(sub_y_i * sub_size_y)
212
- blockmax_y = int((sub_y_i+1) * sub_size_y)
213
- datamin_y = max(blockmin_y - overlap, 0)
214
- datamax_y = min(blockmax_y + overlap, ysh)
215
-
216
- # determine x subvolume
217
- blockmin_x = int(sub_x_i * sub_size_x)
218
- blockmax_x = int((sub_x_i+1) * sub_size_x)
219
- datamin_x = max(blockmin_x - overlap, 0)
220
- datamax_x = min(blockmax_x + overlap, xsh)
221
-
222
- # load subvolume
223
- path_to_subvolume = BASE_DIR+f'/tmp/final.sub_volume_{subvolume}.smooth.tif'
224
- if os.path.isfile(path_to_subvolume):
225
- tmp, _ = load_data(path_to_subvolume)
226
- final[blockmin_z:blockmax_z,blockmin_y:blockmax_y,blockmin_x:blockmax_x] \
227
- = tmp[blockmin_z-datamin_z:blockmax_z-datamin_z,blockmin_y-datamin_y:blockmax_y-datamin_y,blockmin_x-datamin_x:blockmax_x-datamin_x]
228
- os.remove(path_to_subvolume)
229
- smooth = 1
230
-
231
- # save result
232
- if smooth:
233
- save_data(path_to_smooth, final, header)
234
-
235
- # iterate over subvolumes (uncertainty)
236
- uncertainty = 0
237
- final.fill(0)
238
- for sub_z_i in range(sub_z):
239
- for sub_y_i in range(sub_y):
240
- for sub_x_i in range(sub_x):
241
- subvolume = sub_z_i*sub_y*sub_x + sub_y_i*sub_x + sub_x_i + 1
242
- print('Subvolume:', subvolume, '/', sub_z*sub_y*sub_x)
243
-
244
- # determine z subvolume
245
- blockmin_z = int(sub_z_i * sub_size_z)
246
- blockmax_z = int((sub_z_i+1) * sub_size_z)
247
- datamin_z = max(blockmin_z - overlap, 0)
248
- datamax_z = min(blockmax_z + overlap, zsh)
249
-
250
- # determine y subvolume
251
- blockmin_y = int(sub_y_i * sub_size_y)
252
- blockmax_y = int((sub_y_i+1) * sub_size_y)
253
- datamin_y = max(blockmin_y - overlap, 0)
254
- datamax_y = min(blockmax_y + overlap, ysh)
255
-
256
- # determine x subvolume
257
- blockmin_x = int(sub_x_i * sub_size_x)
258
- blockmax_x = int((sub_x_i+1) * sub_size_x)
259
- datamin_x = max(blockmin_x - overlap, 0)
260
- datamax_x = min(blockmax_x + overlap, xsh)
261
-
262
- # load subvolume
263
- path_to_subvolume = BASE_DIR+f'/tmp/final.sub_volume_{subvolume}.uncertainty.tif'
264
- if os.path.isfile(path_to_subvolume):
265
- tmp, _ = load_data(path_to_subvolume)
266
- final[blockmin_z:blockmax_z,blockmin_y:blockmax_y,blockmin_x:blockmax_x] \
267
- = tmp[blockmin_z-datamin_z:blockmax_z-datamin_z,blockmin_y-datamin_y:blockmax_y-datamin_y,blockmin_x-datamin_x:blockmax_x-datamin_x]
268
- os.remove(path_to_subvolume)
269
- uncertainty = 1
270
-
271
- # save result
272
- if uncertainty:
273
- save_data(path_to_uq, final, header)
274
-
@@ -1,44 +0,0 @@
1
- biomedisa/__init__.py,sha256=BLbuGv-c8I8XMzOOnc07qrcWxq8CUA5NM73S3gkixEI,1690
2
- biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
3
- biomedisa/deeplearning.py,sha256=eobgRva1ucb1IKpj7SNxmBOsWdZCPAJ-BNbIKnApNeA,27063
4
- biomedisa/interpolation.py,sha256=mz5Ieiee2RftqisqNzKcCU7IV1n0LGON4zyhvBwE94s,17335
5
- biomedisa/mesh.py,sha256=6f5klVPoA3zmF3jxLCOUkCXelLtlroS6tJquRHaMwsQ,15920
6
- biomedisa/biomedisa_features/DataGenerator.py,sha256=FTktX35_FboSzk4UXG_ZN58xXYJqwjX_7ZJ65bzNuFs,12770
7
- biomedisa/biomedisa_features/DataGeneratorCrop.py,sha256=cL_1rbXSq79vCNAHnIwvow-J1s-4gWStR1pWTbF_VTY,5454
8
- biomedisa/biomedisa_features/PredictDataGenerator.py,sha256=MISkB2tlxCw6rd8pfwwz1clVnvyPwg5dB-8yxR6WsBw,4074
9
- biomedisa/biomedisa_features/PredictDataGeneratorCrop.py,sha256=JBwFcOZMakNMlL5UvP5bNg9FlQl5sbrM9UVSCyFhwBQ,3431
10
- biomedisa/biomedisa_features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- biomedisa/biomedisa_features/active_contour.py,sha256=PUAfCzHKU-p7xeQoWxmDh0ZFbnInXEsafgeE1k-96d0,18131
