autogluon.timeseries 1.4.1b20250907__py3-none-any.whl → 1.5.1b20260122__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/configs/hyperparameter_presets.py +13 -28
- autogluon/timeseries/configs/predictor_presets.py +23 -39
- autogluon/timeseries/dataset/ts_dataframe.py +97 -86
- autogluon/timeseries/learner.py +70 -35
- autogluon/timeseries/metrics/__init__.py +4 -4
- autogluon/timeseries/metrics/abstract.py +8 -8
- autogluon/timeseries/metrics/point.py +9 -9
- autogluon/timeseries/metrics/quantile.py +5 -5
- autogluon/timeseries/metrics/utils.py +4 -4
- autogluon/timeseries/models/__init__.py +4 -1
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -50
- autogluon/timeseries/models/abstract/model_trial.py +2 -1
- autogluon/timeseries/models/abstract/tunable.py +8 -8
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +58 -62
- autogluon/timeseries/models/autogluon_tabular/per_step.py +27 -16
- autogluon/timeseries/models/autogluon_tabular/transforms.py +11 -9
- autogluon/timeseries/models/chronos/__init__.py +2 -1
- autogluon/timeseries/models/chronos/chronos2.py +395 -0
- autogluon/timeseries/models/chronos/model.py +127 -89
- autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +69 -37
- autogluon/timeseries/models/ensemble/__init__.py +36 -2
- autogluon/timeseries/models/ensemble/abstract.py +14 -46
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +240 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +185 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
- autogluon/timeseries/models/ensemble/{greedy.py → ensemble_selection.py} +41 -61
- autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +45 -0
- autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +25 -22
- autogluon/timeseries/models/ensemble/weighted/greedy.py +64 -0
- autogluon/timeseries/models/gluonts/abstract.py +32 -31
- autogluon/timeseries/models/gluonts/dataset.py +11 -11
- autogluon/timeseries/models/gluonts/models.py +0 -7
- autogluon/timeseries/models/local/__init__.py +0 -7
- autogluon/timeseries/models/local/abstract_local_model.py +15 -18
- autogluon/timeseries/models/local/naive.py +2 -2
- autogluon/timeseries/models/local/npts.py +7 -1
- autogluon/timeseries/models/local/statsforecast.py +13 -13
- autogluon/timeseries/models/multi_window/multi_window_model.py +39 -24
- autogluon/timeseries/models/registry.py +3 -4
- autogluon/timeseries/models/toto/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
- autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +196 -0
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
- autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
- autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +89 -0
- autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +305 -0
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
- autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
- autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
- autogluon/timeseries/models/toto/dataloader.py +108 -0
- autogluon/timeseries/models/toto/hf_pretrained_model.py +200 -0
- autogluon/timeseries/models/toto/model.py +249 -0
- autogluon/timeseries/predictor.py +541 -162
- autogluon/timeseries/regressor.py +27 -30
- autogluon/timeseries/splitter.py +3 -27
- autogluon/timeseries/trainer/ensemble_composer.py +444 -0
- autogluon/timeseries/trainer/model_set_builder.py +9 -9
- autogluon/timeseries/trainer/prediction_cache.py +16 -16
- autogluon/timeseries/trainer/trainer.py +300 -279
- autogluon/timeseries/trainer/utils.py +17 -0
- autogluon/timeseries/transforms/covariate_scaler.py +8 -8
- autogluon/timeseries/transforms/target_scaler.py +15 -15
- autogluon/timeseries/utils/constants.py +10 -0
- autogluon/timeseries/utils/datetime/lags.py +1 -3
- autogluon/timeseries/utils/datetime/seasonality.py +1 -3
- autogluon/timeseries/utils/features.py +31 -14
- autogluon/timeseries/utils/forecast.py +6 -7
- autogluon/timeseries/utils/timer.py +173 -0
- autogluon/timeseries/version.py +1 -1
- autogluon.timeseries-1.5.1b20260122-py3.11-nspkg.pth +1 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/METADATA +39 -22
- autogluon_timeseries-1.5.1b20260122.dist-info/RECORD +103 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/WHEEL +1 -1
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
- autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
- autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
- autogluon.timeseries-1.4.1b20250907-py3.9-nspkg.pth +0 -1
- autogluon.timeseries-1.4.1b20250907.dist-info/RECORD +0 -75
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.1b20260122
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -24,26 +23,25 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
24
23
|
Classifier: Operating System :: POSIX
|
|
25
24
|
Classifier: Operating System :: Unix
|
|
26
25
|
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
28
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
29
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
30
28
|
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
37
|
-
License-File:
|
|
38
|
-
License-File:
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
39
38
|
Requires-Dist: joblib<1.7,>=1.2
|
|
40
39
|
Requires-Dist: numpy<2.4.0,>=1.25.0
|
|
41
40
|
Requires-Dist: scipy<1.17,>=1.5.4
|
|
42
41
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
43
|
-
Requires-Dist: torch<2.
