autogluon.timeseries 1.4.1b20251010__py3-none-any.whl → 1.4.1b20251115__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (53) hide show
  1. autogluon/timeseries/dataset/ts_dataframe.py +66 -53
  2. autogluon/timeseries/learner.py +5 -4
  3. autogluon/timeseries/metrics/quantile.py +1 -1
  4. autogluon/timeseries/metrics/utils.py +4 -4
  5. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +28 -36
  6. autogluon/timeseries/models/autogluon_tabular/per_step.py +14 -5
  7. autogluon/timeseries/models/autogluon_tabular/transforms.py +9 -7
  8. autogluon/timeseries/models/chronos/model.py +101 -68
  9. autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +64 -32
  10. autogluon/timeseries/models/ensemble/__init__.py +29 -2
  11. autogluon/timeseries/models/ensemble/abstract.py +1 -37
  12. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  13. autogluon/timeseries/models/ensemble/array_based/abstract.py +247 -0
  14. autogluon/timeseries/models/ensemble/array_based/models.py +50 -0
  15. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +10 -0
  16. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +87 -0
  17. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +133 -0
  18. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +141 -0
  19. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  20. autogluon/timeseries/models/ensemble/weighted/abstract.py +41 -0
  21. autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +0 -10
  22. autogluon/timeseries/models/gluonts/abstract.py +2 -2
  23. autogluon/timeseries/models/gluonts/dataset.py +2 -2
  24. autogluon/timeseries/models/local/abstract_local_model.py +2 -2
  25. autogluon/timeseries/models/multi_window/multi_window_model.py +1 -1
  26. autogluon/timeseries/models/toto/model.py +5 -3
  27. autogluon/timeseries/predictor.py +10 -26
  28. autogluon/timeseries/regressor.py +9 -7
  29. autogluon/timeseries/splitter.py +1 -25
  30. autogluon/timeseries/trainer/ensemble_composer.py +250 -0
  31. autogluon/timeseries/trainer/trainer.py +124 -193
  32. autogluon/timeseries/trainer/utils.py +18 -0
  33. autogluon/timeseries/transforms/covariate_scaler.py +1 -1
  34. autogluon/timeseries/transforms/target_scaler.py +7 -7
  35. autogluon/timeseries/utils/features.py +9 -5
  36. autogluon/timeseries/utils/forecast.py +5 -5
  37. autogluon/timeseries/version.py +1 -1
  38. autogluon.timeseries-1.4.1b20251115-py3.9-nspkg.pth +1 -0
  39. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/METADATA +25 -15
  40. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/RECORD +47 -41
  41. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/WHEEL +1 -1
  42. autogluon/timeseries/evaluator.py +0 -6
  43. autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
  44. autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
  45. autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
  46. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
  47. autogluon.timeseries-1.4.1b20251010-py3.9-nspkg.pth +0 -1
  48. /autogluon/timeseries/models/ensemble/{greedy.py → weighted/greedy.py} +0 -0
  49. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info/licenses}/LICENSE +0 -0
  50. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info/licenses}/NOTICE +0 -0
  51. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/namespace_packages.txt +0 -0
  52. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/top_level.txt +0 -0
  53. {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20251010
