autogluon.timeseries 1.4.1b20251010__py3-none-any.whl → 1.4.1b20251115__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/dataset/ts_dataframe.py +66 -53
- autogluon/timeseries/learner.py +5 -4
- autogluon/timeseries/metrics/quantile.py +1 -1
- autogluon/timeseries/metrics/utils.py +4 -4
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +28 -36
- autogluon/timeseries/models/autogluon_tabular/per_step.py +14 -5
- autogluon/timeseries/models/autogluon_tabular/transforms.py +9 -7
- autogluon/timeseries/models/chronos/model.py +101 -68
- autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +64 -32
- autogluon/timeseries/models/ensemble/__init__.py +29 -2
- autogluon/timeseries/models/ensemble/abstract.py +1 -37
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +247 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +50 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +10 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +87 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +133 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +141 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +41 -0
- autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +0 -10
- autogluon/timeseries/models/gluonts/abstract.py +2 -2
- autogluon/timeseries/models/gluonts/dataset.py +2 -2
- autogluon/timeseries/models/local/abstract_local_model.py +2 -2
- autogluon/timeseries/models/multi_window/multi_window_model.py +1 -1
- autogluon/timeseries/models/toto/model.py +5 -3
- autogluon/timeseries/predictor.py +10 -26
- autogluon/timeseries/regressor.py +9 -7
- autogluon/timeseries/splitter.py +1 -25
- autogluon/timeseries/trainer/ensemble_composer.py +250 -0
- autogluon/timeseries/trainer/trainer.py +124 -193
- autogluon/timeseries/trainer/utils.py +18 -0
- autogluon/timeseries/transforms/covariate_scaler.py +1 -1
- autogluon/timeseries/transforms/target_scaler.py +7 -7
- autogluon/timeseries/utils/features.py +9 -5
- autogluon/timeseries/utils/forecast.py +5 -5
- autogluon/timeseries/version.py +1 -1
- autogluon.timeseries-1.4.1b20251115-py3.9-nspkg.pth +1 -0
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/METADATA +25 -15
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/RECORD +47 -41
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/WHEEL +1 -1
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
- autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
- autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
- autogluon.timeseries-1.4.1b20251010-py3.9-nspkg.pth +0 -1
- /autogluon/timeseries/models/ensemble/{greedy.py → weighted/greedy.py} +0 -0
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.1b20251010.dist-info → autogluon_timeseries-1.4.1b20251115.dist-info}/zip-safe +0 -0
|
@@ -7,10 +7,11 @@ from typing import Any, Optional, Union
|
|
|
7
7
|
|
|
8
8
|
import numpy as np
|
|
9
9
|
import pandas as pd
|
|
10
|
+
from typing_extensions import Self
|
|
10
11
|
|
|
11
12
|
from autogluon.common.loaders import load_pkl
|
|
12
13
|
from autogluon.common.space import Space
|
|
13
|
-
from autogluon.timeseries.dataset
|
|
14
|
+
from autogluon.timeseries.dataset import TimeSeriesDataFrame
|
|
14
15
|
from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
|
|
15
16
|
from autogluon.timeseries.utils.warning_filters import disable_duplicate_logs, warning_filter
|
|
16
17
|
|
|
@@ -81,31 +82,40 @@ MODEL_ALIASES = {
|
|
|
81
82
|
|
|
82
83
|
|
|
83
84
|
class ChronosModel(AbstractTimeSeriesModel):
|
|
84
|
-
"""Chronos [Ansari2024]_ pretrained time series forecasting models which can be used for zero-shot
|
|
85
|
-
in a task-specific manner.
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
85
|
+
"""Chronos [Ansari2024]_ pretrained time series forecasting models which can be used for zero-shot
|
|
86
|
+
forecasting or fine-tuned in a task-specific manner.
|
|
87
|
+
|
|
88
|
+
Models can be based on the original
|
|
89
|
+
`Chronos <https://github.com/amazon-science/chronos-forecasting/blob/main/src/chronos/chronos.py>`_
|
|
90
|
+
implementation, as well as a newer family of
|
|
91
|
+
`Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting/blob/main/src/chronos/chronos_bolt.py>`_
|
|
92
|
+
models capable of much faster inference.
|
|
93
|
+
|
|
94
|
+
The original Chronos is a family of pretrained models, based on the T5 family, with number of
|
|
95
|
+
parameters ranging between 8M and 710M. The full collection of Chronos models is available on
|
|
96
|
+
`Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_.
|
|
97
|
+
|
|
98
|
+
For Chronos (original) ``small``, ``base``, and ``large`` variants a GPU is required to
|
|
99
|
+
perform inference efficiently. Chronos takes a minimalistic approach to pretraining time series
|
|
100
|
+
models, by discretizing time series data directly into bins which are treated as tokens,
|
|
101
|
+
effectively performing regression by classification. This results in a simple and flexible
|
|
102
|
+
framework for using any language model in the context of time series forecasting.