|
|
44
|
-
Requires-Dist: lightning<2.
|
|
45
|
-
Requires-Dist:
|
|
46
|
-
Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
|
|
42
|
+
Requires-Dist: torch<2.10,>=2.6
|
|
43
|
+
Requires-Dist: lightning<2.6,>=2.5.1
|
|
44
|
+
Requires-Dist: transformers[sentencepiece]<4.58,>=4.51.0
|
|
47
45
|
Requires-Dist: accelerate<2.0,>=0.34.0
|
|
48
46
|
Requires-Dist: gluonts<0.17,>=0.15.0
|
|
49
47
|
Requires-Dist: networkx<4,>=3.0
|
|
@@ -54,17 +52,35 @@ Requires-Dist: coreforecast<0.0.17,>=0.0.12
|
|
|
54
52
|
Requires-Dist: fugue>=0.9.0
|
|
55
53
|
Requires-Dist: tqdm<5,>=4.38
|
|
56
54
|
Requires-Dist: orjson~=3.9
|
|
55
|
+
Requires-Dist: einops<1,>=0.7
|
|
56
|
+
Requires-Dist: chronos-forecasting<2.4,>=2.2.2
|
|
57
|
+
Requires-Dist: peft<0.18,>=0.13.0
|
|
57
58
|
Requires-Dist: tensorboard<3,>=2.9
|
|
58
|
-
Requires-Dist: autogluon.core
|
|
59
|
-
Requires-Dist: autogluon.common==1.
|
|
60
|
-
Requires-Dist: autogluon.features==1.
|
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.
|
|
62
|
-
Provides-Extra: all
|
|
59
|
+
Requires-Dist: autogluon.core==1.5.1b20260122
|
|
60
|
+
Requires-Dist: autogluon.common==1.5.1b20260122
|
|
61
|
+
Requires-Dist: autogluon.features==1.5.1b20260122
|
|
62
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.5.1b20260122
|
|
63
63
|
Provides-Extra: tests
|
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
|
65
65
|
Requires-Dist: ruff>=0.0.285; extra == "tests"
|
|
66
66
|
Requires-Dist: flaky<4,>=3.7; extra == "tests"
|
|
67
67
|
Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
|
|
68
|
+
Provides-Extra: ray
|
|
69
|
+
Requires-Dist: autogluon.core[raytune]==1.5.1b20260122; extra == "ray"
|
|
70
|
+
Provides-Extra: all
|
|
71
|
+
Requires-Dist: autogluon.core[raytune]==1.5.1b20260122; extra == "all"
|
|
72
|
+
Dynamic: author
|
|
73
|
+
Dynamic: classifier
|
|
74
|
+
Dynamic: description
|
|
75
|
+
Dynamic: description-content-type
|
|
76
|
+
Dynamic: home-page
|
|
77
|
+
Dynamic: license
|
|
78
|
+
Dynamic: license-file
|
|
79
|
+
Dynamic: project-url
|
|
80
|
+
Dynamic: provides-extra
|
|
81
|
+
Dynamic: requires-dist
|
|
82
|
+
Dynamic: requires-python
|
|
83
|
+
Dynamic: summary
|
|
68
84
|
|
|
69
85
|
|
|
70
86
|
|
|
@@ -75,7 +91,7 @@ Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
|
|
|
75
91
|
|
|
76
92
|
[](https://github.com/autogluon/autogluon/releases)
|
|
77
93
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
78
|
-
[](https://pypi.org/project/autogluon/)
|
|
79
95
|
[](https://pepy.tech/project/autogluon)
|
|
80
96
|
[](./LICENSE)
|
|
81
97
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -92,7 +108,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
92
108
|
|
|
93
109
|
## 💾 Installation
|
|
94
110
|
|
|
95
|
-
AutoGluon is supported on Python 3.