3
+ Version: 1.4.1b20251115
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -34,15 +33,15 @@ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
34
  Requires-Python: >=3.9, <3.13
36
35
  Description-Content-Type: text/markdown
37
- License-File: ../LICENSE
38
- License-File: ../NOTICE
36
+ License-File: LICENSE
37
+ License-File: NOTICE
39
38
  Requires-Dist: joblib<1.7,>=1.2
40
39
  Requires-Dist: numpy<2.4.0,>=1.25.0
41
40
  Requires-Dist: scipy<1.17,>=1.5.4
42
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
43
42
  Requires-Dist: torch<2.8,>=2.6
44
43
  Requires-Dist: lightning<2.8,>=2.5.1
45
- Requires-Dist: pytorch-lightning
44
+ Requires-Dist: pytorch_lightning
46
45
  Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
47
46
  Requires-Dist: accelerate<2.0,>=0.34.0
48
47
  Requires-Dist: gluonts<0.17,>=0.15.0
@@ -54,14 +53,12 @@ Requires-Dist: coreforecast<0.0.17,>=0.0.12
54
53
  Requires-Dist: fugue>=0.9.0
55
54
  Requires-Dist: tqdm<5,>=4.38
56
55
  Requires-Dist: orjson~=3.9
56
+ Requires-Dist: chronos-forecasting<3,>=2.0.1
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.4.1b20251010
59
- Requires-Dist: autogluon.common==1.4.1b20251010
60
- Requires-Dist: autogluon.features==1.4.1b20251010
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251010
62
- Provides-Extra: all
63
- Requires-Dist: einops<1,>=0.7; extra == "all"
64
- Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "all"
58
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251115
59
+ Requires-Dist: autogluon.common==1.4.1b20251115
60
+ Requires-Dist: autogluon.features==1.4.1b20251115
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251115
65
62
  Provides-Extra: tests
66
63
  Requires-Dist: pytest; extra == "tests"
67
64
  Requires-Dist: ruff>=0.0.285; extra == "tests"
@@ -70,6 +67,21 @@ Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
70
67
  Provides-Extra: toto
71
68
  Requires-Dist: einops<1,>=0.7; extra == "toto"
72
69
  Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "toto"
70
+ Provides-Extra: all
71
+ Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "all"
72
+ Requires-Dist: einops<1,>=0.7; extra == "all"
73
+ Dynamic: author
74
+ Dynamic: classifier
75
+ Dynamic: description
76
+ Dynamic: description-content-type
77
+ Dynamic: home-page
78
+ Dynamic: license
79
+ Dynamic: license-file
80
+ Dynamic: project-url
81
+ Dynamic: provides-extra
82
+ Dynamic: requires-dist
83
+ Dynamic: requires-python
84
+ Dynamic: summary
73
85
 
74
86
 
75
87
 
@@ -170,5 +182,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
170
182
  ## :classical_building: License
171
183
 
172
184
  This library is licensed under the Apache 2.0 License.
173
-
174
-
@@ -1,21 +1,20 @@
1
- autogluon.timeseries-1.4.1b20251010-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.4.1b20251115-py3.9-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
- autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
- autogluon/timeseries/learner.py,sha256=eQrqFVOmL-2JC85LgCMkbyoLpKS02Dilg1T8RUeS_LI,13887
5
- autogluon/timeseries/predictor.py,sha256=7X4YsWYa3Xk2RI1Irf2O-c3-I82Zqhg-cgj8cj_4AoA,88427
6
- autogluon/timeseries/regressor.py,sha256=lc8Qr3-8v4oxajtCnV3sxpUaW6vxXXJOA6Kr-qVne4k,11926
7
- autogluon/timeseries/splitter.py,sha256=8ACkuCXeUhQGUx4jz_Vv17q814WrHJQeKvq2v4-oE6s,3158
8
- autogluon/timeseries/version.py,sha256=rwunrpvmNTYWW_CWadJ81VZzVDbBmshOQHlXZL5--fw,91
3
+ autogluon/timeseries/learner.py,sha256=XTQgfZs5ZQf_7mWUz-CNnavewrfNy3ENwtGMRJWwwPQ,13889
