biomedisa 2024.5.18__py3-none-any.whl → 2024.5.20__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- biomedisa/__init__.py +2 -6
- biomedisa/deeplearning.py +88 -91
- biomedisa/{biomedisa_features → features}/DataGenerator.py +1 -1
- biomedisa/{biomedisa_features → features}/DataGeneratorCrop.py +1 -1
- biomedisa/{biomedisa_features → features}/PredictDataGenerator.py +1 -1
- biomedisa/{biomedisa_features → features}/PredictDataGeneratorCrop.py +1 -1
- biomedisa/{biomedisa_features → features}/active_contour.py +15 -18
- biomedisa/{biomedisa_features → features}/assd.py +1 -1
- biomedisa/{biomedisa_features → features}/biomedisa_helper.py +107 -117
- biomedisa/{biomedisa_features → features}/create_slices.py +51 -60
- biomedisa/{biomedisa_features → features}/crop_helper.py +111 -116
- biomedisa/{biomedisa_features → features}/curvop_numba.py +1 -1
- biomedisa/{biomedisa_features → features}/django_env.py +9 -10
- biomedisa/{biomedisa_features → features}/keras_helper.py +143 -170
- biomedisa/{biomedisa_features → features}/nc_reader.py +1 -1
- biomedisa/{biomedisa_features → features}/pid.py +2 -2
- biomedisa/{biomedisa_features → features}/process_image.py +12 -14
- biomedisa/{biomedisa_features → features}/pycuda_test.py +2 -1
- biomedisa/{biomedisa_features → features}/random_walk/gpu_kernels.py +2 -1
- biomedisa/{biomedisa_features → features}/random_walk/pycuda_large.py +2 -2
- biomedisa/{biomedisa_features → features}/random_walk/pycuda_large_allx.py +2 -2
- biomedisa/{biomedisa_features → features}/random_walk/pycuda_small.py +2 -2
- biomedisa/{biomedisa_features → features}/random_walk/pycuda_small_allx.py +2 -2
- biomedisa/{biomedisa_features → features}/random_walk/pyopencl_large.py +1 -1
- biomedisa/{biomedisa_features → features}/random_walk/pyopencl_small.py +1 -1
- biomedisa/{biomedisa_features → features}/random_walk/rw_large.py +11 -11
- biomedisa/{biomedisa_features → features}/random_walk/rw_small.py +12 -12
- biomedisa/{biomedisa_features → features}/remove_outlier.py +13 -16
- biomedisa/features/split_volume.py +167 -0
- biomedisa/interpolation.py +10 -12
- biomedisa/mesh.py +9 -12
- {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/METADATA +15 -16
- biomedisa-2024.5.20.dist-info/RECORD +44 -0
- biomedisa/biomedisa_features/split_volume.py +0 -274
- biomedisa-2024.5.18.dist-info/RECORD +0 -44
- /biomedisa/{biomedisa_features → features}/__init__.py +0 -0
- /biomedisa/{biomedisa_features → features}/amira_to_np/__init__.py +0 -0
- /biomedisa/{biomedisa_features → features}/amira_to_np/amira_data_stream.py +0 -0
- /biomedisa/{biomedisa_features → features}/amira_to_np/amira_grammar.py +0 -0
- /biomedisa/{biomedisa_features → features}/amira_to_np/amira_header.py +0 -0
- /biomedisa/{biomedisa_features → features}/amira_to_np/amira_helper.py +0 -0
- /biomedisa/{biomedisa_features → features}/random_walk/__init__.py +0 -0
- {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/LICENSE +0 -0
- {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/WHEEL +0 -0
- {biomedisa-2024.5.18.dist-info → biomedisa-2024.5.20.dist-info}/top_level.txt +0 -0
biomedisa/__init__.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1
1
|
import os
|
2
|
-
import sys
|
3
2
|
import subprocess
|
4
3
|
|
5
4
|
# from source base directory
|
6
5
|
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
7
6
|
|
8
|
-
# pip
|
9
|
-
if not os.path.exists(os.path.join(BASE_DIR,'
|
10
|
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
11
|
-
# add BASE_DIR to PYTHONPATH for absolute imports
|
12
|
-
sys.path.append(BASE_DIR)
|
7
|
+
# pip installation
|
8
|
+
if not os.path.exists(os.path.join(BASE_DIR,'biomedisa/settings.py')):