|
|
111
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
96
112
|
|
|
97
113
|
You can install AutoGluon with:
|
|
98
114
|
|
|
@@ -115,8 +131,8 @@ predictions = predictor.predict("test.csv")
|
|
|
115
131
|
| AutoGluon Task | Quickstart | API |
|
|
116
132
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
117
133
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
118
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
119
134
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
135
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
120
136
|
|
|
121
137
|
## :mag: Resources
|
|
122
138
|
|
|
@@ -139,7 +155,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
139
155
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
140
156
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
141
157
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
142
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
158
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
159
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
160
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
161
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
143
162
|
|
|
144
163
|
### Articles
|
|
145
164
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -165,5 +184,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
165
184
|
## :classical_building: License
|
|
166
185
|
|
|
167
186
|
This library is licensed under the Apache 2.0 License.
|
|
168
|
-
|
|
169
|
-
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
autogluon.timeseries-1.5.1b20260122-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
|
|
2
|
+
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
|
+
autogluon/timeseries/learner.py,sha256=9kGn0ACGfbyZRlZmwkrgBbkwq7c2715yKDCh1EK3EWQ,14961
|
|
4
|
+
autogluon/timeseries/predictor.py,sha256=egBu6YKVe8GRrLJ1khOKflzSu-VDSH5_mCCQuaXQNRY,106686
|
|
5
|
+
autogluon/timeseries/regressor.py,sha256=HDdqi7MYRheW3uZy5c50sqVDAHap0ooyQBdOvKEKkWM,11718
|
|
6
|
+
autogluon/timeseries/splitter.py,sha256=2rypDxDKkqOC2v5nPJ6m0cmHQTZ9D6qUFrQV1HC9lz4,2329
|
|
7
|
+
autogluon/timeseries/version.py,sha256=MnD7Xa8VoA14eqZRxJp2qccaD7BlVLoiG_OaIqHKK5E,91
|
|
8
|
+
autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
|
|
9
|
+
autogluon/timeseries/configs/hyperparameter_presets.py,sha256=F38QMemh3LR4cT60xMZctI6O1XTOgNpVSleGOKMfhQQ,1586
|
|
10
|
+
autogluon/timeseries/configs/predictor_presets.py,sha256=2CkUXIFtup5w5sQkIhoU5G84b9jiNfcUC0yEug3izGY,2327
|
|
11
|
+
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
12
|
+
autogluon/timeseries/dataset/ts_dataframe.py,sha256=IOIkwV_VPV3JvilNt98gZ77gMHIpk-Ug-trDvqSk_Jg,52228
|
|
13
|
+
autogluon/timeseries/metrics/__init__.py,sha256=iFGLMOtDJ470dbmmx1BsdUKBx4RwI6ZQGFat3Z-wpzI,3567
|
|
14
|
+
autogluon/timeseries/metrics/abstract.py,sha256=_A0Ex1Ay91TPDStZ8DBiBMkIyLUusdARbuDiylHJ0yQ,11499
|
|
15
|
+
autogluon/timeseries/metrics/point.py,sha256=K1Fn0_-Ycxz1hYHd-u1X7q9X-Jt7Dp9bNvUHV6RRg7A,18274
|
|
16
|
+
autogluon/timeseries/metrics/quantile.py,sha256=f8SMVt9rV0sY9lk8B1Bjxx219IjajuJjhOSD95p_z24,4602
|
|
17
|
+
autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