4
+ autogluon/timeseries/predictor.py,sha256=khISLnhVxTWMhE0WVCcTgm79K4Q9IuC-jHe01A9w1go,87468
5
+ autogluon/timeseries/regressor.py,sha256=X9ItbQ0e3GyLpKqusjMls5uavqw8w53AH0tXfSFmVno,12049
6
+ autogluon/timeseries/splitter.py,sha256=wK335v7cUAVPbo_9Bok1C6TFg0rB9SH3D031m0vn9-A,2342
7
+ autogluon/timeseries/version.py,sha256=yQA67F1xd5YMYwa7GOtTd_seFi8nNJsqLbpgjacYOag,91
9
8
  autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
10
9
  autogluon/timeseries/configs/hyperparameter_presets.py,sha256=GbI2sd3uakWtaeaMyF7B5z_lmyfb6ToK6PZEUZTyG9w,2031
11
10
  autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
12
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=EwxKBScspwKnJTqIk2Icukk8vIrbKYObOMAkNIn4zc8,51760
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=49Itgcrjej-x22HYMCXPGD2gjCTRkyHpY2H83aD9U9k,52384
14
13
  autogluon/timeseries/metrics/__init__.py,sha256=YJPXxsJ0tRDXq7p-sTZSLb0DuXMJH6sT1PgbZ3tMt30,3594
15
14
  autogluon/timeseries/metrics/abstract.py,sha256=6jbluvHXfLc_cuK1Fx0ZYle2sR4WGG6YxFQhkor46Q8,11545
16
15
  autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
17
- autogluon/timeseries/metrics/quantile.py,sha256=x0cq44fXRoMiuI4BVQ7mpWk1YgrK4OwLTlJAhCHQ7Xg,4634
18
- autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
16
+ autogluon/timeseries/metrics/quantile.py,sha256=3XLKn01R2roLPZqcyAcxAIy_O89hdr0b4IKHyzRrXYA,4621
17
+ autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
19
18
  autogluon/timeseries/models/__init__.py,sha256=9NY9mqYaZe_7XB70M6psHARH-Lpkfroj4toUUPO9BmI,1339
20
19
  autogluon/timeseries/models/registry.py,sha256=8n7W04ql0ckNQUzKcAW7bxreLI8wTAUTymACgLklH9M,2158
21
20
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
@@ -23,36 +22,41 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=97HOi7f
23
22
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
23
  autogluon/timeseries/models/abstract/tunable.py,sha256=jA6p-FPZkMva67B-1foqvHK-1rr0IdEfp9RvGW1WS9I,7155
25
24
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=k3a0JqBeuLQfjCtZ8MA7UvS2eqHjwbw0-4kN_StMMUQ,37623
27
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=M5rhj_jjcQz27wPYm6NEBEE0aHgXe0Bl6HFc2NIuLdU,23159
28
- autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
25
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=3p3ukQxWN4WQHKt3ocmIb_5VlZfHwWJikQYUhSbDbtE,36457
26
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=keEW7M4SIsu3hC4EFuxcrj5s7QjF9k_7NBARuMXmYgA,23329
27
+ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XtxvaRsnmVF8strfvzEfWO5a_Q8p_wMyxHyglpO1R1c,2886
29
28
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
30
29
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
31
- autogluon/timeseries/models/chronos/model.py,sha256=-z6Y5Fyo5_X-U8BCeSZBhqQqaJaGBCNIAYDd5y6WaMQ,32614
32
- autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
33
- autogluon/timeseries/models/chronos/pipeline/base.py,sha256=Us-TUpHSN3mM3ut05IVc2a9Q6KYq1n9pTb7JZG7b6kA,5546
34
- autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=bgow5FkHG7y5qWBXcggqXemnistJUfrl0lWFXcGXg5g,20197
35
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=5zM8G6K9id7qrWhRT37z_xoPVE-BJXwms1SwjF0TBG4,23949
36
- autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=WYeCKFP5dxs4u09XTncBI2486VV22O1DiM9a3ZvZ1OE,12790
37
- autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
38
- autogluon/timeseries/models/ensemble/abstract.py,sha256=wvtXNZTwiYpIurPkOYSzsi3XTRRx5guJLMYLmXTdOeQ,5695
39