|
|
103
|
+
See [Ansari2024]_ for more information.
|
|
104
|
+
|
|
105
|
+
The newer Chronos-Bolt variants enable much faster inference by first "patching" the time series.
|
|
106
|
+
The resulting time series is then fed into a T5 model for forecasting. The Chronos-Bolt variants
|
|
107
|
+
are capable of much faster inference, and can all run on CPUs.
|
|
108
|
+
|
|
109
|
+
Both Chronos and Chronos-Bolt variants can be fine-tuned by setting ``fine_tune=True`` and selecting
|
|
110
|
+
appropriate fine-tuning parameters such as the learning rate (``fine_tune_lr``) and max steps
|
|
111
|
+
(``fine_tune_steps``).
|
|
103
112
|
|
|
104
113
|
References
|
|
105
114
|
----------
|
|
106
115
|
.. [Ansari2024] Ansari, Abdul Fatir, Stella, Lorenzo et al.
|
|
107
116
|
"Chronos: Learning the Language of Time Series."
|
|
108
|
-
|
|
117
|
+
Transactions on Machine Learning Research (2024).
|
|
118
|
+
https://openreview.net/forum?id=gerNCVqqtR
|
|
109
119
|
|
|
110
120
|
|
|
111
121
|
Other Parameters
|
|
@@ -117,36 +127,47 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
117
127
|
``tiny``, ``mini`` , ``small``, ``base``, and ``large``. Chronos-Bolt models can be specified
|
|
118
128
|
with ``bolt_tiny``, ``bolt_mini``, ``bolt_small``, and ``bolt_base``.
|
|
119
129
|
batch_size : int, default = 256
|
|
120
|
-
Size of batches used during inference.
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
130
|
+
Size of batches used during inference.
|
|
131
|
+
|
|
132
|
+
The default ``batch_size`` is selected based on the model type. Chronos (original) models use a
|
|
133
|
+
``batch_size`` of 16, except Chronos (Large) which uses 8.
|
|
134
|
+
|
|
135
|
+
For Chronos-Bolt models the ``batch_size`` is set to 256. However, ``batch_size`` is reduced by
|
|
136
|
+
a factor of 4 when the prediction horizon is greater than the model's
|
|
137
|
+
default prediction length.
|
|
124
138
|
num_samples : int, default = 20
|
|
125
139
|
Number of samples used during inference, only used for the original Chronos models
|
|
126
140
|
device : str, default = None
|
|
127
|
-
Device to use for inference (and fine-tuning, if enabled). If None, model will use the GPU if
|
|
128
|
-
For larger Chronos model sizes ``small``, ``base``, and ``large``; inference will fail
|
|
129
|
-
|
|
130
|
-
|
|
141
|
+
Device to use for inference (and fine-tuning, if enabled). If None, model will use the GPU if
|
|
142
|
+
available. For larger Chronos model sizes ``small``, ``base``, and ``large``; inference will fail
|
|
143
|
+
if no GPU is available.
|
|
144
|
+
|
|
145
|
+
For Chronos-Bolt models, inference can be performed on the CPU. Although fine-tuning the smaller
|
|
146
|
+
Chronos models (``tiny`` and ``mini``) and all Chronos-Bolt is allowed on the CPU, we recommend
|
|
147
|
+
using a GPU for faster fine-tuning.
|
|
131
148
|
context_length : int or None, default = None
|
|
132
|
-
The context length to use in the model.
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
the model
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
149
|
+
The context length to use in the model.
|
|
150
|
+
|
|
151
|
+
Shorter context lengths will decrease model accuracy, but result in faster inference. If None,
|
|
152
|
+
the model will infer context length from the data set length at inference time, but cap it at a
|
|
153
|
+
maximum of 2048.
|
|
154
|
+
|
|
155
|
+
Note that this is only the context length used to pass data into the model. Individual model
|
|
156
|
+
implementations may have different context lengths specified in their configuration, and may
|
|
157
|
+
truncate the context further. For example, original Chronos models have a context length of 512,
|
|
158
|
+
but Chronos-Bolt models handle contexts up to 2048.
|
|
159
|
+
torch_dtype : torch.dtype or {"auto", "bfloat16", "float32"}, default = "auto"
|
|
160
|
+
Torch data type for model weights, provided to ``from_pretrained`` method of Hugging Face
|
|
161
|
+
AutoModels. If original Chronos models are specified and the model size is ``small``, ``base``,
|
|
162
|
+
or ``large``, the ``torch_dtype`` will be set to ``bfloat16`` to enable inference on GPUs.