|
|
18
|
+
autogluon/timeseries/models/__init__.py,sha256=zPdwxiveOTGU9658tDPMFXbflZ5fzd_AJdbCacbfZ0s,1375
|
|
19
|
+
autogluon/timeseries/models/registry.py,sha256=dkuyKG5UK2xiGtXcsuyRDXrI-YC84zkPre8Z3wt9T_A,2115
|
|
20
|
+
autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
|
|
21
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=80ShlklwAnGoMEKjMDjgoVrkGG6x2Eg3nOwbjJVMCqk,31909
|
|
22
|
+
autogluon/timeseries/models/abstract/model_trial.py,sha256=xKD6Nw8hIqAq4HxNVcGUhr9BuEqzFn7FX0TenvZHU0Q,3753
|
|
23
|
+
autogluon/timeseries/models/abstract/tunable.py,sha256=thl_wJjB9ao1T5NNF1RVH5k3yFqmao0irX-eUNqDs8k,7111
|
|
24
|
+
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
|
25
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=FJlYqMZJaltTlh54LMrDOgICgGanIymBI2F4OevVQ6A,36690
|
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=q2V8dSyHns7gkcDwAIpczFse3vHHyYSm4LjJ4KICsWo,23360
|
|
27
|
+
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=AkXEInK4GocApU5GylECH01qgz5cLLLqC9apuN0eUbQ,2873
|
|
28
|
+
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
|
29
|
+
autogluon/timeseries/models/chronos/__init__.py,sha256=dIoAImmZc0dTlut4CZkJxcg1bpuHKZkS8x8Y6fBoUAY,113
|
|
30
|
+
autogluon/timeseries/models/chronos/chronos2.py,sha256=N8TW1EaYwqPqeRbntlkhz9L7uADBna0LDZPMYWH4w3c,16800
|
|
31
|
+
autogluon/timeseries/models/chronos/model.py,sha256=npTcHR6nSi7lfCzZfVl_9G6iHJwIMRm3wfqjOAnBcIQ,33681
|
|
32
|
+
autogluon/timeseries/models/chronos/utils.py,sha256=33_kycc7AVasS3c7-AuVFtqBTZzV_yszr-MpKe28S3M,14449
|
|
33
|
+
autogluon/timeseries/models/ensemble/__init__.py,sha256=3_Vn6RHpjouthrEoXs1guKUpUX6JoUgMVCgxPt2pyLw,1302
|
|
34
|
+
autogluon/timeseries/models/ensemble/abstract.py,sha256=gAaspq4f67MTfs7KW6ADVU0KfPeBKySPstCqUeC7JYs,4579
|
|
35
|
+
autogluon/timeseries/models/ensemble/ensemble_selection.py,sha256=hepycVJTtbibzTKq5Sk04L_vUuYlLFItkSybaCc_Jv8,6366
|
|
36
|
+
autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=XaUEUO6fQD7Ck7X0882pvax5e3g55o_g8uMBnSP-c5M,7869
|
|
37
|
+
autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=u4vGTH9gP6oATYKkxnvoiDZvc5rqfnfgrODHxIvHP7U,207
|
|
38
|
+
autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=Oci1XEgFFTle0JF5Z8PhnMjG1iPrhhtunoKUPUPhTLw,10190
|
|
39
|
+
autogluon/timeseries/models/ensemble/array_based/models.py,sha256=UOV3t3QH_j0AGg2y3gJIWZ5rS5tHI39z3yUJlhkEyA0,8603
|
|
40
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=OJPZZzowllw7Ks0aXF8Hye1_1Ql8XhRfdtv3e3A_4AE,424
|
|
41
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=MSeYWwxH1mL3lrsHbDpzAg61Bovs2Fxkxl3qzj5QrXE,2771
|
|
42
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py,sha256=4rUYEXcyyZ8hPITzg1tSDWmHSGfwqrTp5dd-b7MP5Hs,7245
|
|
43
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=GIa2CtP3bl7uN3i4t54WPod4JxIhA9nKIyr7tx9B08E,3763
|
|
44
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=prH6vSmRu4UBUjIdAHnLF0aH8oxHUA8ciaNP9ou9uyA,4056
|
|
45
|
+
autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
|
|
46
|
+
autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=meGVoSfPOjmEwTKGRTUQJ1N9bZtpewJ217TGqKNye04,1839
|
|
47
|
+
autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=KsFcdmhkjywqSYvx9rdWoFzjLO-czKsOj3CWuC61SS4,3715
|
|
48
|
+
autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=ziyudzlLDPLW_vGuh2U9uZ2YH0h478mRpM3H9q7nf4M,2657
|
|
49
|
+
autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
|
|
50
|
+
autogluon/timeseries/models/gluonts/abstract.py,sha256=qJ60DSkzSI4E1kx5RGeGBehkiMvcAVGSUXYSpZXo8nk,27699
|
|
51
|
+
autogluon/timeseries/models/gluonts/dataset.py,sha256=ApR-r4o0OV4jQ2hYUppJ4yjvWX02JoHod5O4acEKiHw,5074
|
|
52
|
+
autogluon/timeseries/models/gluonts/models.py,sha256=Djb2R_2ZSK-xQ1wvFwWGXxshSQeFD9WsMLdF4yxuGnQ,25232
|
|
53
|
+
autogluon/timeseries/models/local/__init__.py,sha256=TiKY7M6Foy8vtshfZiStEH58_XG62w4oF1TQYAQ1B0s,344
|
|
54
|
+
autogluon/timeseries/models/local/abstract_local_model.py,sha256=7pbyE4vhXgoCEcHAhxpxBVCOEG-LSrBptGwjLXd-s8o,11335
|
|
55
|
+
autogluon/timeseries/models/local/naive.py,sha256=w0XuMcgcTvTUEi2iXcd6BGvyHKB-kpqbv9c9iK4pMOA,7490
|
|
56
|
+
autogluon/timeseries/models/local/npts.py,sha256=mKuDsGnaYV8QkIgGR8se-1pXb2JAxzafESt2g_21ENA,4530
|
|
57
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=h_WpYGAEA761ehhZv6RZXsGC-WVr4BkPh1C8xUbcKuQ,33275
|
|
58
|
+
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
|
59
|
+
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=bv8_ux-7JXPwhbFXeBN893xQo6echCCMwqH4aEMK250,12937
|
|
60
|
+
autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
|
|
61
|
+
autogluon/timeseries/models/toto/dataloader.py,sha256=wUrK3mcSEhaWmxpv3rAqmp1ZbLnXbEP4F77hAT2-VXg,3566
|
|
62
|
+
autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=E2agvz4jdUFhYEiavLTuBIripbl2KLGgdfr8eZXkqOM,7290
|
|
63
|
+
autogluon/timeseries/models/toto/model.py,sha256=ObMPp_Wn2cccT7osWyIfc15gk-hcWDT38p3r-uSdZmM,9412
|
|
64
|
+
autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
|
|
65
|
+
autogluon/timeseries/models/toto/_internal/dataset.py,sha256=jpKX3LV4FkcGGgUPTzpwdR_7UZEFMfwXIQQZVkQ_I6E,6090
|
|
66
|
+
autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=HhRQwqC6Y_Gr93fT-EpilWFjjxY5zR9GsNPN2JPztN4,18479
|
|
67
|
+
autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
|
|
68
|
+
autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=ez7N8ygH4Q1gU88EuoSeF1675JcoAAxocvyF4i0JuGI,9347
|
|
69
|
+
autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=Vy2AHnbRrc68ax41KPf0IP3RkXA7GtTgzIXr6lSAp-w,10079
|
|
70
|
+
autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
|
|
71
|
+
autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
|
|
72
|
+
autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=UohCHvsOP2Q2g6IXDWXQsYpBZ0JDZ0JjtFq0ZnRCF6g,3389
|
|
73
|
+
autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py,sha256=TsdcUpQUQes4dtrWb6citENGrXK8hE3M8DyZ2kslEyE,11488
|
|
74
|
+
autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=NQno9Ycm2wf4tZJneoOtbbyZ-ez0Z5R37XJng9rPn_4,13694
|
|
75
|
+
autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=K7S-fPZZOl65luFMpPQ3LC2QuNN4SunTLDTxp-bZWUc,12364
|
|
76
|
+
autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
|
|
77
|
+
autogluon/timeseries/trainer/ensemble_composer.py,sha256=zGa8vocPQGsHf-7ti8DsHwjEA176FkCt7up2LwWCK4Y,19465