- autogluon/timeseries/models/ensemble/basic.py,sha256=aSQRYylUpFZVk_Lpv5GY8uYgmE0_ipLy_tx6ELTZyWc,3426
40
- autogluon/timeseries/models/ensemble/greedy.py,sha256=zXJFenn1XxNNvCp4TlmIq1Dx3pUDWjKG1K3HsejmDeY,7323
30
+ autogluon/timeseries/models/chronos/model.py,sha256=N6tjC8gSOLcL5eX29JYcOgfxlRATGI2qtTZucCD83t8,33437
31
+ autogluon/timeseries/models/chronos/utils.py,sha256=6y2wphSVYR1ylscSGdb3NvrTU4ZDgbx56Gluxht_j-k,14465
32
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=9fthsA6ozZoTC7A33O0hGhiHAMzcAgG206-b4PIF9Yc,1070
33
+ autogluon/timeseries/models/ensemble/abstract.py,sha256=ePsz2lzmludxq4x_R1jjYgPvxMc0yqVRqHbU1Fq_pvo,4264
34
+ autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=xCzFHS9YTPsC0LPfhh8mOWzUTYxXGz1RJ15ox0Wgr98,159
35
+ autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=RC0PL4LvU7REF_FdQwqGT9TmeETNjFlHOJSBTeJrER8,10330
36
+ autogluon/timeseries/models/ensemble/array_based/models.py,sha256=yvqWgXZU2iKxSe4J-kbEYHA3Lah8bYUG2-hdMNMlLP4,1640
37
+ autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=Fw5m77f8Z5Y6UrgYFsK7bi1fIgLWdqzvoWZqkfAVmmY,327
38
+ autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=cYsmZcjUg84EROimaBUI3X-EPIT4xGyEEqHfHFbiGYQ,2615
39
+ autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=oJezyB0Kv2GPChF-Ym9IsyRX4N3OYcUx32hejvMVMTI,5061
40
+ autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=2FnOiBDVgaldOnQcPD77mNzXJq7EDb1FGMpwjA3KAlE,4763
41
+ autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
42
+ autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=7vQVBK4TMBpESJ2EwnVklcljxmA2qWPQ9xpSREbtUwg,1543
43
+ autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=Kr8y0dlHRZg_q9AqBc3HIp1a5k_sXjrnQPlVi-63DCE,3066
44
+ autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=zXJFenn1XxNNvCp4TlmIq1Dx3pUDWjKG1K3HsejmDeY,7323
41
45
  autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
42
- autogluon/timeseries/models/gluonts/abstract.py,sha256=fYXV5fQk79LtPtpa4uk8MzCUGZ5J6n47ClEYuYSBDLY,27770
43
- autogluon/timeseries/models/gluonts/dataset.py,sha256=iUVKZyec1efVW2-71AWn-m9cowXYYj5hJM1JWuioscA,5115
46
+ autogluon/timeseries/models/gluonts/abstract.py,sha256=WKuUBy3ZF9VU87gaD9Us3c_xK2G1-XLeh1etVipf8hg,27769
47
+ autogluon/timeseries/models/gluonts/dataset.py,sha256=wfEp5SPuB8bam7iTpX3Tf0FGdXp5vnZtpgC9G4VJ4tw,5111
44
48
  autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
45
49
  autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
46
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=A3sNYMA67UbbEKIIN30BcBdE_NpwaBtcG22O5mVWS6k,11482
50
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=ASIZWBYs_cP0BwdrzHwblaNianPYcK5OqpqpiNxbxA0,11481
47
51
  autogluon/timeseries/models/local/naive.py,sha256=xur3WWhLaS9Iix_p_yfaStbr58nL5K4rV0dReTm3BQQ,7496
48
52
  autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736nHOvhSAgagYMc,4203
49
53
  autogluon/timeseries/models/local/statsforecast.py,sha256=sZ6aEFzAyPNZX3rMULGWFht0Toapjb3EwHe5Rb76ZxA,33318
50
54
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
51
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=Hn-H2jLdeuB0_TxhAdununS8ti-iO-WSl3FOoxzcEJA,12369
55
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=PBnNhDXPJJatRIm9FXg9DXU_0ZkGSs2yvEqfaTwBVxM,12356
52
56
  autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
53
57
  autogluon/timeseries/models/toto/dataloader.py,sha256=A5WHhnAe0J7fPo2KKG43hYLSrtUBGNweuqxMmClu3_A,3598
54
58
  autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=Q8bVUaSlQVE4xFn_v7H0h_NFTxzHiM1V17KFytc50jk,4783