|
|
142
163
|
data_loader_num_workers : int, default = 0
|
|
143
|
-
Number of worker processes to be used in the data loader. See documentation on
|
|
144
|
-
for more information.
|
|
164
|
+
Number of worker processes to be used in the data loader. See documentation on
|
|
165
|
+
``torch.utils.data.DataLoader`` for more information.
|
|
145
166
|
fine_tune : bool, default = False
|
|
146
167
|
If True, the pretrained model will be fine-tuned
|
|
147
168
|
fine_tune_lr : float, default = 1e-5
|
|
148
|
-
The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for
|
|
149
|
-
Chronos models, we recommend using a higher learning rate such as ``1e-4
|
|
169
|
+
The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for
|
|
170
|
+
the original Chronos models, we recommend using a higher learning rate such as ``1e-4``.
|
|
150
171
|
fine_tune_steps : int, default = 1000
|
|
151
172
|
The number of gradient update steps to fine-tune for
|
|
152
173
|
fine_tune_batch_size : int, default = 32
|
|
@@ -167,8 +188,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
167
188
|
"""
|
|
168
189
|
|
|
169
190
|
ag_priority = 55
|
|
170
|
-
# default number of samples for prediction
|
|
171
|
-
default_num_samples: int = 20
|
|
191
|
+
default_num_samples: int = 20 # default number of samples for prediction
|
|
172
192
|
default_model_path = "autogluon/chronos-bolt-small"
|
|
173
193
|
default_max_time_limit_ratio = 0.8
|
|
174
194
|
maximum_context_length = 2048
|
|
@@ -186,8 +206,8 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
186
206
|
):
|
|
187
207
|
hyperparameters = hyperparameters if hyperparameters is not None else {}
|
|
188
208
|
|
|
189
|
-
model_path_input = hyperparameters.get("model_path", self.default_model_path)
|
|
190
|
-
self.model_path = MODEL_ALIASES.get(model_path_input, model_path_input)
|
|
209
|
+
model_path_input: str = hyperparameters.get("model_path", self.default_model_path)
|
|
210
|
+
self.model_path: str = MODEL_ALIASES.get(model_path_input, model_path_input)
|
|
191
211
|
|
|
192
212
|
name = name if name is not None else "Chronos"
|
|
193
213
|
if not isinstance(model_path_input, Space):
|
|
@@ -217,7 +237,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
217
237
|
return str(path)
|
|
218
238
|
|
|
219
239
|
@classmethod
|
|
220
|
-
def load(cls, path: str, reset_paths: bool = True, verbose: bool = True) ->
|
|
240
|
+
def load(cls, path: str, reset_paths: bool = True, load_oof: bool = False, verbose: bool = True) -> Self:
|
|
221
241
|
model = load_pkl.load(path=os.path.join(path, cls.model_file_name), verbose=verbose)
|
|
222
242
|
if reset_paths:
|
|
223
243
|
model.set_contexts(path)
|
|
@@ -280,7 +300,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
280
300
|
return minimum_resources
|
|
281
301
|
|
|
282
302
|
def load_model_pipeline(self, is_training: bool = False):
|
|
283
|
-
from
|
|
303
|
+
from chronos import BaseChronosPipeline
|
|
284
304
|
|
|
285
305
|
gpu_available = self._is_gpu_available()
|
|
286
306
|
|
|
@@ -293,6 +313,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
293
313
|
|
|
294
314
|
device = self.device or ("cuda" if gpu_available else "cpu")
|
|
295
315
|
|
|
316
|
+
assert self.model_path is not None
|
|
296
317
|
pipeline = BaseChronosPipeline.from_pretrained(
|
|
297
318
|
self.model_path,
|
|
298
319
|
device_map=device,
|
|
@@ -417,19 +438,23 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
417
438
|
self,
|
|
418
439
|
train_data: TimeSeriesDataFrame,
|
|
419
440
|
val_data: Optional[TimeSeriesDataFrame] = None,
|
|
420
|
-
time_limit: Optional[
|
|
441
|
+
time_limit: Optional[float] = None,
|
|
442
|
+
num_cpus: Optional[int] = None,
|
|
443
|
+
num_gpus: Optional[int] = None,
|
|
444
|
+
verbosity: int = 2,
|
|
421
445
|
**kwargs,
|
|
422
446
|
) -> None:
|
|
423
447
|
import transformers
|
|
448
|
+
from chronos import ChronosBoltPipeline, ChronosPipeline
|
|
424
449
|
from packaging import version
|
|
425
450
|
from transformers.trainer import PrinterCallback, Trainer, TrainingArguments
|
|
426
451
|
|
|
427
|
-
from .
