autogluon.timeseries 1.4.1b20250907__py3-none-any.whl → 1.5.1b20260122__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (95) hide show
  1. autogluon/timeseries/configs/hyperparameter_presets.py +13 -28
  2. autogluon/timeseries/configs/predictor_presets.py +23 -39
  3. autogluon/timeseries/dataset/ts_dataframe.py +97 -86
  4. autogluon/timeseries/learner.py +70 -35
  5. autogluon/timeseries/metrics/__init__.py +4 -4
  6. autogluon/timeseries/metrics/abstract.py +8 -8
  7. autogluon/timeseries/metrics/point.py +9 -9
  8. autogluon/timeseries/metrics/quantile.py +5 -5
  9. autogluon/timeseries/metrics/utils.py +4 -4
  10. autogluon/timeseries/models/__init__.py +4 -1
  11. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -50
  12. autogluon/timeseries/models/abstract/model_trial.py +2 -1
  13. autogluon/timeseries/models/abstract/tunable.py +8 -8
  14. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +58 -62
  15. autogluon/timeseries/models/autogluon_tabular/per_step.py +27 -16
  16. autogluon/timeseries/models/autogluon_tabular/transforms.py +11 -9
  17. autogluon/timeseries/models/chronos/__init__.py +2 -1
  18. autogluon/timeseries/models/chronos/chronos2.py +395 -0
  19. autogluon/timeseries/models/chronos/model.py +127 -89
  20. autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +69 -37
  21. autogluon/timeseries/models/ensemble/__init__.py +36 -2
  22. autogluon/timeseries/models/ensemble/abstract.py +14 -46
  23. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  24. autogluon/timeseries/models/ensemble/array_based/abstract.py +240 -0
  25. autogluon/timeseries/models/ensemble/array_based/models.py +185 -0
  26. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
  27. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
  28. autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
  29. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
  30. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
  31. autogluon/timeseries/models/ensemble/{greedy.py → ensemble_selection.py} +41 -61
  32. autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
  33. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  34. autogluon/timeseries/models/ensemble/weighted/abstract.py +45 -0
  35. autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +25 -22
  36. autogluon/timeseries/models/ensemble/weighted/greedy.py +64 -0
  37. autogluon/timeseries/models/gluonts/abstract.py +32 -31
  38. autogluon/timeseries/models/gluonts/dataset.py +11 -11
  39. autogluon/timeseries/models/gluonts/models.py +0 -7
  40. autogluon/timeseries/models/local/__init__.py +0 -7
  41. autogluon/timeseries/models/local/abstract_local_model.py +15 -18
  42. autogluon/timeseries/models/local/naive.py +2 -2
  43. autogluon/timeseries/models/local/npts.py +7 -1
  44. autogluon/timeseries/models/local/statsforecast.py +13 -13
  45. autogluon/timeseries/models/multi_window/multi_window_model.py +39 -24
  46. autogluon/timeseries/models/registry.py +3 -4
  47. autogluon/timeseries/models/toto/__init__.py +3 -0
  48. autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
  49. autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
  50. autogluon/timeseries/models/toto/_internal/backbone/attention.py +196 -0
  51. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
  52. autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
  53. autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
  54. autogluon/timeseries/models/toto/_internal/backbone/rope.py +89 -0
  55. autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
  56. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +305 -0
  57. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
  58. autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
  59. autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
  60. autogluon/timeseries/models/toto/dataloader.py +108 -0
  61. autogluon/timeseries/models/toto/hf_pretrained_model.py +200 -0
