autogluon.timeseries 1.4.1b20251115__py3-none-any.whl → 1.4.1b20251218__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (82) hide show
  1. autogluon/timeseries/configs/hyperparameter_presets.py +7 -21
  2. autogluon/timeseries/configs/predictor_presets.py +23 -39
  3. autogluon/timeseries/dataset/ts_dataframe.py +32 -34
  4. autogluon/timeseries/learner.py +67 -33
  5. autogluon/timeseries/metrics/__init__.py +4 -4
  6. autogluon/timeseries/metrics/abstract.py +8 -8
  7. autogluon/timeseries/metrics/point.py +9 -9
  8. autogluon/timeseries/metrics/quantile.py +4 -4
  9. autogluon/timeseries/models/__init__.py +2 -1
  10. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -39
  11. autogluon/timeseries/models/abstract/model_trial.py +2 -1
  12. autogluon/timeseries/models/abstract/tunable.py +8 -8
  13. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +30 -26
  14. autogluon/timeseries/models/autogluon_tabular/per_step.py +12 -10
  15. autogluon/timeseries/models/autogluon_tabular/transforms.py +2 -2
  16. autogluon/timeseries/models/chronos/__init__.py +2 -1
  17. autogluon/timeseries/models/chronos/chronos2.py +395 -0
  18. autogluon/timeseries/models/chronos/model.py +29 -24
  19. autogluon/timeseries/models/chronos/utils.py +5 -5
  20. autogluon/timeseries/models/ensemble/__init__.py +17 -10
  21. autogluon/timeseries/models/ensemble/abstract.py +13 -9
  22. autogluon/timeseries/models/ensemble/array_based/__init__.py +2 -2
  23. autogluon/timeseries/models/ensemble/array_based/abstract.py +24 -31
  24. autogluon/timeseries/models/ensemble/array_based/models.py +146 -11
  25. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +2 -0
  26. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +6 -5
  27. autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
  28. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +44 -83
  29. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +21 -55
  30. autogluon/timeseries/models/ensemble/ensemble_selection.py +167 -0
  31. autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
  32. autogluon/timeseries/models/ensemble/weighted/abstract.py +7 -3
  33. autogluon/timeseries/models/ensemble/weighted/basic.py +26 -13
  34. autogluon/timeseries/models/ensemble/weighted/greedy.py +20 -145
  35. autogluon/timeseries/models/gluonts/abstract.py +30 -29
  36. autogluon/timeseries/models/gluonts/dataset.py +9 -9
  37. autogluon/timeseries/models/gluonts/models.py +0 -7
  38. autogluon/timeseries/models/local/__init__.py +0 -7
  39. autogluon/timeseries/models/local/abstract_local_model.py +13 -16
  40. autogluon/timeseries/models/local/naive.py +2 -2
  41. autogluon/timeseries/models/local/npts.py +7 -1
  42. autogluon/timeseries/models/local/statsforecast.py +12 -12
  43. autogluon/timeseries/models/multi_window/multi_window_model.py +38 -23
  44. autogluon/timeseries/models/registry.py +3 -4
  45. autogluon/timeseries/models/toto/_internal/backbone/attention.py +3 -4
  46. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +6 -6
  47. autogluon/timeseries/models/toto/_internal/backbone/rope.py +4 -9
  48. autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
  49. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +2 -3
  50. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +10 -10
  51. autogluon/timeseries/models/toto/_internal/dataset.py +2 -2
  52. autogluon/timeseries/models/toto/_internal/forecaster.py +8 -8