55
- autogluon/timeseries/models/toto/model.py,sha256=eP0SAoUjv9l_ExK4eoPl9ZZHW_MXa-OVLYxhj3f1bl4,8809
59
+ autogluon/timeseries/models/toto/model.py,sha256=3-5nR9qNqBFQLP6rNqBNlF4PBfnJHTcyjvz2GwdWwTg,8948
56
60
  autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
57
61
  autogluon/timeseries/models/toto/_internal/dataset.py,sha256=xuAEOhoQNJGMoCxkLVLrgpdoOJuukAYbrSrnrkwFob0,6103
58
62
  autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=UXiohiySn_Gs8kLheeVcVCO8qoEtYlEfMH1tukAOHsk,18520
@@ -65,26 +69,28 @@ autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=Ghngo08DjHbwb
65
69
  autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=opqyhHIZ6mPdPlrr3gA0qt9FFogIAYNDSq-P7CyQiqE,13728
66
70
  autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=5c-ngj4XHKlaedz1NkgdfQgqD2kUGkMn4mtGH_lTXsE,12410
67
71
  autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
72
+ autogluon/timeseries/trainer/ensemble_composer.py,sha256=Vc8LfhGVUED70Y4DcIs3Jhpiur2EFXqVubgInixcb2I,9751
68
73
  autogluon/timeseries/trainer/model_set_builder.py,sha256=s6tozfND3lLfst6Vxa_oP_wgCmDapyCJYFmCjkEn-es,10788
69
74
  autogluon/timeseries/trainer/prediction_cache.py,sha256=Vi6EbMiMheq_smA93U_MoMxYUV85RdPm0dvJFdsM8K4,5551
70
- autogluon/timeseries/trainer/trainer.py,sha256=LF2X5UNnrU8w5h_i09SphGWvGFvZ6KvPDq89Z3GzZZQ,54959
75
+ autogluon/timeseries/trainer/trainer.py,sha256=yAHbpTjGKzVBepzepKuXEF5SvCQXDbsnyURV6mKLqaU,52002
76
+ autogluon/timeseries/trainer/utils.py,sha256=_hSAWOYRZsp1qX2J6pJSxLrAAWwhVROc4_cvtfiTRzU,625
71
77
  autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
72
- autogluon/timeseries/transforms/covariate_scaler.py,sha256=9lEfDS4wnVZohQNnm9OcAXr3voUl83RCnctKR3O66iU,7030
73
- autogluon/timeseries/transforms/target_scaler.py,sha256=kTQrXAsDHCnYuqfpaVuvefyTgyp_ylDpUIPz7pArjeY,6043
78
+ autogluon/timeseries/transforms/covariate_scaler.py,sha256=8E5DDRLUQ3SCNDR2Yw8FZDx7DnWVdokKhNNxbp_S-9I,7017
79
+ autogluon/timeseries/transforms/target_scaler.py,sha256=tucfrWuXwTGv0WcJMo0bSk6--CkqGMDxiFPiUFl0RB8,6142
74
80
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
- autogluon/timeseries/utils/features.py,sha256=tdL7jZKeySO7dgB09FweR44wPCmfWg8-ZM5uVzeyvYQ,22593
76
- autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
81
+ autogluon/timeseries/utils/features.py,sha256=GpemZRV7QiFRjZwP6NqpCVBg6m3KGBgp-eWUFzcpx54,22714
82
+ autogluon/timeseries/utils/forecast.py,sha256=y3VV1rVCxOuh_p-2U9ftT_I5oU4gQQovxlw14jRGwyM,2259
77
83
  autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
78
84
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
79
85
  autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
80
86
  autogluon/timeseries/utils/datetime/lags.py,sha256=rjJtdBU0M41R1jwfmvCbo045s-6XBjhGVnGBQJ9-U1E,5997
81
87
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
82
88
  autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
83
- autogluon.timeseries-1.4.1b20251010.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
84
- autogluon.timeseries-1.4.1b20251010.dist-info/METADATA,sha256=yyi8EIYAMSn3t0EDlNDQBJyD3I3EnD2I0xLHD_1T4ZA,12702
85
- autogluon.timeseries-1.4.1b20251010.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
86
- autogluon.timeseries-1.4.1b20251010.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
87
- autogluon.timeseries-1.4.1b20251010.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
88
- autogluon.timeseries-1.4.1b20251010.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
