biomedisa 2024.5.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. biomedisa/__init__.py +53 -0
  2. biomedisa/__main__.py +18 -0
  3. biomedisa/biomedisa_features/DataGenerator.py +299 -0
  4. biomedisa/biomedisa_features/DataGeneratorCrop.py +121 -0
  5. biomedisa/biomedisa_features/PredictDataGenerator.py +87 -0
  6. biomedisa/biomedisa_features/PredictDataGeneratorCrop.py +74 -0
  7. biomedisa/biomedisa_features/__init__.py +0 -0
  8. biomedisa/biomedisa_features/active_contour.py +434 -0
  9. biomedisa/biomedisa_features/amira_to_np/__init__.py +0 -0
  10. biomedisa/biomedisa_features/amira_to_np/amira_data_stream.py +980 -0
  11. biomedisa/biomedisa_features/amira_to_np/amira_grammar.py +369 -0
  12. biomedisa/biomedisa_features/amira_to_np/amira_header.py +290 -0
  13. biomedisa/biomedisa_features/amira_to_np/amira_helper.py +72 -0
  14. biomedisa/biomedisa_features/assd.py +167 -0
  15. biomedisa/biomedisa_features/biomedisa_helper.py +801 -0
  16. biomedisa/biomedisa_features/create_slices.py +286 -0
  17. biomedisa/biomedisa_features/crop_helper.py +586 -0
  18. biomedisa/biomedisa_features/curvop_numba.py +149 -0
  19. biomedisa/biomedisa_features/django_env.py +172 -0
  20. biomedisa/biomedisa_features/keras_helper.py +1219 -0
  21. biomedisa/biomedisa_features/nc_reader.py +179 -0
  22. biomedisa/biomedisa_features/pid.py +52 -0
  23. biomedisa/biomedisa_features/process_image.py +253 -0
  24. biomedisa/biomedisa_features/pycuda_test.py +84 -0
  25. biomedisa/biomedisa_features/random_walk/__init__.py +0 -0
  26. biomedisa/biomedisa_features/random_walk/gpu_kernels.py +183 -0
  27. biomedisa/biomedisa_features/random_walk/pycuda_large.py +826 -0
  28. biomedisa/biomedisa_features/random_walk/pycuda_large_allx.py +806 -0
  29. biomedisa/biomedisa_features/random_walk/pycuda_small.py +414 -0
  30. biomedisa/biomedisa_features/random_walk/pycuda_small_allx.py +493 -0
  31. biomedisa/biomedisa_features/random_walk/pyopencl_large.py +760 -0
  32. biomedisa/biomedisa_features/random_walk/pyopencl_small.py +441 -0
  33. biomedisa/biomedisa_features/random_walk/rw_large.py +390 -0
  34. biomedisa/biomedisa_features/random_walk/rw_small.py +310 -0
  35. biomedisa/biomedisa_features/remove_outlier.py +399 -0
  36. biomedisa/biomedisa_features/split_volume.py +274 -0
  37. biomedisa/deeplearning.py +519 -0
  38. biomedisa/interpolation.py +371 -0
  39. biomedisa/mesh.py +406 -0
  40. biomedisa-2024.5.14.dist-info/LICENSE +191 -0
  41. biomedisa-2024.5.14.dist-info/METADATA +306 -0
  42. biomedisa-2024.5.14.dist-info/RECORD +44 -0
  43. biomedisa-2024.5.14.dist-info/WHEEL +5 -0
  44. biomedisa-2024.5.14.dist-info/top_level.txt +1 -0
@@ -0,0 +1,306 @@
1
+ Metadata-Version: 2.1
2
+ Name: biomedisa
3
+ Version: 2024.5.14
4
+ Summary: Segmentation of 3D volumetric image data
5
+ Author: Philipp Lösel
6
+ Author-email: philipp.loesel@anu.edu.au
7
+ Project-URL: Homepage, https://biomedisa.info
8
+ Project-URL: Issues, https://github.com/biomedisa/biomedisa/issues
9
+ Project-URL: GitHub, https://github.com/biomedisa/biomedisa
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: License :: OSI Approved :: European Union Public Licence 1.2 (EUPL 1.2)
12
+ Classifier: Operating System :: OS Independent
13
+ Requires-Python: >=3.10
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+
17
+ [![biomedisa](biomedisa_app/static/biomedisa_logo.svg)](https://biomedisa.info)
18
+ -----------
19
+ - [Overview](#overview)
20