  53. autogluon/timeseries/models/toto/dataloader.py +4 -4
  54. autogluon/timeseries/models/toto/hf_pretrained_model.py +97 -16
  55. autogluon/timeseries/models/toto/model.py +30 -17
  56. autogluon/timeseries/predictor.py +517 -129
  57. autogluon/timeseries/regressor.py +18 -23
  58. autogluon/timeseries/splitter.py +2 -2
  59. autogluon/timeseries/trainer/ensemble_composer.py +323 -129
  60. autogluon/timeseries/trainer/model_set_builder.py +9 -9
  61. autogluon/timeseries/trainer/prediction_cache.py +16 -16
  62. autogluon/timeseries/trainer/trainer.py +235 -144
  63. autogluon/timeseries/trainer/utils.py +3 -4
  64. autogluon/timeseries/transforms/covariate_scaler.py +7 -7
  65. autogluon/timeseries/transforms/target_scaler.py +8 -8
  66. autogluon/timeseries/utils/constants.py +10 -0
  67. autogluon/timeseries/utils/datetime/lags.py +1 -3
  68. autogluon/timeseries/utils/datetime/seasonality.py +1 -3
  69. autogluon/timeseries/utils/features.py +22 -9
  70. autogluon/timeseries/utils/forecast.py +1 -2
  71. autogluon/timeseries/utils/timer.py +173 -0
  72. autogluon/timeseries/version.py +1 -1
  73. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/METADATA +23 -21
  74. autogluon_timeseries-1.4.1b20251218.dist-info/RECORD +103 -0
  75. autogluon_timeseries-1.4.1b20251115.dist-info/RECORD +0 -96
  76. /autogluon.timeseries-1.4.1b20251115-py3.9-nspkg.pth → /autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth +0 -0
  77. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/WHEEL +0 -0
  78. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/licenses/LICENSE +0 -0
  79. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/licenses/NOTICE +0 -0
  80. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/namespace_packages.txt +0 -0
  81. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/top_level.txt +0 -0
  82. {autogluon_timeseries-1.4.1b20251115.dist-info → autogluon_timeseries-1.4.1b20251218.dist-info}/zip-safe +0 -0
@@ -0,0 +1,103 @@
1
+ autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
+ autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
+ autogluon/timeseries/learner.py,sha256=9kGn0ACGfbyZRlZmwkrgBbkwq7c2715yKDCh1EK3EWQ,14961
4
+ autogluon/timeseries/predictor.py,sha256=vAm2z69GKqQD6EVIfAl3yXUAkgjmU5wY7Q-s99QUPYQ,106046
5
+ autogluon/timeseries/regressor.py,sha256=HDdqi7MYRheW3uZy5c50sqVDAHap0ooyQBdOvKEKkWM,11718
6
+ autogluon/timeseries/splitter.py,sha256=2rypDxDKkqOC2v5nPJ6m0cmHQTZ9D6qUFrQV1HC9lz4,2329
7
+ autogluon/timeseries/version.py,sha256=T4Q4YP7KG82ICbSOmlyEJbpVgeghgzEACIcsaDiwn28,91
8
+ autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
9
+ autogluon/timeseries/configs/hyperparameter_presets.py,sha256=QoaCVXiOeZVJi92eNBjrJmhQyoVmTLS5X63NGPAOK6w,1485
10
+ autogluon/timeseries/configs/predictor_presets.py,sha256=2CkUXIFtup5w5sQkIhoU5G84b9jiNfcUC0yEug3izGY,2327
11
+ autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=IOIkwV_VPV3JvilNt98gZ77gMHIpk-Ug-trDvqSk_Jg,52228
13
+ autogluon/timeseries/metrics/__init__.py,sha256=iFGLMOtDJ470dbmmx1BsdUKBx4RwI6ZQGFat3Z-wpzI,3567
14
+ autogluon/timeseries/metrics/abstract.py,sha256=_A0Ex1Ay91TPDStZ8DBiBMkIyLUusdARbuDiylHJ0yQ,11499
15
+ autogluon/timeseries/metrics/point.py,sha256=K1Fn0_-Ycxz1hYHd-u1X7q9X-Jt7Dp9bNvUHV6RRg7A,18274
16
+ autogluon/timeseries/metrics/quantile.py,sha256=f8SMVt9rV0sY9lk8B1Bjxx219IjajuJjhOSD95p_z24,4602
17
+ autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