89
- autogluon.timeseries-1.4.1b20251010.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
90
- autogluon.timeseries-1.4.1b20251010.dist-info/RECORD,,
89
+ autogluon_timeseries-1.4.1b20251115.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
90
+ autogluon_timeseries-1.4.1b20251115.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
91
+ autogluon_timeseries-1.4.1b20251115.dist-info/METADATA,sha256=khSF9FnAc_N6jxmq3YTKs5QevW69hTdOBDxJ-kDKTcU,12980
92
+ autogluon_timeseries-1.4.1b20251115.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
93
+ autogluon_timeseries-1.4.1b20251115.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
94
+ autogluon_timeseries-1.4.1b20251115.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
95
+ autogluon_timeseries-1.4.1b20251115.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
96
+ autogluon_timeseries-1.4.1b20251115.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.1)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,6 +0,0 @@
1
- class TimeSeriesEvaluator:
2
- def __init__(self, *args, **kwargs):
3
- raise ValueError(
4
- "`TimeSeriesEvaluator` has been deprecated. "
5
- "Please use the metrics defined in `autogluon.timeseries.metrics` instead."
6
- )
@@ -1,10 +0,0 @@
1
- from .base import BaseChronosPipeline, ForecastType
2
- from .chronos import ChronosPipeline
3
- from .chronos_bolt import ChronosBoltPipeline
4
-
5
- __all__ = [
6
- "BaseChronosPipeline",
7
- "ChronosBoltPipeline",
8
- "ChronosPipeline",
9
- "ForecastType",
10
- ]
@@ -1,160 +0,0 @@
1
- # Authors: Lorenzo Stella <stellalo@amazon.com>, Caner Turkmen <atturkm@amazon.com>
2
-
3
- from enum import Enum
4
- from pathlib import Path
5
- from typing import TYPE_CHECKING, Optional, Union
6
-
7
- import torch
8
-
9
- from .utils import left_pad_and_stack_1D
10
-
11
- if TYPE_CHECKING:
12
- from transformers import PreTrainedModel
13
-
14
-
15
- class ForecastType(Enum):
16
- SAMPLES = "samples"
17
- QUANTILES = "quantiles"
18
-
19
-
20
- class PipelineRegistry(type):
21
- REGISTRY: dict[str, "PipelineRegistry"] = {}
22
-
23
- def __new__(cls, name, bases, attrs):
24
- """See, https://github.com/faif/python-patterns."""
25
- new_cls = type.__new__(cls, name, bases, attrs)
26
- if name is not None:
27
- cls.REGISTRY[name] = new_cls
28
- if aliases := attrs.get("_aliases"):
29
- for alias in aliases:
30
- cls.REGISTRY[alias] = new_cls
31
- return new_cls
32
-
33
-
34
- class BaseChronosPipeline(metaclass=PipelineRegistry):
35
- forecast_type: ForecastType
36
- dtypes = {
37
- "bfloat16": torch.bfloat16,
38
- "float32": torch.float32,
39
- "float64": torch.float64,
40
- }
41
-
42
- def __init__(self, inner_model: "PreTrainedModel"):
43
- """
44
- Parameters
45
- ----------
46
- inner_model
47
- A hugging-face transformers PreTrainedModel, e.g., T5ForConditionalGeneration
48
- """
49
- # for easy access to the inner HF-style model
50
- self.inner_model = inner_model
51
-
52
- def _prepare_and_validate_context(self, context: Union[torch.Tensor, list[torch.Tensor]]):
53
- if isinstance(context, list):
54
- context = left_pad_and_stack_1D(context)
55
- assert isinstance(context, torch.Tensor)
56
- if context.ndim == 1:
57
- context = context.unsqueeze(0)
58
- assert context.ndim == 2
59
-
60
- return context
61
-
62
- def predict(
63
- self,
64
- context: Union[torch.Tensor, list[torch.Tensor]],
65
- prediction_length: Optional[int] = None,
66
- **kwargs,
67
- ):
68
- """
69
- Get forecasts for the given time series.