+ - [Hardware Requirements](#hardware-requirements)
21
+ - [Installation (command-line based)](#installation-command-line-based)
22
+ - [Installation (browser based)](#installation-browser-based)
23
+ - [Download Data](#download-data)
24
+ - [Smart Interpolation](#smart-interpolation)
25
+ - [Deep Learning](#deep-learning)
26
+ - [Biomedisa Features](#biomedisa-features)
27
+ - [Update Biomedisa](#update-biomedisa)
28
+ - [Releases](#releases)
29
+ - [Authors](#authors)
30
+ - [FAQ](#faq)
31
+ - [Citation](#citation)
32
+ - [License](#license)
33
+
34
+ # Overview
35
+ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large volumetric images, e.g. CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's semi-automated segmentation is based on a smart interpolation of sparsely pre-segmented slices, taking into account the complete underlying image data. In addition, Biomedisa enables deep learning for the fully automated segmentation of series of similar samples. It can be used in combination with segmentation tools such as Amira/Avizo, ImageJ/Fiji and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
36
+
37
+ # Hardware Requirements
38
+ + One or more NVIDIA GPUs with compute capability 3.0 or higher or an Intel CPU.
39
+
40
+ # Installation (command-line based)
41
+ + [Ubuntu 22.04 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
42
+ + [Ubuntu 22.04 + OpenCL + CPU (smart interpolation only and very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_opencl_cpu_cli.md)
43
+ + [Windows 10 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
44
+ + [Windows 10 + OpenCL + GPU (easy to install but lacks features like allaxis, smoothing, uncertainty, optimized GPU memory usage)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_gpu_cli.md)
45
+ + [Windows 10 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_cpu_cli.md)
46
+
47
+ # Installation (browser based)
48
+ + [Ubuntu 22.04](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8.md)
49
+
50
+ # Download Data
51
+ + Download the data from our [gallery](https://biomedisa.info/gallery/)
52
+
53
+ # Smart Interpolation
54
+ + [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
55
+
56
+ #### Python example
57
+ ```python
58
+ # change this line to your biomedisa directory
59
+ path_to_biomedisa = '/home/<user>/git/biomedisa'
60
+
61
+ import sys
62
+ sys.path.append(path_to_biomedisa)
63
+ from biomedisa_features.biomedisa_helper import load_data, save_data
64
+ from biomedisa_features.biomedisa_interpolation import smart_interpolation
65
+
66
+ # load data
67
+ img, _ = load_data('Downloads/trigonopterus.tif')
68
+ labels, header = load_data('Downloads/labels.trigonopterus_smart.am')
69
+
70
+ # run smart interpolation with optional smoothing result
71
+ results = smart_interpolation(img, labels, smooth=100)
72
+
73
+ # get results
74
+ regular_result = results['regular']
75
+ smooth_result = results['smooth']
76
+
77
+ # save results
78
+ save_data('Downloads/final.trigonopterus.am', regular_result, header=header)
79
+ save_data('Downloads/final.trigonopterus.smooth.am', smooth_result, header=header)
80
+ ```
81
+
82
+ #### Command-line based
83
+ ```
84
+ # change to the features directory
85
+ cd git/biomedisa/biomedisa_features/
86
+
87
+ # start smart interpolation
88
+ python biomedisa_interpolation.py C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
89
+ ```
90
+
91
+ # Deep Learning
92
+ + [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/deep_learning.md)