18
+ autogluon/timeseries/models/__init__.py,sha256=zPdwxiveOTGU9658tDPMFXbflZ5fzd_AJdbCacbfZ0s,1375
19
+ autogluon/timeseries/models/registry.py,sha256=dkuyKG5UK2xiGtXcsuyRDXrI-YC84zkPre8Z3wt9T_A,2115
20
+ autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
21
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=7j_ULO_d7SUUprHqnMjF_4pz8rDXODyyFeboJaQohAw,32489
22
+ autogluon/timeseries/models/abstract/model_trial.py,sha256=xKD6Nw8hIqAq4HxNVcGUhr9BuEqzFn7FX0TenvZHU0Q,3753
23
+ autogluon/timeseries/models/abstract/tunable.py,sha256=thl_wJjB9ao1T5NNF1RVH5k3yFqmao0irX-eUNqDs8k,7111
24
+ autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
25
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=FJlYqMZJaltTlh54LMrDOgICgGanIymBI2F4OevVQ6A,36690
26
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=kc0OIveCUfMbl1yGANW42EaRFZZNmlr1AJdcG-nqihA,23360
27
+ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=AkXEInK4GocApU5GylECH01qgz5cLLLqC9apuN0eUbQ,2873
28
+ autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
+ autogluon/timeseries/models/chronos/__init__.py,sha256=dIoAImmZc0dTlut4CZkJxcg1bpuHKZkS8x8Y6fBoUAY,113
30
+ autogluon/timeseries/models/chronos/chronos2.py,sha256=tTB2TI7VT7dS2gO7g4MgT_6i2hJavyZvpYeK_2HdK20,16797
31
+ autogluon/timeseries/models/chronos/model.py,sha256=q3OiE9ZFrdh14q_FfxjDhUVWpuDTv3k2t5h-FipWAPU,33678
32
+ autogluon/timeseries/models/chronos/utils.py,sha256=33_kycc7AVasS3c7-AuVFtqBTZzV_yszr-MpKe28S3M,14449
33
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=3_Vn6RHpjouthrEoXs1guKUpUX6JoUgMVCgxPt2pyLw,1302
34
+ autogluon/timeseries/models/ensemble/abstract.py,sha256=gAaspq4f67MTfs7KW6ADVU0KfPeBKySPstCqUeC7JYs,4579
35
+ autogluon/timeseries/models/ensemble/ensemble_selection.py,sha256=hepycVJTtbibzTKq5Sk04L_vUuYlLFItkSybaCc_Jv8,6366
36
+ autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=UlPtSBwzbzVtcf_o8HGMJDbpnWb95KcuvcS_z-AiT5k,7868
37
+ autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=u4vGTH9gP6oATYKkxnvoiDZvc5rqfnfgrODHxIvHP7U,207
38
+ autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=Oci1XEgFFTle0JF5Z8PhnMjG1iPrhhtunoKUPUPhTLw,10190
39
+ autogluon/timeseries/models/ensemble/array_based/models.py,sha256=UOV3t3QH_j0AGg2y3gJIWZ5rS5tHI39z3yUJlhkEyA0,8603
40
+ autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=OJPZZzowllw7Ks0aXF8Hye1_1Ql8XhRfdtv3e3A_4AE,424
41
+ autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=MSeYWwxH1mL3lrsHbDpzAg61Bovs2Fxkxl3qzj5QrXE,2771
42
+ autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py,sha256=4rUYEXcyyZ8hPITzg1tSDWmHSGfwqrTp5dd-b7MP5Hs,7245
43
+ autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=GIa2CtP3bl7uN3i4t54WPod4JxIhA9nKIyr7tx9B08E,3763
44
+ autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=prH6vSmRu4UBUjIdAHnLF0aH8oxHUA8ciaNP9ou9uyA,4056
45
+ autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
46
+ autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=meGVoSfPOjmEwTKGRTUQJ1N9bZtpewJ217TGqKNye04,1839
47
+ autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=KsFcdmhkjywqSYvx9rdWoFzjLO-czKsOj3CWuC61SS4,3715
48
+ autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=NN51NnrbHd7zdJs2kErm6bs-B_OcbjlkD2j2Q00IUOE,2589
49
+ autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
50
+ autogluon/timeseries/models/gluonts/abstract.py,sha256=qJ60DSkzSI4E1kx5RGeGBehkiMvcAVGSUXYSpZXo8nk,27699
51