|
|
78
|
+
autogluon/timeseries/trainer/model_set_builder.py,sha256=kROApbu10_ro-GVYlnx3oTKZj2TcNswWbOFB1QyBCOc,10737
|
|
79
|
+
autogluon/timeseries/trainer/prediction_cache.py,sha256=KKs22UUGrVfQN_81IgzL7Bfc8tjWk3k6YW3uHURaSs0,5496
|
|
80
|
+
autogluon/timeseries/trainer/trainer.py,sha256=vraCZtARPV3gNHlhktmDlbTr8Mn59H-JOIaXAdpTDw8,56057
|
|
81
|
+
autogluon/timeseries/trainer/utils.py,sha256=7N4vRP6GFUlRAahxQ9PqppdIMFqMz3wpZ5u-_onR24M,588
|
|
82
|
+
autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
|
|
83
|
+
autogluon/timeseries/transforms/covariate_scaler.py,sha256=CpTtokiE1uEg_RJa4kEUUuBwXZpPL11OC2fgCkRpGlQ,6986
|
|
84
|
+
autogluon/timeseries/transforms/target_scaler.py,sha256=sAOohPBaStZx_V8aaaQacDbfEqqWRjYUtDLxdhkRKww,6092
|
|
85
|
+
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
86
|
+
autogluon/timeseries/utils/constants.py,sha256=qjFWoouIQ5nJfx9Fmm4svN191ultb4XWW4NQSHeiGW4,542
|
|
87
|
+
autogluon/timeseries/utils/features.py,sha256=pI5Nu7Pj4ZrNat7vGjEAqqPO-XJGsdlH2rCUMEJLhC8,23527
|
|
88
|
+
autogluon/timeseries/utils/forecast.py,sha256=-w94i4DZaervXAZ_c1M7I4iLrPnVax8yC6pgv46bEjc,2228
|
|
89
|
+
autogluon/timeseries/utils/timer.py,sha256=qDROHYG_Z8fulMpyZMrRhfQoTneazTzYhur4qjqqydA,5799
|
|
90
|
+
autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
|
|
91
|
+
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
|
92
|
+
autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
|
|
93
|
+
autogluon/timeseries/utils/datetime/lags.py,sha256=dijskkPDJXhXbRHGQZPhUFuEom3typKbOeET7cxkHGY,5965
|
|
94
|
+
autogluon/timeseries/utils/datetime/seasonality.py,sha256=-w3bULdkIZKP-JrO1ahHLyNCanLhejocHlasZShuwA0,802
|
|
95
|
+
autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
|
|
96
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
97
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
98
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/METADATA,sha256=8qZ5DKjeik_GWTCy8Ayk2m-H1lKa3z142aGAHhYGy6A,13425
|
|
99
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
100
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
101
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
102
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
103
|
+
autogluon_timeseries-1.5.1b20260122.dist-info/RECORD,,
|
|
@@ -1,160 +0,0 @@
|
|
|
1
|
-
# Authors: Lorenzo Stella <stellalo@amazon.com>, Caner Turkmen <atturkm@amazon.com>
|
|
2
|
-
|
|
3
|
-
from enum import Enum
|
|
4
|
-
from pathlib import Path
|
|
5
|
-
from typing import TYPE_CHECKING, Optional, Union
|
|
6
|
-
|
|
7
|
-
import torch
|
|
8
|
-
|
|
9
|
-
from .utils import left_pad_and_stack_1D
|
|
10
|
-
|
|
11
|
-
if TYPE_CHECKING:
|
|
12
|
-
from transformers import PreTrainedModel
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
class ForecastType(Enum):
|
|
16
|
-
SAMPLES = "samples"
|
|
17
|
-
QUANTILES = "quantiles"
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class PipelineRegistry(type):
|
|
21
|
-
REGISTRY: dict[str, "PipelineRegistry"] = {}
|
|
22
|
-
|
|
23
|
-
def __new__(cls, name, bases, attrs):
|
|
24
|
-
"""See, https://github.com/faif/python-patterns."""