93
+
94
+ #### Python example (training)
95
+ ```python
96
+ # change this line to your biomedisa directory
97
+ path_to_biomedisa = '/home/<user>/git/biomedisa'
98
+
99
+ # load libraries
100
+ import sys
101
+ sys.path.append(path_to_biomedisa)
102
+ from biomedisa_features.biomedisa_helper import load_data
103
+ from biomedisa_features.biomedisa_deeplearning import deep_learning
104
+
105
+ # load image data
106
+ img1, _ = load_data('Head1.am')
107
+ img2, _ = load_data('Head2.am')
108
+ img_data = [img1, img2]
109
+
110
+ # load label data and header information to be stored in the network file (optional)
111
+ label1, _ = load_data('Head1.labels.am')
112
+ label2, header, ext = load_data('Head2.labels.am',
113
+ return_extension=True)
114
+ label_data = [label1, label2]
115
+
116
+ # load validation data (optional)
117
+ img3, _ = load_data('Head3.am')
118
+ img4, _ = load_data('Head4.am')
119
+ label3, _ = load_data('Head3.labels.am')
120
+ label4, _ = load_data('Head4.labels.am')
121
+ val_img_data = [img3, img4]
122
+ val_label_data = [label3, label4]
123
+
124
+ # deep learning
125
+ deep_learning(img_data, label_data, train=True, batch_size=12,
126
+ val_img_data=val_img_data, val_label_data=val_label_data,
127
+ header=header, extension=ext, path_to_model='honeybees.h5')
128
+ ```
129
+
130
+ #### Command-line based (training)
131
+ ```
132
+ # change to the features directory
133
+ cd git/biomedisa/biomedisa_features/
134
+
135
+ # start training with a batch size of 12
136
+ python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs 12
137
+
138
+ # validation (optional)
139
+ python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi C:\Users\%USERNAME%\Downloads\val_img -vl C:\Users\%USERNAME%\Downloads\val_labels
140
+ ```
141
+ If running into ResourceExhaustedError due to out of memory (OOM), try to use smaller batch size.
142
+
143
+ #### Python example (prediction)
144
+ ```python
145
+ # change this line to your biomedisa directory
146
+ path_to_biomedisa = '/home/<user>/git/biomedisa'
147
+
148
+ # load libraries
149
+ import sys
150
+ sys.path.append(path_to_biomedisa)
151
+ from biomedisa_features.biomedisa_helper import load_data, save_data
152
+ from biomedisa_features.biomedisa_deeplearning import deep_learning
153
+
154
+ # load data
155
+ img, _ = load_data('Head5.am')
156
+
157
+ # deep learning
158
+ results = deep_learning(img, predict=True,
159
+ path_to_model='honeybees.h5', batch_size=6)
160
+
161
+ # save result
162
+ save_data('final.Head5.am', results['regular'], results['header'])
163
+ ```
164
+
165
+ #### Command-line based (prediction)
166
+ ```
167
+ # change to the features directory
168
+ cd git/biomedisa/biomedisa_features/
169
+
170
+ # start prediction with a batch size of 6
171
+ python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p -bs 6
172
+ ```
173
+
174
+ # Biomedisa Features
175
+
176
+ #### Load and save data (such as Amira Mesh, TIFF, NRRD, NIfTI or DICOM)
177
+ ```python
178
+ import sys
179
+ sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
180
+ from biomedisa_features.biomedisa_helper import load_data, save_data
181
+
182
+ # load data as numpy array
183
+ # for DICOM, PNG files, or similar formats, 'path_to_data' must reference
184
+ # either a directory or a ZIP file containing the image slices
185
+ data, header = load_data(path_to_data)
186
+
187
+ # save data (for TIFF, header=None)
188
+ save_data(path_to_data, data, header)
189
+ ```
190
+
191