  62. autogluon/timeseries/models/toto/model.py +249 -0
  63. autogluon/timeseries/predictor.py +541 -162
  64. autogluon/timeseries/regressor.py +27 -30
  65. autogluon/timeseries/splitter.py +3 -27
  66. autogluon/timeseries/trainer/ensemble_composer.py +444 -0
  67. autogluon/timeseries/trainer/model_set_builder.py +9 -9
  68. autogluon/timeseries/trainer/prediction_cache.py +16 -16
  69. autogluon/timeseries/trainer/trainer.py +300 -279
  70. autogluon/timeseries/trainer/utils.py +17 -0
  71. autogluon/timeseries/transforms/covariate_scaler.py +8 -8
  72. autogluon/timeseries/transforms/target_scaler.py +15 -15
  73. autogluon/timeseries/utils/constants.py +10 -0
  74. autogluon/timeseries/utils/datetime/lags.py +1 -3
  75. autogluon/timeseries/utils/datetime/seasonality.py +1 -3
  76. autogluon/timeseries/utils/features.py +31 -14
  77. autogluon/timeseries/utils/forecast.py +6 -7
  78. autogluon/timeseries/utils/timer.py +173 -0
  79. autogluon/timeseries/version.py +1 -1
  80. autogluon.timeseries-1.5.1b20260122-py3.11-nspkg.pth +1 -0
  81. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/METADATA +39 -22
  82. autogluon_timeseries-1.5.1b20260122.dist-info/RECORD +103 -0
  83. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/WHEEL +1 -1
  84. autogluon/timeseries/evaluator.py +0 -6
  85. autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
  86. autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
  87. autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
  88. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
  89. autogluon.timeseries-1.4.1b20250907-py3.9-nspkg.pth +0 -1
  90. autogluon.timeseries-1.4.1b20250907.dist-info/RECORD +0 -75
  91. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info/licenses}/LICENSE +0 -0
  92. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info/licenses}/NOTICE +0 -0
  93. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/namespace_packages.txt +0 -0
  94. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/top_level.txt +0 -0
  95. {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20250907
3
+ Version: 1.5.1b20260122
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -24,26 +23,25 @@ Classifier: Operating System :: Microsoft :: Windows
24
23
  Classifier: Operating System :: POSIX
25
24
  Classifier: Operating System :: Unix
26
25
  Classifier: Programming Language :: Python :: 3
27
- Classifier: Programming Language :: Python :: 3.9
28
26
  Classifier: Programming Language :: Python :: 3.10
29
27
  Classifier: Programming Language :: Python :: 3.11
30
28
  Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
31
30
  Classifier: Topic :: Software Development
32
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
- Requires-Python: >=3.9, <3.13
34
+ Requires-Python: >=3.10, <3.14
36
35
  Description-Content-Type: text/markdown
37
- License-File: ../LICENSE
38
- License-File: ../NOTICE
36
+ License-File: LICENSE
37
+ License-File: NOTICE
39
38
  Requires-Dist: joblib<1.7,>=1.2
40
39
  Requires-Dist: numpy<2.4.0,>=1.25.0
41
40
  Requires-Dist: scipy<1.17,>=1.5.4
42
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
43
- Requires-Dist: torch<2.8,>=2.6
44
- Requires-Dist: lightning<2.8,>=2.5.1
45
- Requires-Dist: pytorch-lightning
46
- Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
42
+ Requires-Dist: torch<2.10,>=2.6
43
+ Requires-Dist: lightning<2.6,>=2.5.1
44
+ Requires-Dist: transformers[sentencepiece]<4.58,>=4.51.0
47
45
  Requires-Dist: accelerate<2.0,>=0.34.0
48
46
  Requires-Dist: gluonts<0.17,>=0.15.0
49
47
  Requires-Dist: networkx<4,>=3.0
@@ -54,17 +52,35 @@ Requires-Dist: coreforecast<0.0.17,>=0.0.12
54
52
  Requires-Dist: fugue>=0.9.0
55
53
  Requires-Dist: tqdm<5,>=4.38
56
54
  Requires-Dist: orjson~=3.9
55
+ Requires-Dist: einops<1,>=0.7
56
+ Requires-Dist: chronos-forecasting<2.4,>=2.2.2
57
+ Requires-Dist: peft<0.18,>=0.13.0
57
58