|
|
428
|
-
from .pipeline.utils import (
|
|
452
|
+
from .utils import (
|
|
429
453
|
ChronosFineTuningDataset,
|
|
430
454
|
EvaluateAndSaveFinalStepCallback,
|
|
431
455
|
LoggerCallback,
|
|
432
456
|
TimeLimitCallback,
|
|
457
|
+
update_output_quantiles,
|
|
433
458
|
)
|
|
434
459
|
|
|
435
460
|
# TODO: Add support for fine-tuning models with context_length longer than the pretrained model
|
|
@@ -486,7 +511,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
486
511
|
f"Fine-tuning prediction_length has been changed to {fine_tune_prediction_length}."
|
|
487
512
|
)
|
|
488
513
|
if self.quantile_levels != self.model_pipeline.quantiles:
|
|
489
|
-
self.model_pipeline.model
|
|
514
|
+
update_output_quantiles(self.model_pipeline.model, self.quantile_levels)
|
|
490
515
|
logger.info(f"\tChronos-Bolt will be fine-tuned with quantile_levels={self.quantile_levels}")
|
|
491
516
|
else:
|
|
492
517
|
raise ValueError(f"Unsupported model pipeline: {type(self.model_pipeline)}")
|
|
@@ -517,7 +542,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
517
542
|
# transformers changed the argument name from `evaluation_strategy` to `eval_strategy`
|
|
518
543
|
fine_tune_trainer_kwargs["eval_strategy"] = fine_tune_trainer_kwargs.pop("evaluation_strategy")
|
|
519
544
|
|
|
520
|
-
training_args = TrainingArguments(**fine_tune_trainer_kwargs, **pipeline_specific_trainer_kwargs)
|
|
545
|
+
training_args = TrainingArguments(**fine_tune_trainer_kwargs, **pipeline_specific_trainer_kwargs) # type: ignore
|
|
521
546
|
tokenizer_train_dataset = ChronosFineTuningDataset(
|
|
522
547
|
target_df=train_data,
|
|
523
548
|
target_column=self.target,
|
|
@@ -533,6 +558,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
533
558
|
if time_limit is not None:
|
|
534
559
|
callbacks.append(TimeLimitCallback(time_limit=time_limit))
|
|
535
560
|
|
|
561
|
+
tokenizer_val_dataset: Optional[ChronosFineTuningDataset] = None
|
|
536
562
|
if val_data is not None:
|
|
537
563
|
callbacks.append(EvaluateAndSaveFinalStepCallback())
|
|
538
564
|
# evaluate on a randomly-sampled subset
|
|
@@ -548,6 +574,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
548
574
|
)
|
|
549
575
|
val_data = val_data.loc[eval_items]
|
|
550
576
|
|
|
577
|
+
assert isinstance(val_data, TimeSeriesDataFrame)
|
|
551
578
|
tokenizer_val_dataset = ChronosFineTuningDataset(
|
|
552
579
|
target_df=val_data,
|
|
553
580
|
target_column=self.target,
|
|
@@ -561,7 +588,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
561
588
|
model=self.model_pipeline.inner_model,
|
|
562
589
|
args=training_args,
|
|
563
590
|
train_dataset=tokenizer_train_dataset,
|
|
564
|
-
eval_dataset=tokenizer_val_dataset
|
|
591
|
+
eval_dataset=tokenizer_val_dataset,
|
|
565
592
|
callbacks=callbacks,
|
|
566
593
|
)
|
|
567
594
|
|
|
@@ -594,7 +621,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
594
621
|
num_workers: int = 0,
|
|
595
622
|
time_limit: Optional[float] = None,
|
|
596
623
|
):
|
|
597
|
-
from .
|
|
624
|
+
from .utils import ChronosInferenceDataLoader, ChronosInferenceDataset, timeout_callback
|
|
598
625
|
|
|
599
626
|
chronos_dataset = ChronosInferenceDataset(
|
|
600
627
|
target_df=data,
|
|
@@ -623,7 +650,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
623
650
|
known_covariates: Optional[TimeSeriesDataFrame] = None,
|
|
624
651
|
**kwargs,
|
|
625
652
|
) -> TimeSeriesDataFrame:
|
|
626
|
-
from
|
|
653
|
+
from chronos import ChronosBoltPipeline, ChronosPipeline
|
|
627
654
|
|
|
628
655
|
# We defer initialization of the model pipeline. i.e., the model is only loaded to device memory
|
|
629
656
|
# during inference. We also infer the maximum length of the time series in the inference data set
|
|
@@ -635,20 +662,26 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
635
662
|
# (according to its config.json file) of 512, it will further truncate the series during inference.
|
|
636
663
|
context_length = self._get_context_length(data)
|
|
637
664
|
|
|
665
|
+
extra_predict_kwargs = (
|
|
666
|
+
{"num_samples": self.num_samples} if isinstance(self.model_pipeline, ChronosPipeline) else {}
|
|
667
|
+
)
|
|
668
|
+
|
|
669
|
+
# adapt batch size for Chronos bolt if requested prediction length is longer than model prediction length
|
|
670
|
+
batch_size = self.batch_size
|
|
671
|
+
model_prediction_length = None
|
|
672
|
+
if isinstance(self.model_pipeline, ChronosBoltPipeline):
|
|
673
|
+
model_prediction_length = self.model_pipeline.model.config.chronos_config.get("prediction_length")
|
|
674
|
+
if model_prediction_length and self.prediction_length > model_prediction_length:
|
|
675
|
+
batch_size = max(1, batch_size // 4)
|
|
676
|
+
logger.debug(
|
|
677
|
+
f"\tThe prediction_length {self.prediction_length} exceeds model's prediction_length {model_prediction_length}. "
|
|
678
|
+
f"The inference batch_size has been reduced from {self.batch_size} to {batch_size} to avoid OOM errors."
|
|
679
|
+
)
|
|
680
|
+
|
|
638
681
|
with warning_filter(all_warnings=True):
|
|
639
682
|
import torch
|
|
640
683
|
|
|
641
684
|
self.model_pipeline.model.eval()
|
|
642
|
-
batch_size = self.batch_size
|
|
643
|
-
if (
|
|
644
|
-
isinstance(self.model_pipeline, ChronosBoltPipeline)
|
|
645
|
-
and self.prediction_length > self.model_pipeline.model_prediction_length
|
|
646
|
-
):
|
|
647
|
-
batch_size = max(1, batch_size // 4)
|
|
648
|
-
logger.debug(
|
|
649
|
-
f"\tThe prediction_length {self.prediction_length} exceeds model's prediction_length {self.model_pipeline.model_prediction_length}. "
|
|
650
|
-
f"The inference batch_size has been reduced from {self.batch_size} to {batch_size} to avoid OOM errors."
|
|
651
|
-
)
|
|
652
685
|
|
|
653
686
|
inference_data_loader = self._get_inference_data_loader(
|
|
654
687
|
data=data,
|
|
@@ -666,7 +699,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
666
699
|
batch,
|
|
667
700
|
prediction_length=self.prediction_length,
|
|
668
701
|
quantile_levels=self.quantile_levels,
|
|
669
|
-
|
|
702
|
+
**extra_predict_kwargs,
|
|
670
703
|
)
|
|
671
704
|
except torch.OutOfMemoryError as ex:
|
|
672
705
|
logger.error(
|
|
@@ -1,26 +1,23 @@
|
|
|
1
1
|
import logging
|
|
2
|
-
import os
|
|
3
|
-
import re
|
|
4
2
|
import time
|
|
5
3
|
from itertools import chain, cycle
|
|
6
|
-
from pathlib import Path
|
|
7
4
|
from typing import TYPE_CHECKING, Callable, Iterable, Iterator, Literal, Optional
|
|
8
5
|
|
|
9
6
|
import numpy as np
|
|
10
7
|
import torch
|
|
8
|
+
from chronos.chronos_bolt import ChronosBoltModelForForecasting, ResidualBlock
|
|
11
9
|
from gluonts.dataset.field_names import FieldName
|
|
12
10
|
from gluonts.transform import ExpectedNumInstanceSampler, InstanceSplitter, ValidationSplitSampler
|
|
13
11
|
from torch.utils.data import IterableDataset
|
|
14
12
|
from transformers import TrainerCallback
|
|
15
13
|
|
|
16
|
-
from autogluon.common.loaders.load_s3 import download, list_bucket_prefix_suffix_contains_s3
|
|
17
14
|
from autogluon.core.utils.exceptions import TimeLimitExceeded
|
|
18
|
-
from autogluon.timeseries.dataset
|
|
15
|
+
from autogluon.timeseries.dataset import TimeSeriesDataFrame
|
|
19
16
|
from autogluon.timeseries.models.gluonts.dataset import SimpleGluonTSDataset