+ #### Create STL mesh from segmentation (label values are saved as attributes)
192
+ ```python
193
+ import os, sys
194
+ sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
195
+ from biomedisa_features.biomedisa_helper import load_data, save_data
196
+ from biomedisa_features.create_mesh import get_voxel_spacing, save_mesh
197
+
198
+ # load segmentation
199
+ data, header, extension = load_data(path_to_data, return_extension=True)
200
+
201
+ # get voxel spacing
202
+ x_res, y_res, z_res = get_voxel_spacing(header, data, extension)
203
+ print(f'Voxel spacing: x_spacing, y_spacing, z_spacing = {x_res}, {y_res}, {z_res}')
204
+
205
+ # save stl file
206
+ path_to_data = path_to_data.replace(os.path.splitext(path_to_data)[1],'.stl')
207
+ save_mesh(path_to_data, data, x_res, y_res, z_res, poly_reduction=0.9, smoothing_iterations=15)
208
+ ```
209
+
210
+ #### Create mesh directly
211
+ ```
212
+ python git/biomedisa/biomedisa_features/create_mesh.py <path_to_data>
213
+ ```
214
+
215
+ #### Options
216
+ `--poly_reduction` or `-pr`: Reduce number of polygons by this factor (default: 0.9)
217
+
218
+ `--smoothing_iterations` or `-s`: Iteration steps for smoothing (default: 15)
219
+
220
+ `--x_res` or `-xres`: Voxel spacing/resolution x-axis (default: None)
221
+
222
+ `--y_res` or `-yres`: Voxel spacing/resolution y-axis (default: None)
223
+
224
+ `--z_res` or `-zres`: Voxel spacing/resolution z-axis (default: None)
225
+
226
+ #### Resize data
227
+ ```python
228
+ import os, sys
229
+ sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
230
+ from biomedisa_features.biomedisa_helper import img_resize
231
+
232
+ # resize image data
233
+ zsh, ysh, xsh = data.shape
234
+ new_zsh, new_ysh, new_xsh = zsh//2, ysh//2, xsh//2
235
+ data = img_resize(data, new_zsh, new_ysh, new_xsh)
236
+
237
+ # resize label data
238
+ label_data = img_resize(label_data, new_zsh, new_ysh, new_xsh, labels=True)
239
+ ```
240
+
241
+ #### Remove outliers and fill holes
242
+ ```python
243
+ from biomedisa_features.biomedisa_helper import clean, fill
244
+
245
+ # delete outliers smaller than 90% of the segment
246
+ label_data = clean(label_data, 0.9)
247
+
248
+ # fill holes
249
+ label_data = fill(label_data, 0.9)
250
+ ```
251
+
252
+ #### Accuracy assessment
253
+ ```python
254
+ from biomedisa_features.biomedisa_helper import Dice_score, ASSD
255
+ dice = Dice_score(ground_truth, result)
256
+ assd = ASSD(ground_truth, result)
257
+ ```
258
+
259
+ # Update Biomedisa
260
+ If you have used `git clone`, change to the Biomedisa directory and make a pull request.
261
+ ```
262
+ cd git/biomedisa
263
+ git pull
264
+ ```
265
+
266
+ If you have installed the browser based version of Biomedisa (including MySQL database), you also need to update the database.
267
+ ```
268
+ python manage.py migrate
269
+ ```
270
+
271
+ If you have installed an [Apache Server](https://github.com/biomedisa/biomedisa/blob/master/README/APACHE_SERVER.md), you need to restart the server.
272
+ ```
273
+ sudo service apache2 restart
274
+ ```
275
+
276
+ # Releases
277
+
278
+ For the versions available, see the [list of releases](https://github.com/biomedisa/biomedisa/releases).
279
+
280
+ # Authors
281
+
282
+ * **Philipp D. Lösel**
283
+
284
+ See also the list of [contributors](https://github.com/biomedisa/biomedisa/blob/master/credits.md) who participated in this project.
285
+
286
+ # FAQ
287
+ Frequently asked questions can be found at: https://biomedisa.info/faq/.