|
13
9
|
|
14
10
|
# metadata
|
15
11
|
import importlib_metadata
|
biomedisa/deeplearning.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
#!/usr/bin/python3
|
2
2
|
##########################################################################
|
3
3
|
## ##
|
4
|
-
## Copyright (c) 2024 Philipp Lösel. All rights reserved.
|
4
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
5
5
|
## ##
|
6
6
|
## This file is part of the open source project biomedisa. ##
|
7
7
|
## ##
|
@@ -27,13 +27,11 @@
|
|
27
27
|
## ##
|
28
28
|
##########################################################################
|
29
29
|
|
30
|
-
import
|
31
|
-
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
32
|
-
sys.path.append(BASE_DIR)
|
30
|
+
import os
|
33
31
|
import biomedisa
|
34
|
-
import
|
35
|
-
from
|
36
|
-
from
|
32
|
+
import biomedisa.features.crop_helper as ch
|
33
|
+
from biomedisa.features.keras_helper import *
|
34
|
+
from biomedisa.features.biomedisa_helper import _error_, unique_file_path
|
37
35
|
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
|
38
36
|
import tensorflow as tf
|
39
37
|
import numpy as np
|
@@ -43,6 +41,7 @@ import h5py
|
|
43
41
|
import time
|
44
42
|
import subprocess
|
45
43
|
import glob
|
44
|
+
import tempfile
|
46
45
|
|
47
46
|
class Biomedisa(object):
|
48
47
|
pass
|
@@ -120,7 +119,7 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
|
|
120
119
|
project = os.path.splitext(bm.shortfilename)[0]
|
121
120
|
|
122
121
|
# path to model
|
123
|
-
bm.path_to_model = BASE_DIR + f'/private_storage/images/{bm.username}/{project}.h5'
|
122
|
+
bm.path_to_model = biomedisa.BASE_DIR + f'/private_storage/images/{bm.username}/{project}.h5'
|
124
123
|
if not bm.remote:
|
125
124
|
bm.path_to_model = unique_file_path(bm.path_to_model)
|
126
125
|
|
@@ -128,7 +127,7 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
|
|
128
127
|
project = os.path.splitext(os.path.basename(bm.path_to_model))[0]
|
129
128
|
|
130
129
|
# create pid object
|
131
|
-
from
|
130
|
+
from biomedisa.features.django_env import create_pid_object
|
132
131
|
create_pid_object(os.getpid(), bm.remote, bm.queue, bm.img_id, (bm.path_to_model if bm.train else ''))
|
133
132
|
|
134
133
|
# write in log file
|
@@ -227,81 +226,83 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
|
|
227
226
|
crop_data = True if 'cropping_weights' in hf else False
|
228
227
|
hf.close()
|
229
228
|
|
230
|
-
#
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
#
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
if
|
262
|
-
filename =
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
bm
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
229
|
+
# make temporary directory
|
230
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
231
|
+
|
232
|
+
# extract image files from tar file
|
233
|
+
bm.tarfile = False
|
234
|
+
if bm.path_to_images is not None and (os.path.splitext(bm.path_to_images)[1]=='.tar' or bm.path_to_images[-7:]=='.tar.gz'):
|
235
|
+
bm.tarfile = True
|
236
|
+
path_to_result = os.path.dirname(bm.path_to_images) + '/final.'+os.path.basename(bm.path_to_images)
|
237
|
+
if path_to_result[-3:]=='.gz':
|
238
|
+
path_to_result = path_to_result[:-3]
|
239
|
+
if bm.django_env and not bm.remote:
|
240
|
+
path_to_result = unique_file_path(path_to_result)
|
241
|
+
tar = tarfile.open(bm.path_to_images)
|
242
|
+
tar.extractall(path=temp_dir)
|
243
|
+
tar.close()
|
244
|
+
bm.path_to_images = temp_dir
|
245
|
+
bm.save_cropped, bm.acwe = False, False
|
246
|
+
bm.clean, bm.fill = None, None
|
247
|
+
|
248
|
+
# list of images
|
249
|
+
path_to_finals = []
|
250
|
+
if bm.path_to_images is not None and os.path.isdir(bm.path_to_images):
|
251
|
+
files = glob.glob(bm.path_to_images+'/**/*', recursive=True)
|
252
|
+
bm.path_to_images = [f for f in files if os.path.isfile(f)]
|
253
|
+
else:
|
254
|
+
bm.path_to_images = [bm.path_to_images]
|
255
|
+
|
256
|
+
# loop over all images
|
257
|
+
for bm.path_to_image in bm.path_to_images:
|
258
|
+
|
259
|
+
# create path_to_final
|
260
|
+
if bm.path_to_image:
|
261
|
+
filename = os.path.basename(bm.path_to_image)
|
262
|
+
filename = os.path.splitext(filename)[0]
|
263
|
+
if filename[-4:] == '.nii':
|
264
|
+
filename = filename[:-4]
|
265
|
+