|
|
20
17
|
|
|
21
18
|
if TYPE_CHECKING:
|
|
22
19
|
# TODO: fix the underlying reason for this circular import, the pipeline should handle tokenization
|
|
23
|
-
from
|
|
20
|
+
from chronos import ChronosTokenizer
|
|
24
21
|
|
|
25
22
|
|
|
26
23
|
logger = logging.getLogger("autogluon.timeseries.models.chronos")
|
|
@@ -132,11 +129,11 @@ class ChronosFineTuningDataset(IterableDataset):
|
|
|
132
129
|
def _create_training_data(self, data: Iterable[dict]):
|
|
133
130
|
data = chain.from_iterable(cycle([data]))
|
|
134
131
|
split_transform = self._create_instance_splitter("training")
|
|
135
|
-
data = split_transform.apply(data, is_train=True)
|
|
132
|
+
data = split_transform.apply(data, is_train=True) # type: ignore
|
|
136
133
|
return data
|
|
137
134
|
|
|
138
135
|
def _create_validation_data(self, data: Iterable[dict]):
|
|
139
|
-
data = self._create_instance_splitter("validation").apply(data, is_train=False)
|
|
136
|
+
data = self._create_instance_splitter("validation").apply(data, is_train=False) # type: ignore
|
|
140
137
|
return data
|
|
141
138
|
|
|
142
139
|
def to_chronos_format(self, entry: dict) -> dict:
|
|
@@ -190,6 +187,8 @@ class ChronosFineTuningDataset(IterableDataset):
|
|
|
190
187
|
iterable = self._create_training_data(self.gluonts_dataset)
|
|
191
188
|
elif self.mode == "validation":
|
|
192
189
|
iterable = self._create_validation_data(self.gluonts_dataset)
|
|
190
|
+
else:
|
|
191
|
+
raise ValueError(f"Unknown mode {self.mode}")
|
|
193
192
|
|
|
194
193
|
format_transform_fn = self.to_chronos_format if self.tokenizer is not None else self.to_chronos_bolt_format
|
|
195
194
|
for entry in iterable:
|
|
@@ -220,27 +219,6 @@ def left_pad_and_stack_1D(tensors: list[torch.Tensor]) -> torch.Tensor:
|
|
|
220
219
|
return torch.stack(padded)
|
|
221
220
|
|
|
222
221
|
|
|
223
|
-
def cache_model_from_s3(s3_uri: str, force=False):
|
|
224
|
-
if re.match("^s3://([^/]+)/(.*?([^/]+)/?)$", s3_uri) is None:
|
|
225
|
-
raise ValueError(f"Not a valid S3 URI: {s3_uri}")
|
|
226
|
-
|
|
227
|
-
# we expect the prefix to point to a "directory" on S3
|
|
228
|
-
if not s3_uri.endswith("/"):
|
|
229
|
-
s3_uri += "/"
|
|
230
|
-
|
|
231
|
-
cache_home = Path(os.environ.get("XDG_CACHE_HOME") or Path.home() / ".cache")
|
|
232
|
-
bucket, prefix = s3_uri.replace("s3://", "").split("/", 1)
|
|
233
|
-
bucket_cache_path = cache_home / "autogluon" / "timeseries" / bucket
|
|
234
|
-
|
|
235
|
-
for obj_path in list_bucket_prefix_suffix_contains_s3(bucket=bucket, prefix=prefix):
|
|
236
|
-
destination_path = bucket_cache_path / obj_path
|
|
237
|
-
if not force and destination_path.exists():
|
|
238
|
-
continue
|
|
239
|
-
download(bucket, obj_path, local_path=str(destination_path))
|
|
240
|
-
|
|
241
|
-
return str(bucket_cache_path / prefix)
|
|
242
|
-
|
|
243
|
-
|
|
244
222
|
class ChronosInferenceDataset:
|
|
245
223
|
"""A container for time series datasets that implements the ``torch.utils.data.Dataset`` interface"""
|
|
246
224
|
|
|
@@ -280,7 +258,7 @@ class ChronosInferenceDataLoader(torch.utils.data.DataLoader):
|
|
|
280
258
|
self.callback: Callable = kwargs.pop("on_batch", lambda: None)
|
|
281
259
|
super().__init__(*args, **kwargs)
|
|
282
260
|
|
|
283
|
-
def __iter__(self):
|
|
261
|
+
def __iter__(self): # type: ignore
|
|
284
262
|
for item in super().__iter__():
|
|
285
263
|
yield item
|
|
286
264
|
self.callback()
|
|
@@ -297,7 +275,7 @@ class EvaluateAndSaveFinalStepCallback(TrainerCallback):
|
|
|
297
275
|
|
|
298
276
|
|
|
299
277
|
class TimeLimitCallback(TrainerCallback):
|
|
300
|
-
def __init__(self, time_limit:
|
|
278
|
+
def __init__(self, time_limit: float):
|
|
301
279
|
"""
|
|
302
280
|
Callback to stop training once a specified time has elapsed.