12
- biomedisa/biomedisa_features/assd.py,sha256=cXHAhwJqhwOvzgTodlQb21NvYafWTjBJ7_H_icuBNMU,6537
13
- biomedisa/biomedisa_features/biomedisa_helper.py,sha256=fY7kHLg5VBLF4f_W-p9tZaeqZn6wCq9OHPImZC41GRU,32401
14
- biomedisa/biomedisa_features/create_slices.py,sha256=gQJev1-DXvqDchGbnLC1bsCtb1gAnv4D82IgOnCJVt8,13329
15
- biomedisa/biomedisa_features/crop_helper.py,sha256=Op8x10IltAR_5YMotuVHzF3hSbxiOkAchhJM5L0qutw,23894
16
- biomedisa/biomedisa_features/curvop_numba.py,sha256=9jc4OvHQ6JDN-DaFhRQMLpBDU85HhqzX_YUVBf3Q3vA,7049
17
- biomedisa/biomedisa_features/django_env.py,sha256=S-ajQpw5A2aBlTYgn_FiyIr02QH05rInzhBDulb9lNg,8989
18
- biomedisa/biomedisa_features/keras_helper.py,sha256=J4VZNPgdoQSH5wnCcdkubRhxquNmPOUzEAlSkTZltuw,50343
19
- biomedisa/biomedisa_features/nc_reader.py,sha256=7uwdmz4pLC__xb8hWjZ7Y9jrkNJOyD01kIA1EOP8GV0,7406
20
- biomedisa/biomedisa_features/pid.py,sha256=HAIq52F-PKwDGRyKE74qsY-bdBTs1s85vcIQTKaMIy8,2528
21
- biomedisa/biomedisa_features/process_image.py,sha256=yxBC3ACV2umscEycXZtY9Hsi1ATws7omnvXROEDfQfA,11159
22
- biomedisa/biomedisa_features/pycuda_test.py,sha256=LLd5JnlDu1hOZUTFs8IbuE2I2sBSRyZaU3sRdNpdy5Y,3274
23
- biomedisa/biomedisa_features/remove_outlier.py,sha256=V-3E7w3SGwmHMBCk1QzVoUJFdMV_NEYkUZG_-R15bqI,16801
24
- biomedisa/biomedisa_features/split_volume.py,sha256=yBdoO3ojEphnfs9P-Ap8NPFrmb-WM8CCZSV9deIEASs,12394
25
- biomedisa/biomedisa_features/amira_to_np/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
- biomedisa/biomedisa_features/amira_to_np/amira_data_stream.py,sha256=JrZTyKP01CKDFB5d9BlGtSFwBgoAo0AJeAmn3pADH88,32618
27
- biomedisa/biomedisa_features/amira_to_np/amira_grammar.py,sha256=z1yajLHmn-GDb-rzZ5iHlKmPZDDbO9fNqP2jXf8z3KE,14324
28
- biomedisa/biomedisa_features/amira_to_np/amira_header.py,sha256=eWHECsTx3ls8c0RHjy5xO4s-BehRC-96wONj7n9IzrY,11553
29
- biomedisa/biomedisa_features/amira_to_np/amira_helper.py,sha256=giuZKkX8eI_2MVAy3wwBvcmmmDxSOo8k9eAzu2QA6uo,2218
30
- biomedisa/biomedisa_features/random_walk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- biomedisa/biomedisa_features/random_walk/gpu_kernels.py,sha256=r8BsyOU_a5tYMM8d_mS9MPrUCXoTFI7NY8JIQnyfe0U,7190
32
- biomedisa/biomedisa_features/random_walk/pycuda_large.py,sha256=_dfYP2cFSm0aKU6n_YotsdNLZcvO8OjE5hYbgeAQk98,32917
33
- biomedisa/biomedisa_features/random_walk/pycuda_large_allx.py,sha256=Cfb_cq184LgfdiSTImQu7Ax8L_EKQgpXfSVapYGXy0E,30677
34
- biomedisa/biomedisa_features/random_walk/pycuda_small.py,sha256=691oa8JhVwDmS-y7KnNbVUziW14fAtC-lvB3rg2VWA4,15786
35
- biomedisa/biomedisa_features/random_walk/pycuda_small_allx.py,sha256=8bNHDKDxa-02q1ykWo_YWjzYQkM77raX_DivpWkVoQY,18225
36
- biomedisa/biomedisa_features/random_walk/pyopencl_large.py,sha256=cOBhvxrdKCkbr6xaKneBTiUMXPk9lSdjwt95TdHC2EY,31015
37
- biomedisa/biomedisa_features/random_walk/pyopencl_small.py,sha256=2XALYNNv9D8Gb1u2lcjR1O4W9UM0Xxjj0r4nr-NiEkk,17068
38
- biomedisa/biomedisa_features/random_walk/rw_large.py,sha256=FERIsTXmqZprGCTShRR75PesIX5MMVtptk-SqI-4abo,19805
39
- biomedisa/biomedisa_features/random_walk/rw_small.py,sha256=0YFL0Ovb_400Ikbxv5yOXWskl3vAyfQ_0_Gz5EXzvVQ,14881
40
- biomedisa-2024.5.18.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
- biomedisa-2024.5.18.dist-info/METADATA,sha256=Ck2qVtPA2ayKHrT0Rq7MUKl9wSWlvp9XNKxQ5HsTsHU,10748
42
- biomedisa-2024.5.18.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
- biomedisa-2024.5.18.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
- biomedisa-2024.5.18.dist-info/RECORD,,
File without changes