288
+
289
+ # Citation
290
+
291
+ If you use Biomedisa or the data, please cite the following paper:
292
+
293
+ `Lösel, P.D. et al. Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nat. Commun. 11, 5577 (2020).` https://doi.org/10.1038/s41467-020-19303-w
294
+
295
+ If you use Biomedisa's Deep Learning, you may also cite:
296
+
297
+ `Lösel, P.D. et al. Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning. PLoS Comput. Biol. 19, e1011529 (2023).` https://doi.org/10.1371/journal.pcbi.1011529
298
+
299
+ If you use Biomedisa's Smart Interpolation, you can also cite the initial description of this method:
300
+
301
+ `Lösel, P. & Heuveline, V. Enhancing a diffusion algorithm for 4D image segmentation using local information. Proc. SPIE 9784, 97842L (2016).` https://doi.org/10.1117/12.2216202
302
+
303
+ # License
304
+
305
+ This project is covered under the **EUROPEAN UNION PUBLIC LICENCE v. 1.2 (EUPL)**.
306
+
@@ -0,0 +1,44 @@
1
+ biomedisa/__init__.py,sha256=BLbuGv-c8I8XMzOOnc07qrcWxq8CUA5NM73S3gkixEI,1690
2
+ biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
3
+ biomedisa/deeplearning.py,sha256=R6CBuy4tTusYi3ULnamFfYenHG0KFtJegGNMSAL9iWI,27102
4
+ biomedisa/interpolation.py,sha256=mz5Ieiee2RftqisqNzKcCU7IV1n0LGON4zyhvBwE94s,17335
5
+ biomedisa/mesh.py,sha256=iz4DG3g6ptO8Vs5wXsd-SZio7ipYREhXwVG2e0Z937Q,15920
6
+ biomedisa/biomedisa_features/DataGenerator.py,sha256=FTktX35_FboSzk4UXG_ZN58xXYJqwjX_7ZJ65bzNuFs,12770
7
+ biomedisa/biomedisa_features/DataGeneratorCrop.py,sha256=cL_1rbXSq79vCNAHnIwvow-J1s-4gWStR1pWTbF_VTY,5454
8
+ biomedisa/biomedisa_features/PredictDataGenerator.py,sha256=MISkB2tlxCw6rd8pfwwz1clVnvyPwg5dB-8yxR6WsBw,4074
9
+ biomedisa/biomedisa_features/PredictDataGeneratorCrop.py,sha256=JBwFcOZMakNMlL5UvP5bNg9FlQl5sbrM9UVSCyFhwBQ,3431
10
+ biomedisa/biomedisa_features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ biomedisa/biomedisa_features/active_contour.py,sha256=7kq4Wh-MCP5A3R6Lzk-bnS43gXW_yiKtoXRrYP018DU,18192
12
+ biomedisa/biomedisa_features/assd.py,sha256=cXHAhwJqhwOvzgTodlQb21NvYafWTjBJ7_H_icuBNMU,6537
13
+ biomedisa/biomedisa_features/biomedisa_helper.py,sha256=8b8yE7fCoSjR_9iM7Or-Bw2l-_zSK8b-llfgkRVXL-I,30741
14
+ biomedisa/biomedisa_features/create_slices.py,sha256=gQJev1-DXvqDchGbnLC1bsCtb1gAnv4D82IgOnCJVt8,13329
15
+ biomedisa/biomedisa_features/crop_helper.py,sha256=Op8x10IltAR_5YMotuVHzF3hSbxiOkAchhJM5L0qutw,23894
16
+ biomedisa/biomedisa_features/curvop_numba.py,sha256=9jc4OvHQ6JDN-DaFhRQMLpBDU85HhqzX_YUVBf3Q3vA,7049
17
+ biomedisa/biomedisa_features/django_env.py,sha256=S-ajQpw5A2aBlTYgn_FiyIr02QH05rInzhBDulb9lNg,8989
18
+ biomedisa/biomedisa_features/keras_helper.py,sha256=j4SwVJ-4fMPJcZs90NXxHPaWsEqsTZEn6oFok4WuooY,50390
19
+ biomedisa/biomedisa_features/nc_reader.py,sha256=7uwdmz4pLC__xb8hWjZ7Y9jrkNJOyD01kIA1EOP8GV0,7406