|
|
303
281
|
|
|
@@ -321,7 +299,8 @@ class TimeLimitCallback(TrainerCallback):
|
|
|
321
299
|
|
|
322
300
|
class LoggerCallback(TrainerCallback):
|
|
323
301
|
def on_log(self, args, state, control, logs=None, **kwargs):
|
|
324
|
-
logs
|
|
302
|
+
if logs:
|
|
303
|
+
logs.pop("total_flos", None)
|
|
325
304
|
if state.is_local_process_zero:
|
|
326
305
|
logger.info(logs)
|
|
327
306
|
|
|
@@ -335,3 +314,56 @@ def timeout_callback(seconds: Optional[float]) -> Callable:
|
|
|
335
314
|
raise TimeLimitExceeded
|
|
336
315
|
|
|
337
316
|
return callback
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def update_output_quantiles(model: ChronosBoltModelForForecasting, new_quantiles: list[float]) -> None:
|
|
320
|
+
"""In-place updates model's output layer to support only the specified new quantiles by copying
|
|
321
|
+
weights from closest existing quantiles.
|
|
322
|
+
"""
|
|
323
|
+
old_quantiles = model.chronos_config.quantiles
|
|
324
|
+
new_quantiles = sorted(new_quantiles)
|
|
325
|
+
|
|
326
|
+
if new_quantiles == old_quantiles:
|
|
327
|
+
return
|
|
328
|
+
|
|
329
|
+
model.chronos_config.quantiles = new_quantiles
|
|
330
|
+
model.num_quantiles = len(new_quantiles)
|
|
331
|
+
model.register_buffer("quantiles", torch.tensor(new_quantiles, dtype=model.dtype), persistent=False)
|
|
332
|
+
|
|
333
|
+
old_output_layer = model.output_patch_embedding
|
|
334
|
+
new_output_layer = ResidualBlock(
|
|
335
|
+
in_dim=model.config.d_model,
|
|
336
|
+
h_dim=model.config.d_ff,
|
|
337
|
+
out_dim=len(new_quantiles) * model.chronos_config.prediction_length,
|
|
338
|
+
act_fn_name=model.config.dense_act_fn,
|
|
339
|
+
dropout_p=model.config.dropout_rate,
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
# hidden_layer is shared across all quantiles
|
|
343
|
+
new_output_layer.hidden_layer.weight.data.copy_(old_output_layer.hidden_layer.weight.data)
|
|
344
|
+
if old_output_layer.hidden_layer.bias is not None:
|
|
345
|
+
new_output_layer.hidden_layer.bias.data.copy_(old_output_layer.hidden_layer.bias.data)
|
|
346
|
+
|
|
347
|
+
def copy_quantile_weights(src_idx: int, dst_idx: int):
|
|
348
|
+
"""Copy weights for one quantile from src_idx to dst_idx"""
|
|
349
|
+
prediction_length = model.chronos_config.prediction_length
|
|
350
|
+
src_start, src_end = src_idx * prediction_length, (src_idx + 1) * prediction_length
|
|
351
|
+
dst_start, dst_end = dst_idx * prediction_length, (dst_idx + 1) * prediction_length
|
|
352
|
+
|
|
353
|
+
for layer_name in ["output_layer", "residual_layer"]:
|
|
354
|
+
old_layer_attr = getattr(old_output_layer, layer_name)
|
|
355
|
+
new_layer_attr = getattr(new_output_layer, layer_name)
|
|
356
|
+
|
|
357
|
+
new_layer_attr.weight[dst_start:dst_end] = old_layer_attr.weight[src_start:src_end]
|
|
358
|
+
if old_layer_attr.bias is not None:
|
|
359
|
+
new_layer_attr.bias[dst_start:dst_end] = old_layer_attr.bias[src_start:src_end]
|
|
360
|
+
|
|
361
|
+
with torch.no_grad():
|
|
362
|
+
for new_idx, new_q in enumerate(new_quantiles):
|
|
363
|
+
closest_q = min(old_quantiles, key=lambda x: abs(x - new_q))
|
|
364
|
+
closest_idx = old_quantiles.index(closest_q)
|
|
365
|
+
copy_quantile_weights(closest_idx, new_idx)
|
|
366
|
+
|
|
367
|
+
model.output_patch_embedding = new_output_layer
|
|
368
|
+
model.config.chronos_config["quantiles"] = new_quantiles
|
|
369
|
+
model.chronos_config.quantiles = new_quantiles
|
|
@@ -1,3 +1,30 @@
|
|
|
1
1
|
from .abstract import AbstractTimeSeriesEnsembleModel
|
|
2
|
-
from .
|
|
3
|
-
from .