70
-
71
- Parameters
72
- ----------
73
- context
74
- Input series. This is either a 1D tensor, or a list
75
- of 1D tensors, or a 2D tensor whose first dimension
76
- is batch. In the latter case, use left-padding with
77
- ``torch.nan`` to align series of different lengths.
78
- prediction_length
79
- Time steps to predict. Defaults to a model-dependent
80
- value if not given.
81
-
82
- Returns
83
- -------
84
- forecasts
85
- Tensor containing forecasts. The layout and meaning
86
- of the forecasts values depends on ``self.forecast_type``.
87
- """
88
- raise NotImplementedError()
89
-
90
- def predict_quantiles(
91
- self, context: torch.Tensor, prediction_length: int, quantile_levels: list[float], **kwargs
92
- ) -> tuple[torch.Tensor, torch.Tensor]:
93
- """
94
- Get quantile and mean forecasts for given time series. All
95
- predictions are returned on the CPU.
96
-
97
- Parameters
98
- ----------
99
- context
100
- Input series. This is either a 1D tensor, or a list
101
- of 1D tensors, or a 2D tensor whose first dimension
102
- is batch. In the latter case, use left-padding with
103
- ``torch.nan`` to align series of different lengths.
104
- prediction_length
105
- Time steps to predict. Defaults to a model-dependent
106
- value if not given.
107
- quantile_levels
108
- Quantile levels to compute
109
-
110
- Returns
111
- -------
112
- quantiles
113
- Tensor containing quantile forecasts. Shape
114
- (batch_size, prediction_length, num_quantiles)
115
- mean
116
- Tensor containing mean (point) forecasts. Shape
117
- (batch_size, prediction_length)
118
- """
119
- raise NotImplementedError()
120
-
121
- @classmethod
122
- def from_pretrained(
123
- cls,
124
- pretrained_model_name_or_path: Union[str, Path],
125
- *model_args,
126
- force=False,
127
- **kwargs,
128
- ):
129
- """
130
- Load the model, either from a local path or from the HuggingFace Hub.
131
- Supports the same arguments as ``AutoConfig`` and ``AutoModel``
132
- from ``transformers``.
133
-
134
- When a local path is provided, supports both a folder or a .tar.gz archive.
135
- """
136
- from transformers import AutoConfig
137
-
138
- kwargs.setdefault("resume_download", None) # silence huggingface_hub warning
139
- if str(pretrained_model_name_or_path).startswith("s3://"):
140
- from .utils import cache_model_from_s3
141
-
142
- local_model_path = cache_model_from_s3(str(pretrained_model_name_or_path), force=force)
143
- return cls.from_pretrained(local_model_path, *model_args, **kwargs)
144
-
145
- torch_dtype = kwargs.get("torch_dtype", "auto")
146
- if torch_dtype != "auto" and isinstance(torch_dtype, str):
147
- kwargs["torch_dtype"] = cls.dtypes[torch_dtype]
148
-
149
- config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
150
- is_valid_config = hasattr(config, "chronos_pipeline_class") or hasattr(config, "chronos_config")
151
-
152
- if not is_valid_config:
153
- raise ValueError("Not a Chronos config file")
154
-
155
- pipeline_class_name = getattr(config, "chronos_pipeline_class", "ChronosPipeline")
156
- class_: Optional[BaseChronosPipeline] = PipelineRegistry.REGISTRY.get(pipeline_class_name) # type: ignore
157
- if class_ is None:
158
- raise ValueError(f"Trying to load unknown pipeline class: {pipeline_class_name}")
159
-
160
- return class_.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)