bm.path_to_cropped_image = os.path.dirname(bm.path_to_image) + '/' + filename + '.cropped.tif'
|
266
|
+
if bm.django_env and not bm.remote and not bm.tarfile:
|
267
|
+
bm.path_to_cropped_image = unique_file_path(bm.path_to_cropped_image)
|
268
|
+
filename = 'final.' + filename
|
269
|
+
bm.path_to_final = os.path.dirname(bm.path_to_image) + '/' + filename + extension
|
270
|
+
if bm.django_env and not bm.remote and not bm.tarfile:
|
271
|
+
bm.path_to_final = unique_file_path(bm.path_to_final)
|
272
|
+
|
273
|
+
# crop data
|
274
|
+
region_of_interest, cropped_volume = None, None
|
275
|
+
if crop_data:
|
276
|
+
region_of_interest, cropped_volume = ch.crop_data(bm.path_to_image, bm.path_to_model, bm.path_to_cropped_image,
|
277
|
+
bm.batch_size, bm.debug_cropping, bm.save_cropped, img_data, bm.x_range, bm.y_range, bm.z_range)
|
278
|
+
|
279
|
+
# load prediction data
|
280
|
+
img, img_header, z_shape, y_shape, x_shape, region_of_interest, img_data = load_prediction_data(bm.path_to_image,
|
281
|
+
channels, bm.x_scale, bm.y_scale, bm.z_scale, bm.no_scaling, normalize, normalization_parameters,
|
282
|
+
region_of_interest, img_data, img_header)
|
283
|
+
|
284
|
+
# make prediction
|
285
|
+
results, bm = predict_semantic_segmentation(bm, img, bm.path_to_model,
|
286
|
+
bm.z_patch, bm.y_patch, bm.x_patch, z_shape, y_shape, x_shape, bm.compression, header,
|
287
|
+
img_header, bm.stride_size, allLabels, bm.batch_size, region_of_interest,
|
288
|
+
bm.no_scaling, extension, img_data)
|
289
|
+
|
290
|
+
# results
|
291
|
+
if cropped_volume is not None:
|
292
|
+
results['cropped_volume'] = cropped_volume
|
293
|
+
|
294
|
+
# path to results
|
295
|
+
if bm.path_to_image:
|
296
|
+
path_to_finals.append(bm.path_to_final)
|
297
|
+
|
298
|
+
# write tar file and delete extracted image files
|
299
|
+
if bm.tarfile and os.path.exists(temp_dir):
|
300
|
+
with tarfile.open(path_to_result, 'w') as tar:
|
301
|
+
for file_path in path_to_finals:
|
302
|
+
file_name = os.path.basename(file_path)
|
303
|
+
tar.add(file_path, arcname=file_name)
|
304
|
+
bm.path_to_final = path_to_result
|
305
|
+
bm.path_to_cropped_image = None
|
305
306
|
|
306
307
|
# computation time
|
307
308
|
t = int(time.time() - TIC)
|
@@ -316,7 +317,7 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
|
|
316
317
|
# django environment
|
317
318
|
if bm.django_env:
|
318
319
|
from biomedisa_app.config import config
|
319
|
-
from
|
320
|
+
from biomedisa.features.django_env import post_processing
|
320
321
|
validation=True if bm.validation_split or (bm.val_images is not None and bm.val_images[0] is not None) else False
|
321
322
|
post_processing(bm.path_to_final, time_str, config['SERVER_ALIAS'], bm.remote, bm.queue,
|
322
323
|
img_id=bm.img_id, label_id=bm.label_id, path_to_model=bm.path_to_model,
|
@@ -324,7 +325,7 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
|
|
324
325
|
train=bm.train, predict=bm.predict, validation=validation)
|
325
326
|
|
326
327
|
# write in log file
|
327
|
-
path_to_time = BASE_DIR + '/log/time.txt'
|
328
|
+
path_to_time = biomedisa.BASE_DIR + '/log/time.txt'
|
328
329
|
with open(path_to_time, 'a') as timefile:
|
329
330
|
if predict:
|
330
331
|
message = 'Successfully segmented ' + bm.shortfilename
|
@@ -487,7 +488,7 @@ if __name__ == '__main__':
|
|
487
488
|
reference_image_path = bm.path_to_images
|
488
489
|
bm.username = os.path.basename(os.path.dirname(reference_image_path))
|
489
490
|
bm.shortfilename = os.path.basename(reference_image_path)
|
490
|
-
bm.path_to_logfile = BASE_DIR + '/log/logfile.txt'
|
491
|
+
bm.path_to_logfile = biomedisa.BASE_DIR + '/log/logfile.txt'
|
491
492
|
else:
|
492
493
|
bm.django_env = False
|
493
494
|
|
@@ -497,13 +498,9 @@ if __name__ == '__main__':
|
|
497
498
|
try:
|
498
499
|
deep_learning(None, **kwargs)
|
499
500
|
except InputError:
|
500
|
-
if any(InputError.img_names):
|
501
|
-
remove_extracted_data(InputError.img_names, InputError.label_names)
|
502
501
|
print(traceback.format_exc())
|
503
502
|
bm = _error_(bm, f'{InputError.message}')
|
504
503
|
except ch.InputError:
|
505
|
-
if any(ch.InputError.img_names):
|
506
|
-
remove_extracted_data(ch.InputError.img_names, ch.InputError.label_names)
|
507
504
|
print(traceback.format_exc())
|
508
505
|
bm = _error_(bm, f'{ch.InputError.message}')