|
|
2
|
+
from .array_based import MedianEnsemble, PerQuantileTabularEnsemble, TabularEnsemble
|
|
3
|
+
from .weighted import GreedyEnsemble, PerformanceWeightedEnsemble, SimpleAverageEnsemble
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def get_ensemble_class(name: str):
|
|
7
|
+
mapping = {
|
|
8
|
+
"GreedyEnsemble": GreedyEnsemble,
|
|
9
|
+
"PerformanceWeightedEnsemble": PerformanceWeightedEnsemble,
|
|
10
|
+
"SimpleAverageEnsemble": SimpleAverageEnsemble,
|
|
11
|
+
"WeightedEnsemble": GreedyEnsemble, # old alias for this model
|
|
12
|
+
"MedianEnsemble": MedianEnsemble,
|
|
13
|
+
"TabularEnsemble": TabularEnsemble,
|
|
14
|
+
"PerQuantileTabularEnsemble": PerQuantileTabularEnsemble,
|
|
15
|
+
}
|
|
16
|
+
if name not in mapping:
|
|
17
|
+
raise ValueError(f"Unknown ensemble type: {name}. Available: {list(mapping.keys())}")
|
|
18
|
+
return mapping[name]
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
__all__ = [
|
|
22
|
+
"AbstractTimeSeriesEnsembleModel",
|
|
23
|
+
"GreedyEnsemble",
|
|
24
|
+
"MedianEnsemble",
|
|
25
|
+
"PerformanceWeightedEnsemble",
|
|
26
|
+
"PerQuantileTabularEnsemble",
|
|
27
|
+
"SimpleAverageEnsemble",
|
|
28
|
+
"TabularEnsemble",
|
|
29
|
+
"get_ensemble_class",
|
|
30
|
+
]
|
|
@@ -1,9 +1,7 @@
|
|
|
1
|
-
import functools
|
|
2
1
|
import logging
|
|
3
2
|
from abc import ABC, abstractmethod
|
|
4
3
|
from typing import Optional
|
|
5
4
|
|
|
6
|
-
import numpy as np
|
|
7
5
|
from typing_extensions import final
|
|
8
6
|
|
|
9
7
|
from autogluon.core.utils.exceptions import TimeLimitExceeded
|
|
@@ -71,7 +69,7 @@ class AbstractTimeSeriesEnsembleModel(TimeSeriesModelBase, ABC):
|
|
|
71
69
|
data_per_window: list[TimeSeriesDataFrame],
|
|
72
70
|
model_scores: Optional[dict[str, float]] = None,
|
|
73
71
|
time_limit: Optional[float] = None,
|
|
74
|
-
):
|
|
72
|
+
) -> None:
|
|
75
73
|
"""Private method for `fit`. See `fit` for documentation of arguments. Apart from the model
|
|
76
74
|
training logic, `fit` additionally implements other logic such as keeping track of the time limit.
|
|
77
75
|
"""
|
|
@@ -103,37 +101,3 @@ class AbstractTimeSeriesEnsembleModel(TimeSeriesModelBase, ABC):
|
|
|
103
101
|
This method should be called after performing refit_full to point to the refitted base models, if necessary.
|
|
104
102
|
"""
|
|
105
103
|
pass
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
class AbstractWeightedTimeSeriesEnsembleModel(AbstractTimeSeriesEnsembleModel, ABC):
|
|
109
|
-
"""Abstract class for weighted ensembles which assign one (global) weight per model."""
|
|
110
|
-
|
|
111
|
-
def __init__(self, name: Optional[str] = None, **kwargs):
|
|
112
|
-
if name is None:
|
|
113
|
-
name = "WeightedEnsemble"
|
|
114
|
-
super().__init__(name=name, **kwargs)
|
|
115
|
-
self.model_to_weight: dict[str, float] = {}
|
|
116
|
-
|
|
117
|
-
@property
|
|
118
|
-
def model_names(self) -> list[str]:
|
|
119
|
-
return list(self.model_to_weight.keys())
|
|
120
|
-
|
|
121
|
-
@property
|
|
122
|
-
def model_weights(self) -> np.ndarray:
|
|
123
|
-
return np.array(list(self.model_to_weight.values()), dtype=np.float64)
|
|
124
|
-
|
|
125
|
-
def _predict(self, data: dict[str, TimeSeriesDataFrame], **kwargs) -> TimeSeriesDataFrame:
|
|
126
|
-
weighted_predictions = [data[model_name] * weight for model_name, weight in self.model_to_weight.items()]
|
|
127
|
-
return functools.reduce(lambda x, y: x + y, weighted_predictions)
|
|
128
|
-
|
|
129
|
-
def get_info(self) -> dict:
|
|
130
|
-
info = super().get_info()
|
|
131
|
-
info["model_weights"] = self.model_to_weight.copy()
|
|
132
|
-
return info
|
|
133
|
-
|
|
134
|
-
def remap_base_models(self, model_refit_map: dict[str, str]) -> None:
|
|
135
|
-
updated_weights = {}
|
|
136
|
-
for model, weight in self.model_to_weight.items():
|
|
137
|
-
model_full_name = model_refit_map.get(model, model)
|
|
138
|
-
updated_weights[model_full_name] = weight
|
|
139
|
-
self.model_to_weight = updated_weights
|