20
+ biomedisa/biomedisa_features/pid.py,sha256=HAIq52F-PKwDGRyKE74qsY-bdBTs1s85vcIQTKaMIy8,2528
21
+ biomedisa/biomedisa_features/process_image.py,sha256=9PobvlCzHbIeZlNVNQIGePNA4p4X-g72q3mxLxMfhR4,11159
22
+ biomedisa/biomedisa_features/pycuda_test.py,sha256=LLd5JnlDu1hOZUTFs8IbuE2I2sBSRyZaU3sRdNpdy5Y,3274
23
+ biomedisa/biomedisa_features/remove_outlier.py,sha256=ryG-a7V_kH5Fhg2nOueTWG_bK4cX1tlk1KYmrPDU-7Q,16852
24
+ biomedisa/biomedisa_features/split_volume.py,sha256=yBdoO3ojEphnfs9P-Ap8NPFrmb-WM8CCZSV9deIEASs,12394
25
+ biomedisa/biomedisa_features/amira_to_np/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
+ biomedisa/biomedisa_features/amira_to_np/amira_data_stream.py,sha256=JrZTyKP01CKDFB5d9BlGtSFwBgoAo0AJeAmn3pADH88,32618
27
+ biomedisa/biomedisa_features/amira_to_np/amira_grammar.py,sha256=z1yajLHmn-GDb-rzZ5iHlKmPZDDbO9fNqP2jXf8z3KE,14324
28
+ biomedisa/biomedisa_features/amira_to_np/amira_header.py,sha256=eWHECsTx3ls8c0RHjy5xO4s-BehRC-96wONj7n9IzrY,11553
29
+ biomedisa/biomedisa_features/amira_to_np/amira_helper.py,sha256=giuZKkX8eI_2MVAy3wwBvcmmmDxSOo8k9eAzu2QA6uo,2218
30
+ biomedisa/biomedisa_features/random_walk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
+ biomedisa/biomedisa_features/random_walk/gpu_kernels.py,sha256=r8BsyOU_a5tYMM8d_mS9MPrUCXoTFI7NY8JIQnyfe0U,7190
32
+ biomedisa/biomedisa_features/random_walk/pycuda_large.py,sha256=_dfYP2cFSm0aKU6n_YotsdNLZcvO8OjE5hYbgeAQk98,32917
33
+ biomedisa/biomedisa_features/random_walk/pycuda_large_allx.py,sha256=Cfb_cq184LgfdiSTImQu7Ax8L_EKQgpXfSVapYGXy0E,30677
34
+ biomedisa/biomedisa_features/random_walk/pycuda_small.py,sha256=691oa8JhVwDmS-y7KnNbVUziW14fAtC-lvB3rg2VWA4,15786
35
+ biomedisa/biomedisa_features/random_walk/pycuda_small_allx.py,sha256=8bNHDKDxa-02q1ykWo_YWjzYQkM77raX_DivpWkVoQY,18225
36
+ biomedisa/biomedisa_features/random_walk/pyopencl_large.py,sha256=cOBhvxrdKCkbr6xaKneBTiUMXPk9lSdjwt95TdHC2EY,31015
37
+ biomedisa/biomedisa_features/random_walk/pyopencl_small.py,sha256=2XALYNNv9D8Gb1u2lcjR1O4W9UM0Xxjj0r4nr-NiEkk,17068
38
+ biomedisa/biomedisa_features/random_walk/rw_large.py,sha256=A_3sV5_UzoBwT7e2-JqSnANTiVKson0Gp7H4JenHkP4,19852
39
+ biomedisa/biomedisa_features/random_walk/rw_small.py,sha256=LwleLNNSdISBCtx7Yn2-EEBxCwhdqGFTUaWwKrGV7KM,14951
40
+ biomedisa-2024.5.14.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
+ biomedisa-2024.5.14.dist-info/METADATA,sha256=JGduIDT4hQoHyZQcYyX9hZo5xwIKEe0qmlPzf8hwUjU,11678
42
+ biomedisa-2024.5.14.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
+ biomedisa-2024.5.14.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
+ biomedisa-2024.5.14.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.43.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ biomedisa