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.4.1b20250907
59
- Requires-Dist: autogluon.common==1.4.1b20250907
60
- Requires-Dist: autogluon.features==1.4.1b20250907
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250907
62
- Provides-Extra: all
59
+ Requires-Dist: autogluon.core==1.5.1b20260122
60
+ Requires-Dist: autogluon.common==1.5.1b20260122
61
+ Requires-Dist: autogluon.features==1.5.1b20260122
62
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.5.1b20260122
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
65
65
  Requires-Dist: ruff>=0.0.285; extra == "tests"
66
66
  Requires-Dist: flaky<4,>=3.7; extra == "tests"
67
67
  Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
68
+ Provides-Extra: ray
69
+ Requires-Dist: autogluon.core[raytune]==1.5.1b20260122; extra == "ray"
70
+ Provides-Extra: all
71
+ Requires-Dist: autogluon.core[raytune]==1.5.1b20260122; extra == "all"
72
+ Dynamic: author
73
+ Dynamic: classifier
74
+ Dynamic: description
75
+ Dynamic: description-content-type
76
+ Dynamic: home-page
77
+ Dynamic: license
78
+ Dynamic: license-file
79
+ Dynamic: project-url
80
+ Dynamic: provides-extra
81
+ Dynamic: requires-dist
82
+ Dynamic: requires-python
83
+ Dynamic: summary
68
84
 
69
85
 
70
86
 
@@ -75,7 +91,7 @@ Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
75
91
 
76
92
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
77
93
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
78
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
94
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
79
95
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
80
96
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
81
97
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -92,7 +108,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
92
108
 
93
109
  ## 💾 Installation
94
110
 
95
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
111
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
96
112
 
97
113
  You can install AutoGluon with:
98
114
 
@@ -115,8 +131,8 @@ predictions = predictor.predict("test.csv")
115
131
  | AutoGluon Task | Quickstart | API |
116
132
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
117
133
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
118
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
119
134
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
135
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
120
136
 
121
137
  ## :mag: Resources
122
138
 
@@ -139,7 +155,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
139
155
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
140
156
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
141
157
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
142
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
158
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
159
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
160
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
161
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
143
162
 
144
163
  ### Articles
145
164
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -165,5 +184,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
165
184
  ## :classical_building: License
166
185
 
167
186
  This library is licensed under the Apache 2.0 License.
168
-
169
-
@@ -0,0 +1,103 @@
1
+ autogluon.timeseries-1.5.1b20260122-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
+ autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
+ autogluon/timeseries/learner.py,sha256=9kGn0ACGfbyZRlZmwkrgBbkwq7c2715yKDCh1EK3EWQ,14961
4
+ autogluon/timeseries/predictor.py,sha256=egBu6YKVe8GRrLJ1khOKflzSu-VDSH5_mCCQuaXQNRY,106686
5
+ autogluon/timeseries/regressor.py,sha256=HDdqi7MYRheW3uZy5c50sqVDAHap0ooyQBdOvKEKkWM,11718
6
+ autogluon/timeseries/splitter.py,sha256=2rypDxDKkqOC2v5nPJ6m0cmHQTZ9D6qUFrQV1HC9lz4,2329
7
+ autogluon/timeseries/version.py,sha256=MnD7Xa8VoA14eqZRxJp2qccaD7BlVLoiG_OaIqHKK5E,91
8
+ autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
9
+ autogluon/timeseries/configs/hyperparameter_presets.py,sha256=F38QMemh3LR4cT60xMZctI6O1XTOgNpVSleGOKMfhQQ,1586
10
+ autogluon/timeseries/configs/predictor_presets.py,sha256=2CkUXIFtup5w5sQkIhoU5G84b9jiNfcUC0yEug3izGY,2327
11
+ autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=IOIkwV_VPV3JvilNt98gZ77gMHIpk-Ug-trDvqSk_Jg,52228
13
+ autogluon/timeseries/metrics/__init__.py,sha256=iFGLMOtDJ470dbmmx1BsdUKBx4RwI6ZQGFat3Z-wpzI,3567
14
+ autogluon/timeseries/metrics/abstract.py,sha256=_A0Ex1Ay91TPDStZ8DBiBMkIyLUusdARbuDiylHJ0yQ,11499
15
+ autogluon/timeseries/metrics/point.py,sha256=K1Fn0_-Ycxz1hYHd-u1X7q9X-Jt7Dp9bNvUHV6RRg7A,18274
16
+ autogluon/timeseries/metrics/quantile.py,sha256=f8SMVt9rV0sY9lk8B1Bjxx219IjajuJjhOSD95p_z24,4602
17
+ autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
18
+ autogluon/timeseries/models/__init__.py,sha256=zPdwxiveOTGU9658tDPMFXbflZ5fzd_AJdbCacbfZ0s,1375
19
+ autogluon/timeseries/models/registry.py,sha256=dkuyKG5UK2xiGtXcsuyRDXrI-YC84zkPre8Z3wt9T_A,2115
20
+ autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
21
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=80ShlklwAnGoMEKjMDjgoVrkGG6x2Eg3nOwbjJVMCqk,31909
22
+ autogluon/timeseries/models/abstract/model_trial.py,sha256=xKD6Nw8hIqAq4HxNVcGUhr9BuEqzFn7FX0TenvZHU0Q,3753
23
+ autogluon/timeseries/models/abstract/tunable.py,sha256=thl_wJjB9ao1T5NNF1RVH5k3yFqmao0irX-eUNqDs8k,7111
24
+ autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
25
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=FJlYqMZJaltTlh54LMrDOgICgGanIymBI2F4OevVQ6A,36690
26
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=q2V8dSyHns7gkcDwAIpczFse3vHHyYSm4LjJ4KICsWo,23360
27
+ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=AkXEInK4GocApU5GylECH01qgz5cLLLqC9apuN0eUbQ,2873
28
+ autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
+ autogluon/timeseries/models/chronos/__init__.py,sha256=dIoAImmZc0dTlut4CZkJxcg1bpuHKZkS8x8Y6fBoUAY,113
30
+ autogluon/timeseries/models/chronos/chronos2.py,sha256=N8TW1EaYwqPqeRbntlkhz9L7uADBna0LDZPMYWH4w3c,16800
31
+ autogluon/timeseries/models/chronos/model.py,sha256=npTcHR6nSi7lfCzZfVl_9G6iHJwIMRm3wfqjOAnBcIQ,33681
32
+ autogluon/timeseries/models/chronos/utils.py,sha256=33_kycc7AVasS3c7-AuVFtqBTZzV_yszr-MpKe28S3M,14449
33
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=3_Vn6RHpjouthrEoXs1guKUpUX6JoUgMVCgxPt2pyLw,1302
34
+ autogluon/timeseries/models/ensemble/abstract.py,sha256=gAaspq4f67MTfs7KW6ADVU0KfPeBKySPstCqUeC7JYs,4579
35
+ autogluon/timeseries/models/ensemble/ensemble_selection.py,sha256=hepycVJTtbibzTKq5Sk04L_vUuYlLFItkSybaCc_Jv8,6366
36
+ autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=XaUEUO6fQD7Ck7X0882pvax5e3g55o_g8uMBnSP-c5M,7869
37
+ autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=u4vGTH9gP6oATYKkxnvoiDZvc5rqfnfgrODHxIvHP7U,207
38
+ autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=Oci1XEgFFTle0JF5Z8PhnMjG1iPrhhtunoKUPUPhTLw,10190
39
+ autogluon/timeseries/models/ensemble/array_based/models.py,sha256=UOV3t3QH_j0AGg2y3gJIWZ5rS5tHI39z3yUJlhkEyA0,8603
40
+ autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=OJPZZzowllw7Ks0aXF8Hye1_1Ql8XhRfdtv3e3A_4AE,424
41
+ autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=MSeYWwxH1mL3lrsHbDpzAg61Bovs2Fxkxl3qzj5QrXE,2771
42
+ autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py,sha256=4rUYEXcyyZ8hPITzg1tSDWmHSGfwqrTp5dd-b7MP5Hs,7245
43
+ autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=GIa2CtP3bl7uN3i4t54WPod4JxIhA9nKIyr7tx9B08E,3763
44
+ autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=prH6vSmRu4UBUjIdAHnLF0aH8oxHUA8ciaNP9ou9uyA,4056
45
+ autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
46
+ autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=meGVoSfPOjmEwTKGRTUQJ1N9bZtpewJ217TGqKNye04,1839
47
+ autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=KsFcdmhkjywqSYvx9rdWoFzjLO-czKsOj3CWuC61SS4,3715