+ autogluon/timeseries/models/gluonts/dataset.py,sha256=ApR-r4o0OV4jQ2hYUppJ4yjvWX02JoHod5O4acEKiHw,5074
52
+ autogluon/timeseries/models/gluonts/models.py,sha256=Djb2R_2ZSK-xQ1wvFwWGXxshSQeFD9WsMLdF4yxuGnQ,25232
53
+ autogluon/timeseries/models/local/__init__.py,sha256=TiKY7M6Foy8vtshfZiStEH58_XG62w4oF1TQYAQ1B0s,344
54
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=7pbyE4vhXgoCEcHAhxpxBVCOEG-LSrBptGwjLXd-s8o,11335
55
+ autogluon/timeseries/models/local/naive.py,sha256=w0XuMcgcTvTUEi2iXcd6BGvyHKB-kpqbv9c9iK4pMOA,7490
56
+ autogluon/timeseries/models/local/npts.py,sha256=mKuDsGnaYV8QkIgGR8se-1pXb2JAxzafESt2g_21ENA,4530
57
+ autogluon/timeseries/models/local/statsforecast.py,sha256=gt9evIxlymisBlBZU7aRFtZQ3mgyX7a0xtmvFyKRXK4,33275
58
+ autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
59
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=bv8_ux-7JXPwhbFXeBN893xQo6echCCMwqH4aEMK250,12937
60
+ autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
61
+ autogluon/timeseries/models/toto/dataloader.py,sha256=wUrK3mcSEhaWmxpv3rAqmp1ZbLnXbEP4F77hAT2-VXg,3566
62
+ autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=E2agvz4jdUFhYEiavLTuBIripbl2KLGgdfr8eZXkqOM,7290
63
+ autogluon/timeseries/models/toto/model.py,sha256=ObMPp_Wn2cccT7osWyIfc15gk-hcWDT38p3r-uSdZmM,9412
64
+ autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
65
+ autogluon/timeseries/models/toto/_internal/dataset.py,sha256=jpKX3LV4FkcGGgUPTzpwdR_7UZEFMfwXIQQZVkQ_I6E,6090
66
+ autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=HhRQwqC6Y_Gr93fT-EpilWFjjxY5zR9GsNPN2JPztN4,18479
67
+ autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
68
+ autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=ez7N8ygH4Q1gU88EuoSeF1675JcoAAxocvyF4i0JuGI,9347
69
+ autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=Vy2AHnbRrc68ax41KPf0IP3RkXA7GtTgzIXr6lSAp-w,10079
70
+ autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
71
+ autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
72
+ autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=UohCHvsOP2Q2g6IXDWXQsYpBZ0JDZ0JjtFq0ZnRCF6g,3389
73
+ autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py,sha256=TsdcUpQUQes4dtrWb6citENGrXK8hE3M8DyZ2kslEyE,11488
74
+ autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=NQno9Ycm2wf4tZJneoOtbbyZ-ez0Z5R37XJng9rPn_4,13694
75
+ autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=K7S-fPZZOl65luFMpPQ3LC2QuNN4SunTLDTxp-bZWUc,12364
76
+ autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
77
+ autogluon/timeseries/trainer/ensemble_composer.py,sha256=zGa8vocPQGsHf-7ti8DsHwjEA176FkCt7up2LwWCK4Y,19465
78
+ autogluon/timeseries/trainer/model_set_builder.py,sha256=kROApbu10_ro-GVYlnx3oTKZj2TcNswWbOFB1QyBCOc,10737
79
+ autogluon/timeseries/trainer/prediction_cache.py,sha256=KKs22UUGrVfQN_81IgzL7Bfc8tjWk3k6YW3uHURaSs0,5496
80
+ autogluon/timeseries/trainer/trainer.py,sha256=CxIL6yxEGckzwCkVv81equ5WJmI-5fTgMxc8CJYy4OU,56151
81
+ autogluon/timeseries/trainer/utils.py,sha256=7N4vRP6GFUlRAahxQ9PqppdIMFqMz3wpZ5u-_onR24M,588
82
+ autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
83
+ autogluon/timeseries/transforms/covariate_scaler.py,sha256=CpTtokiE1uEg_RJa4kEUUuBwXZpPL11OC2fgCkRpGlQ,6986
84
+ autogluon/timeseries/transforms/target_scaler.py,sha256=sAOohPBaStZx_V8aaaQacDbfEqqWRjYUtDLxdhkRKww,6092
85
+ autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
86
+ autogluon/timeseries/utils/constants.py,sha256=qjFWoouIQ5nJfx9Fmm4svN191ultb4XWW4NQSHeiGW4,542