|
509
506
|
except MemoryError:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
##########################################################################
|
2
2
|
## ##
|
3
|
-
## Copyright (c) 2024 Philipp Lösel. All rights reserved.
|
3
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
4
4
|
## ##
|
5
5
|
## This file is part of the open source project biomedisa. ##
|
6
6
|
## ##
|
@@ -1,6 +1,6 @@
|
|
1
1
|
##########################################################################
|
2
2
|
## ##
|
3
|
-
## Copyright (c) 2024 Philipp Lösel. All rights reserved.
|
3
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
4
4
|
## ##
|
5
5
|
## This file is part of the open source project biomedisa. ##
|
6
6
|
## ##
|
@@ -1,6 +1,6 @@
|
|
1
1
|
##########################################################################
|
2
2
|
## ##
|
3
|
-
## Copyright (c) 2024 Philipp Lösel. All rights reserved.
|
3
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
4
4
|
## ##
|
5
5
|
## This file is part of the open source project biomedisa. ##
|
6
6
|
## ##
|
@@ -1,6 +1,6 @@
|
|
1
1
|
##########################################################################
|
2
2
|
## ##
|
3
|
-
## Copyright (c)
|
3
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
4
4
|
## ##
|
5
5
|
## This file is part of the open source project biomedisa. ##
|
6
6
|
## ##
|
@@ -1,7 +1,7 @@
|
|
1
1
|
#!/usr/bin/python3
|
2
2
|
##########################################################################
|
3
3
|
## ##
|
4
|
-
## Copyright (c) 2024 Philipp Lösel. All rights reserved.
|
4
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
5
5
|
## ##
|
6
6
|
## This file is part of the open source project biomedisa. ##
|
7
7
|
## ##
|
@@ -27,13 +27,10 @@
|
|
27
27
|
## ##
|
28
28
|
##########################################################################
|
29
29
|
|
30
|
-
import
|
31
|
-
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
32
|
-
if not BASE_DIR in sys.path:
|
33
|
-
sys.path.append(BASE_DIR)
|
30
|
+
import os
|
34
31
|
import biomedisa
|
35
|
-
from
|
36
|
-
from
|
32
|
+
from biomedisa.features.curvop_numba import curvop, evolution
|
33
|
+
from biomedisa.features.biomedisa_helper import (unique_file_path, load_data, save_data,
|
37
34
|
pre_processing, img_to_uint8, silent_remove)
|
38
35
|
import numpy as np
|
39
36
|
import numba
|
@@ -143,7 +140,7 @@ def activeContour(data, labelData, alpha=1.0, smooth=1, steps=3,
|
|
143
140
|
if bm.django_env:
|
144
141
|
bm.username = os.path.basename(os.path.dirname(bm.path_to_data))
|
145
142
|
bm.shortfilename = os.path.basename(bm.path_to_data)
|
146
|
-
bm.path_to_logfile = BASE_DIR + '/log/logfile.txt'
|
143
|
+
bm.path_to_logfile = biomedisa.BASE_DIR + '/log/logfile.txt'
|
147
144
|
|
148
145
|
# pre-processing
|
149
146
|
bm = pre_processing(bm)
|
@@ -234,13 +231,13 @@ def refinement(bm):
|
|
234
231
|
|
235
232
|
def post_processing(path_to_acwe, image_id=None, friend_id=None, simple=False, remote=False):
|
236
233
|
if remote:
|
237
|
-
with open(BASE_DIR + '/log/config_4', 'w') as configfile:
|
234
|
+
with open(biomedisa.BASE_DIR + '/log/config_4', 'w') as configfile:
|
238
235
|
print(path_to_acwe, 'phantom', file=configfile)
|
239
236
|
else:
|
240
237
|
import django
|