48
+ autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=ziyudzlLDPLW_vGuh2U9uZ2YH0h478mRpM3H9q7nf4M,2657
49
+ autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
50
+ autogluon/timeseries/models/gluonts/abstract.py,sha256=qJ60DSkzSI4E1kx5RGeGBehkiMvcAVGSUXYSpZXo8nk,27699
51
+ autogluon/timeseries/models/gluonts/dataset.py,sha256=ApR-r4o0OV4jQ2hYUppJ4yjvWX02JoHod5O4acEKiHw,5074
52
+ autogluon/timeseries/models/gluonts/models.py,sha256=Djb2R_2ZSK-xQ1wvFwWGXxshSQeFD9WsMLdF4yxuGnQ,25232
53
+ autogluon/timeseries/models/local/__init__.py,sha256=TiKY7M6Foy8vtshfZiStEH58_XG62w4oF1TQYAQ1B0s,344
54
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=7pbyE4vhXgoCEcHAhxpxBVCOEG-LSrBptGwjLXd-s8o,11335
55
+ autogluon/timeseries/models/local/naive.py,sha256=w0XuMcgcTvTUEi2iXcd6BGvyHKB-kpqbv9c9iK4pMOA,7490
56
+ autogluon/timeseries/models/local/npts.py,sha256=mKuDsGnaYV8QkIgGR8se-1pXb2JAxzafESt2g_21ENA,4530
57
+ autogluon/timeseries/models/local/statsforecast.py,sha256=h_WpYGAEA761ehhZv6RZXsGC-WVr4BkPh1C8xUbcKuQ,33275
58
+ autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
59
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=bv8_ux-7JXPwhbFXeBN893xQo6echCCMwqH4aEMK250,12937
60
+ autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
61
+ autogluon/timeseries/models/toto/dataloader.py,sha256=wUrK3mcSEhaWmxpv3rAqmp1ZbLnXbEP4F77hAT2-VXg,3566
62
+ autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=E2agvz4jdUFhYEiavLTuBIripbl2KLGgdfr8eZXkqOM,7290
63
+ autogluon/timeseries/models/toto/model.py,sha256=ObMPp_Wn2cccT7osWyIfc15gk-hcWDT38p3r-uSdZmM,9412
64
+ autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
65
+ autogluon/timeseries/models/toto/_internal/dataset.py,sha256=jpKX3LV4FkcGGgUPTzpwdR_7UZEFMfwXIQQZVkQ_I6E,6090
66
+ autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=HhRQwqC6Y_Gr93fT-EpilWFjjxY5zR9GsNPN2JPztN4,18479
67
+ autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
68
+ autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=ez7N8ygH4Q1gU88EuoSeF1675JcoAAxocvyF4i0JuGI,9347
69
+ autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=Vy2AHnbRrc68ax41KPf0IP3RkXA7GtTgzIXr6lSAp-w,10079
70
+ autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
71
+ autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
72
+ autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=UohCHvsOP2Q2g6IXDWXQsYpBZ0JDZ0JjtFq0ZnRCF6g,3389
73
+ autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py,sha256=TsdcUpQUQes4dtrWb6citENGrXK8hE3M8DyZ2kslEyE,11488
74
+ autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=NQno9Ycm2wf4tZJneoOtbbyZ-ez0Z5R37XJng9rPn_4,13694
75
+ autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=K7S-fPZZOl65luFMpPQ3LC2QuNN4SunTLDTxp-bZWUc,12364
76
+ autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
77
+ autogluon/timeseries/trainer/ensemble_composer.py,sha256=zGa8vocPQGsHf-7ti8DsHwjEA176FkCt7up2LwWCK4Y,19465
78
+ autogluon/timeseries/trainer/model_set_builder.py,sha256=kROApbu10_ro-GVYlnx3oTKZj2TcNswWbOFB1QyBCOc,10737
79
+ autogluon/timeseries/trainer/prediction_cache.py,sha256=KKs22UUGrVfQN_81IgzL7Bfc8tjWk3k6YW3uHURaSs0,5496
80
+ autogluon/timeseries/trainer/trainer.py,sha256=vraCZtARPV3gNHlhktmDlbTr8Mn59H-JOIaXAdpTDw8,56057
81
+ autogluon/timeseries/trainer/utils.py,sha256=7N4vRP6GFUlRAahxQ9PqppdIMFqMz3wpZ5u-_onR24M,588
82
+ autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
83
+ autogluon/timeseries/transforms/covariate_scaler.py,sha256=CpTtokiE1uEg_RJa4kEUUuBwXZpPL11OC2fgCkRpGlQ,6986
84
+ autogluon/timeseries/transforms/target_scaler.py,sha256=sAOohPBaStZx_V8aaaQacDbfEqqWRjYUtDLxdhkRKww,6092
85
+ autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
86
+ autogluon/timeseries/utils/constants.py,sha256=qjFWoouIQ5nJfx9Fmm4svN191ultb4XWW4NQSHeiGW4,542
87
+ autogluon/timeseries/utils/features.py,sha256=pI5Nu7Pj4ZrNat7vGjEAqqPO-XJGsdlH2rCUMEJLhC8,23527
88