87
+ autogluon/timeseries/utils/features.py,sha256=pI5Nu7Pj4ZrNat7vGjEAqqPO-XJGsdlH2rCUMEJLhC8,23527
88
+ autogluon/timeseries/utils/forecast.py,sha256=-w94i4DZaervXAZ_c1M7I4iLrPnVax8yC6pgv46bEjc,2228
89
+ autogluon/timeseries/utils/timer.py,sha256=qDROHYG_Z8fulMpyZMrRhfQoTneazTzYhur4qjqqydA,5799
90
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
91
+ autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
92
+ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
93
+ autogluon/timeseries/utils/datetime/lags.py,sha256=dijskkPDJXhXbRHGQZPhUFuEom3typKbOeET7cxkHGY,5965
94
+ autogluon/timeseries/utils/datetime/seasonality.py,sha256=-w3bULdkIZKP-JrO1ahHLyNCanLhejocHlasZShuwA0,802
95
+ autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
96
+ autogluon_timeseries-1.4.1b20251218.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
97
+ autogluon_timeseries-1.4.1b20251218.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
98
+ autogluon_timeseries-1.4.1b20251218.dist-info/METADATA,sha256=x2O7j5iIKfBKMLDDci6RdvKoZ1p0NZ-SXWxjhNpWeJY,13425
99
+ autogluon_timeseries-1.4.1b20251218.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
+ autogluon_timeseries-1.4.1b20251218.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
101
+ autogluon_timeseries-1.4.1b20251218.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
102
+ autogluon_timeseries-1.4.1b20251218.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
103
+ autogluon_timeseries-1.4.1b20251218.dist-info/RECORD,,
@@ -1,96 +0,0 @@
1
- autogluon.timeseries-1.4.1b20251115-py3.9-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
- autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
- autogluon/timeseries/learner.py,sha256=XTQgfZs5ZQf_7mWUz-CNnavewrfNy3ENwtGMRJWwwPQ,13889
4
- autogluon/timeseries/predictor.py,sha256=khISLnhVxTWMhE0WVCcTgm79K4Q9IuC-jHe01A9w1go,87468
5
- autogluon/timeseries/regressor.py,sha256=X9ItbQ0e3GyLpKqusjMls5uavqw8w53AH0tXfSFmVno,12049
6
- autogluon/timeseries/splitter.py,sha256=wK335v7cUAVPbo_9Bok1C6TFg0rB9SH3D031m0vn9-A,2342
7
- autogluon/timeseries/version.py,sha256=yQA67F1xd5YMYwa7GOtTd_seFi8nNJsqLbpgjacYOag,91
8
- autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
9
- autogluon/timeseries/configs/hyperparameter_presets.py,sha256=GbI2sd3uakWtaeaMyF7B5z_lmyfb6ToK6PZEUZTyG9w,2031
10
- autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
11
- autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=49Itgcrjej-x22HYMCXPGD2gjCTRkyHpY2H83aD9U9k,52384
13
- autogluon/timeseries/metrics/__init__.py,sha256=YJPXxsJ0tRDXq7p-sTZSLb0DuXMJH6sT1PgbZ3tMt30,3594
14
- autogluon/timeseries/metrics/abstract.py,sha256=6jbluvHXfLc_cuK1Fx0ZYle2sR4WGG6YxFQhkor46Q8,11545
15
- autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
16
- autogluon/timeseries/metrics/quantile.py,sha256=3XLKn01R2roLPZqcyAcxAIy_O89hdr0b4IKHyzRrXYA,4621
17
- autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
18
- autogluon/timeseries/models/__init__.py,sha256=9NY9mqYaZe_7XB70M6psHARH-Lpkfroj4toUUPO9BmI,1339
19
- autogluon/timeseries/models/registry.py,sha256=8n7W04ql0ckNQUzKcAW7bxreLI8wTAUTymACgLklH9M,2158
20
- autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
21
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=97HOi7fRPxtx8Y9hq-xdJI-kLMp6Z-8LUSvcfBjXFsM,31978
22
- autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
23