241
238
|
django.setup()
|
242
239
|
from biomedisa_app.models import Upload
|
243
|
-
from
|
240
|
+
from biomedisa.features.create_slices import create_slices
|
244
241
|
from redis import Redis
|
245
242
|
from rq import Queue
|
246
243
|
|
@@ -300,7 +297,7 @@ def init_active_contour(image_id, friend_id, label_id, simple=False):
|
|
300
297
|
|
301
298
|
# get host information
|
302
299
|
host = ''
|
303
|
-
host_base = BASE_DIR
|
300
|
+
host_base = biomedisa.BASE_DIR
|
304
301
|
subhost, qsub_pid = None, None
|
305
302
|
if 'REMOTE_QUEUE_HOST' in config:
|
306
303
|
host = config['REMOTE_QUEUE_HOST']
|
@@ -313,8 +310,8 @@ def init_active_contour(image_id, friend_id, label_id, simple=False):
|
|
313
310
|
if host:
|
314
311
|
|
315
312
|
# command
|
316
|
-
cmd = ['python3', host_base+'/
|
317
|
-
cmd += [image.pic.path.replace(BASE_DIR,host_base), friend.pic.path.replace(BASE_DIR,host_base)]
|
313
|
+
cmd = ['python3', host_base+'/biomedisa/features/active_contour.py']
|
314
|
+
cmd += [image.pic.path.replace(biomedisa.BASE_DIR,host_base), friend.pic.path.replace(biomedisa.BASE_DIR,host_base)]
|
318
315
|
cmd += [f'-iid={image.id}', f'-fid={friend.id}', '-r']
|
319
316
|
|
320
317
|
# command (append only on demand)
|
@@ -338,8 +335,8 @@ def init_active_contour(image_id, friend_id, label_id, simple=False):
|
|
338
335
|
|
339
336
|
# send data to host
|
340
337
|
success=0
|
341
|
-
success+=send_data_to_host(image.pic.path, host+':'+image.pic.path.replace(BASE_DIR,host_base))
|
342
|
-
success+=send_data_to_host(friend.pic.path, host+':'+friend.pic.path.replace(BASE_DIR,host_base))
|
338
|
+
success+=send_data_to_host(image.pic.path, host+':'+image.pic.path.replace(biomedisa.BASE_DIR,host_base))
|
339
|
+
success+=send_data_to_host(friend.pic.path, host+':'+friend.pic.path.replace(biomedisa.BASE_DIR,host_base))
|
343
340
|
|
344
341
|
if success==0:
|
345
342
|
|
@@ -355,14 +352,14 @@ def init_active_contour(image_id, friend_id, label_id, simple=False):
|
|
355
352
|
subprocess.Popen(cmd).wait()
|
356
353
|
|
357
354
|
# config
|
358
|
-
success = subprocess.Popen(['scp', host+':'+host_base+'/log/config_4', BASE_DIR+'/log/config_4']).wait()
|
355
|
+
success = subprocess.Popen(['scp', host+':'+host_base+'/log/config_4', biomedisa.BASE_DIR+'/log/config_4']).wait()
|
359
356
|
|
360
357
|
if success==0:
|
361
|
-
with open(BASE_DIR + '/log/config_4', 'r') as configfile:
|
358
|
+
with open(biomedisa.BASE_DIR + '/log/config_4', 'r') as configfile:
|
362
359
|
acwe_on_host, _ = configfile.read().split()
|
363
360
|
|
364
361
|
# local file names
|
365
|
-
path_to_acwe = unique_file_path(acwe_on_host.replace(host_base,BASE_DIR))
|
362
|
+
path_to_acwe = unique_file_path(acwe_on_host.replace(host_base,biomedisa.BASE_DIR))
|
366
363
|
|
367
364
|
# get results
|
368
365
|
subprocess.Popen(['scp', host+':'+acwe_on_host, path_to_acwe]).wait()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
##########################################################################
|
2
2
|
## ##
|
3
|
-
## Copyright (c) 2024 Philipp Lösel. All rights reserved.
|
3
|
+
## Copyright (c) 2019-2024 Philipp Lösel. All rights reserved. ##
|
4
4
|
## ##
|
5
5
|
## This file is part of the open source project biomedisa. ##
|
6
6
|
## ##
|