+ autogluon/timeseries/utils/forecast.py,sha256=-w94i4DZaervXAZ_c1M7I4iLrPnVax8yC6pgv46bEjc,2228
89
+ autogluon/timeseries/utils/timer.py,sha256=qDROHYG_Z8fulMpyZMrRhfQoTneazTzYhur4qjqqydA,5799
90
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
91
+ autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
92
+ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
93
+ autogluon/timeseries/utils/datetime/lags.py,sha256=dijskkPDJXhXbRHGQZPhUFuEom3typKbOeET7cxkHGY,5965
94
+ autogluon/timeseries/utils/datetime/seasonality.py,sha256=-w3bULdkIZKP-JrO1ahHLyNCanLhejocHlasZShuwA0,802
95
+ autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
96
+ autogluon_timeseries-1.5.1b20260122.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
97
+ autogluon_timeseries-1.5.1b20260122.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
98
+ autogluon_timeseries-1.5.1b20260122.dist-info/METADATA,sha256=8qZ5DKjeik_GWTCy8Ayk2m-H1lKa3z142aGAHhYGy6A,13425
99
+ autogluon_timeseries-1.5.1b20260122.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
+ autogluon_timeseries-1.5.1b20260122.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
101
+ autogluon_timeseries-1.5.1b20260122.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
102
+ autogluon_timeseries-1.5.1b20260122.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
103
+ autogluon_timeseries-1.5.1b20260122.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.1)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,6 +0,0 @@
1
- class TimeSeriesEvaluator:
2
- def __init__(self, *args, **kwargs):
3
- raise ValueError(
4
- "`TimeSeriesEvaluator` has been deprecated. "
5
- "Please use the metrics defined in `autogluon.timeseries.metrics` instead."
6
- )
@@ -1,10 +0,0 @@
1
- from .base import BaseChronosPipeline, ForecastType
2
- from .chronos import ChronosPipeline
3
- from .chronos_bolt import ChronosBoltPipeline
4
-
5
- __all__ = [
6
- "BaseChronosPipeline",
7
- "ChronosBoltPipeline",
8
- "ChronosPipeline",
9
- "ForecastType",
10
- ]
@@ -1,160 +0,0 @@
1
- # Authors: Lorenzo Stella <stellalo@amazon.com>, Caner Turkmen <atturkm@amazon.com>
2
-
3
- from enum import Enum
4
- from pathlib import Path
5
- from typing import TYPE_CHECKING, Optional, Union
6
-
7
- import torch
8
-
9
- from .utils import left_pad_and_stack_1D
10
-
11
- if TYPE_CHECKING:
12
- from transformers import PreTrainedModel
13
-
14
-
15
- class ForecastType(Enum):
16
- SAMPLES = "samples"
17
- QUANTILES = "quantiles"
18
-
19
-
20
- class PipelineRegistry(type):
21
- REGISTRY: dict[str, "PipelineRegistry"] = {}
22
-
23
- def __new__(cls, name, bases, attrs):
24
- """See, https://github.com/faif/python-patterns."""
25
- new_cls = type.__new__(cls, name, bases, attrs)
26
- if name is not None:
27
- cls.REGISTRY[name] = new_cls
28
- if aliases := attrs.get("_aliases"):
29
- for alias in aliases:
30
- cls.REGISTRY[alias] = new_cls
31
- return new_cls
32
-
33
-
34
- class BaseChronosPipeline(metaclass=PipelineRegistry):
35
- forecast_type: ForecastType
36
- dtypes = {
37
- "bfloat16": torch.bfloat16,
38
- "float32": torch.float32,
39
- "float64": torch.float64,
40
- }
41
-
42
- def __init__(self, inner_model: "PreTrainedModel"):
43
- """
44
- Parameters
45
- ----------
46
- inner_model
47
- A hugging-face transformers PreTrainedModel, e.g., T5ForConditionalGeneration
48
- """
49
- # for easy access to the inner HF-style model
50
- self.inner_model = inner_model
51
-
52
- def _prepare_and_validate_context(self, context: Union[torch.Tensor, list[torch.Tensor]]):
53
- if isinstance(context, list):
54
- context = left_pad_and_stack_1D(context)
55
- assert isinstance(context, torch.Tensor)
56
- if context.ndim == 1:
57
- context = context.unsqueeze(0)
58
- assert context.ndim == 2
59
-
60
- return context
61
-
62
- def predict(
63
- self,
64
- context: Union[torch.Tensor, list[torch.Tensor]],
65
- prediction_length: Optional[int] = None,
66
- **kwargs,
67
- ):
68
- """
69
- Get forecasts for the given time series.