- autogluon/timeseries/models/abstract/tunable.py,sha256=jA6p-FPZkMva67B-1foqvHK-1rr0IdEfp9RvGW1WS9I,7155
24
- autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
25
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=3p3ukQxWN4WQHKt3ocmIb_5VlZfHwWJikQYUhSbDbtE,36457
26
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=keEW7M4SIsu3hC4EFuxcrj5s7QjF9k_7NBARuMXmYgA,23329
27
- autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XtxvaRsnmVF8strfvzEfWO5a_Q8p_wMyxHyglpO1R1c,2886
28
- autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
- autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
30
- autogluon/timeseries/models/chronos/model.py,sha256=N6tjC8gSOLcL5eX29JYcOgfxlRATGI2qtTZucCD83t8,33437
31
- autogluon/timeseries/models/chronos/utils.py,sha256=6y2wphSVYR1ylscSGdb3NvrTU4ZDgbx56Gluxht_j-k,14465
32
- autogluon/timeseries/models/ensemble/__init__.py,sha256=9fthsA6ozZoTC7A33O0hGhiHAMzcAgG206-b4PIF9Yc,1070
33
- autogluon/timeseries/models/ensemble/abstract.py,sha256=ePsz2lzmludxq4x_R1jjYgPvxMc0yqVRqHbU1Fq_pvo,4264
34
- autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=xCzFHS9YTPsC0LPfhh8mOWzUTYxXGz1RJ15ox0Wgr98,159
35
- autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=RC0PL4LvU7REF_FdQwqGT9TmeETNjFlHOJSBTeJrER8,10330
36
- autogluon/timeseries/models/ensemble/array_based/models.py,sha256=yvqWgXZU2iKxSe4J-kbEYHA3Lah8bYUG2-hdMNMlLP4,1640
37
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=Fw5m77f8Z5Y6UrgYFsK7bi1fIgLWdqzvoWZqkfAVmmY,327
38
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=cYsmZcjUg84EROimaBUI3X-EPIT4xGyEEqHfHFbiGYQ,2615
39
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=oJezyB0Kv2GPChF-Ym9IsyRX4N3OYcUx32hejvMVMTI,5061
40
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=2FnOiBDVgaldOnQcPD77mNzXJq7EDb1FGMpwjA3KAlE,4763
41
- autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
42
- autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=7vQVBK4TMBpESJ2EwnVklcljxmA2qWPQ9xpSREbtUwg,1543
43
- autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=Kr8y0dlHRZg_q9AqBc3HIp1a5k_sXjrnQPlVi-63DCE,3066
44
- autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=zXJFenn1XxNNvCp4TlmIq1Dx3pUDWjKG1K3HsejmDeY,7323
45
- autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
46
- autogluon/timeseries/models/gluonts/abstract.py,sha256=WKuUBy3ZF9VU87gaD9Us3c_xK2G1-XLeh1etVipf8hg,27769
47
- autogluon/timeseries/models/gluonts/dataset.py,sha256=wfEp5SPuB8bam7iTpX3Tf0FGdXp5vnZtpgC9G4VJ4tw,5111
48
- autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
49
- autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
50
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=ASIZWBYs_cP0BwdrzHwblaNianPYcK5OqpqpiNxbxA0,11481
51
- autogluon/timeseries/models/local/naive.py,sha256=xur3WWhLaS9Iix_p_yfaStbr58nL5K4rV0dReTm3BQQ,7496
52
- autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736nHOvhSAgagYMc,4203
53
- autogluon/timeseries/models/local/statsforecast.py,sha256=sZ6aEFzAyPNZX3rMULGWFht0Toapjb3EwHe5Rb76ZxA,33318
54
- autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
55
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=PBnNhDXPJJatRIm9FXg9DXU_0ZkGSs2yvEqfaTwBVxM,12356
56
- autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
57
- autogluon/timeseries/models/toto/dataloader.py,sha256=A5WHhnAe0J7fPo2KKG43hYLSrtUBGNweuqxMmClu3_A,3598
58
- autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=Q8bVUaSlQVE4xFn_v7H0h_NFTxzHiM1V17KFytc50jk,4783
59
- autogluon/timeseries/models/toto/model.py,sha256=3-5nR9qNqBFQLP6rNqBNlF4PBfnJHTcyjvz2GwdWwTg,8948
60
- autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
61
- autogluon/timeseries/models/toto/_internal/dataset.py,sha256=xuAEOhoQNJGMoCxkLVLrgpdoOJuukAYbrSrnrkwFob0,6103
62
- autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=UXiohiySn_Gs8kLheeVcVCO8qoEtYlEfMH1tukAOHsk,18520
63
- autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
64
- autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=HLUFoyqR8EqxUMT1BK-AjI4ClS8au35LcUo7Jx7Xhm0,9394
65
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=HUjpY2ZWed74UYKjp31erXF2ZHf3mmQMw_5_cCFeJGg,10104
66
- autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
67
- autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
68
- autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=Ghngo08DjHbwbyp6b-GXCyLeYR10dH-Y_RMOTYwIxPY,3527
69
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=opqyhHIZ6mPdPlrr3gA0qt9FFogIAYNDSq-P7CyQiqE,13728
70
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=5c-ngj4XHKlaedz1NkgdfQgqD2kUGkMn4mtGH_lTXsE,12410
71
- autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
72
- autogluon/timeseries/trainer/ensemble_composer.py,sha256=Vc8LfhGVUED70Y4DcIs3Jhpiur2EFXqVubgInixcb2I,9751
73
- autogluon/timeseries/trainer/model_set_builder.py,sha256=s6tozfND3lLfst6Vxa_oP_wgCmDapyCJYFmCjkEn-es,10788
74
- autogluon/timeseries/trainer/prediction_cache.py,sha256=Vi6EbMiMheq_smA93U_MoMxYUV85RdPm0dvJFdsM8K4,5551
75
- autogluon/timeseries/trainer/trainer.py,sha256=yAHbpTjGKzVBepzepKuXEF5SvCQXDbsnyURV6mKLqaU,52002
76
- autogluon/timeseries/trainer/utils.py,sha256=_hSAWOYRZsp1qX2J6pJSxLrAAWwhVROc4_cvtfiTRzU,625
77
- autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
78
- autogluon/timeseries/transforms/covariate_scaler.py,sha256=8E5DDRLUQ3SCNDR2Yw8FZDx7DnWVdokKhNNxbp_S-9I,7017
79
- autogluon/timeseries/transforms/target_scaler.py,sha256=tucfrWuXwTGv0WcJMo0bSk6--CkqGMDxiFPiUFl0RB8,6142
80
- autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
81
- autogluon/timeseries/utils/features.py,sha256=GpemZRV7QiFRjZwP6NqpCVBg6m3KGBgp-eWUFzcpx54,22714
82
- autogluon/timeseries/utils/forecast.py,sha256=y3VV1rVCxOuh_p-2U9ftT_I5oU4gQQovxlw14jRGwyM,2259
83
- autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
84
- autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
85
- autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
86
- autogluon/timeseries/utils/datetime/lags.py,sha256=rjJtdBU0M41R1jwfmvCbo045s-6XBjhGVnGBQJ9-U1E,5997
87
- autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
88
- autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
89
- autogluon_timeseries-1.4.1b20251115.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
90
- autogluon_timeseries-1.4.1b20251115.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
91
- autogluon_timeseries-1.4.1b20251115.dist-info/METADATA,sha256=khSF9FnAc_N6jxmq3YTKs5QevW69hTdOBDxJ-kDKTcU,12980
92
- autogluon_timeseries-1.4.1b20251115.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
93
- autogluon_timeseries-1.4.1b20251115.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
94
- autogluon_timeseries-1.4.1b20251115.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
95
- autogluon_timeseries-1.4.1b20251115.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
96
- autogluon_timeseries-1.4.1b20251115.dist-info/RECORD,,