70
-
71
- Parameters
72
- ----------
73
- context
74
- Input series. This is either a 1D tensor, or a list
75
- of 1D tensors, or a 2D tensor whose first dimension
76
- is batch. In the latter case, use left-padding with
77
- ``torch.nan`` to align series of different lengths.
78
- prediction_length
79
- Time steps to predict. Defaults to a model-dependent
80
- value if not given.
81
-
82
- Returns
83
- -------
84
- forecasts
85
- Tensor containing forecasts. The layout and meaning
86
- of the forecasts values depends on ``self.forecast_type``.
87
- """
88
- raise NotImplementedError()
89
-
90
- def predict_quantiles(
91
- self, context: torch.Tensor, prediction_length: int, quantile_levels: list[float], **kwargs
92
- ) -> tuple[torch.Tensor, torch.Tensor]:
93
- """
94
- Get quantile and mean forecasts for given time series. All
95
- predictions are returned on the CPU.
96
-
97
- Parameters
98
- ----------
99
- context
100
- Input series. This is either a 1D tensor, or a list
101
- of 1D tensors, or a 2D tensor whose first dimension
102
- is batch. In the latter case, use left-padding with
103
- ``torch.nan`` to align series of different lengths.
104
- prediction_length
105
- Time steps to predict. Defaults to a model-dependent
106
- value if not given.
107
- quantile_levels
108
- Quantile levels to compute
109
-
110
- Returns
111
- -------
112
- quantiles
113
- Tensor containing quantile forecasts. Shape
114
- (batch_size, prediction_length, num_quantiles)
115
- mean
116
- Tensor containing mean (point) forecasts. Shape
117
- (batch_size, prediction_length)
118
- """
119
- raise NotImplementedError()
120
-
121
- @classmethod
122
- def from_pretrained(
123
- cls,
124
- pretrained_model_name_or_path: Union[str, Path],
125
- *model_args,
126
- force=False,
127
- **kwargs,
128
- ):
129
- """
130
- Load the model, either from a local path or from the HuggingFace Hub.
131
- Supports the same arguments as ``AutoConfig`` and ``AutoModel``
132
- from ``transformers``.
133
-
134
- When a local path is provided, supports both a folder or a .tar.gz archive.
135
- """
136
- from transformers import AutoConfig
137
-
138
- kwargs.setdefault("resume_download", None) # silence huggingface_hub warning
139
- if str(pretrained_model_name_or_path).startswith("s3://"):
140
- from .utils import cache_model_from_s3
141
-
142
- local_model_path = cache_model_from_s3(str(pretrained_model_name_or_path), force=force)
143
- return cls.from_pretrained(local_model_path, *model_args, **kwargs)
144
-
145
- torch_dtype = kwargs.get("torch_dtype", "auto")
146
- if torch_dtype != "auto" and isinstance(torch_dtype, str):
147
- kwargs["torch_dtype"] = cls.dtypes[torch_dtype]
148
-
149
- config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
150
- is_valid_config = hasattr(config, "chronos_pipeline_class") or hasattr(config, "chronos_config")
151
-
152
- if not is_valid_config:
153
- raise ValueError("Not a Chronos config file")
154
-
155
- pipeline_class_name = getattr(config, "chronos_pipeline_class", "ChronosPipeline")
156
- class_: Optional[BaseChronosPipeline] = PipelineRegistry.REGISTRY.get(pipeline_class_name) # type: ignore
157
- if class_ is None:
158
- raise ValueError(f"Trying to load unknown pipeline class: {pipeline_class_name}")
159
-
160
- return class_.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)