|
|
25
|
-
new_cls = type.__new__(cls, name, bases, attrs)
|
|
26
|
-
if name is not None:
|
|
27
|
-
cls.REGISTRY[name] = new_cls
|
|
28
|
-
if aliases := attrs.get("_aliases"):
|
|
29
|
-
for alias in aliases:
|
|
30
|
-
cls.REGISTRY[alias] = new_cls
|
|
31
|
-
return new_cls
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
class BaseChronosPipeline(metaclass=PipelineRegistry):
|
|
35
|
-
forecast_type: ForecastType
|
|
36
|
-
dtypes = {
|
|
37
|
-
"bfloat16": torch.bfloat16,
|
|
38
|
-
"float32": torch.float32,
|
|
39
|
-
"float64": torch.float64,
|
|
40
|
-
}
|
|
41
|
-
|
|
42
|
-
def __init__(self, inner_model: "PreTrainedModel"):
|
|
43
|
-
"""
|
|
44
|
-
Parameters
|
|
45
|
-
----------
|
|
46
|
-
inner_model
|
|
47
|
-
A hugging-face transformers PreTrainedModel, e.g., T5ForConditionalGeneration
|
|
48
|
-
"""
|
|
49
|
-
# for easy access to the inner HF-style model
|
|
50
|
-
self.inner_model = inner_model
|
|
51
|
-
|
|
52
|
-
def _prepare_and_validate_context(self, context: Union[torch.Tensor, list[torch.Tensor]]):
|
|
53
|
-
if isinstance(context, list):
|
|
54
|
-
context = left_pad_and_stack_1D(context)
|
|
55
|
-
assert isinstance(context, torch.Tensor)
|
|
56
|
-
if context.ndim == 1:
|
|
57
|
-
context = context.unsqueeze(0)
|
|
58
|
-
assert context.ndim == 2
|
|
59
|
-
|
|
60
|
-
return context
|
|
61
|
-
|
|
62
|
-
def predict(
|
|
63
|
-
self,
|
|
64
|
-
context: Union[torch.Tensor, list[torch.Tensor]],
|
|
65
|
-
prediction_length: Optional[int] = None,
|
|
66
|
-
**kwargs,
|
|
67
|
-
):
|
|
68
|
-
"""
|
|
69
|
-
Get forecasts for the given time series.
|
|
70
|
-
|
|
71
|
-
Parameters
|
|
72
|
-
----------
|
|
73
|
-
context
|
|
74
|
-
Input series. This is either a 1D tensor, or a list
|
|
75
|
-
of 1D tensors, or a 2D tensor whose first dimension
|
|
76
|
-
is batch. In the latter case, use left-padding with
|
|
77
|
-
``torch.nan`` to align series of different lengths.
|
|
78
|
-
prediction_length
|
|
79
|
-
Time steps to predict. Defaults to a model-dependent
|
|
80
|
-
value if not given.
|
|
81
|
-
|
|
82
|
-
Returns
|
|
83
|
-
-------
|
|
84
|
-
forecasts
|
|
85
|
-
Tensor containing forecasts. The layout and meaning
|
|
86
|
-
of the forecasts values depends on ``self.forecast_type``.
|
|
87
|
-
"""
|
|
88
|
-
raise NotImplementedError()
|
|
89
|
-
|
|
90
|
-
def predict_quantiles(
|
|
91
|
-
self, context: torch.Tensor, prediction_length: int, quantile_levels: list[float], **kwargs
|
|
92
|
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
93
|
-
"""
|
|
94
|
-
Get quantile and mean forecasts for given time series. All
|
|
95
|
-
predictions are returned on the CPU.
|
|
96
|
-
|
|
97
|
-
Parameters
|
|
98
|
-
----------
|
|
99
|
-
context
|
|
100
|
-
Input series. This is either a 1D tensor, or a list
|
|
101
|
-
of 1D tensors, or a 2D tensor whose first dimension
|
|
102
|
-
is batch. In the latter case, use left-padding with
|
|
103
|
-
``torch.nan`` to align series of different lengths.
|
|
104
|
-
prediction_length
|
|
105
|
-
Time steps to predict. Defaults to a model-dependent
|
|
106
|
-
value if not given.
|
|
107
|
-
quantile_levels
|
|
108
|
-
Quantile levels to compute
|
|
109
|
-
|
|
110
|
-
Returns
|
|
111
|
-
-------
|
|
112
|
-
quantiles
|
|
113
|
-
Tensor containing quantile forecasts. Shape
|
|
114
|
-
(batch_size, prediction_length, num_quantiles)
|
|
115
|
-
mean
|
|
116
|
-
Tensor containing mean (point) forecasts. Shape
|
|
117
|
-
(batch_size, prediction_length)
|
|
118
|
-
"""
|
|
119
|
-
raise NotImplementedError()
|
|
120
|
-
|
|
121
|
-
@classmethod
|
|
122
|
-
def from_pretrained(
|
|
123
|
-
cls,
|
|
124
|
-
pretrained_model_name_or_path: Union[str, Path],
|
|
125
|
-
*model_args,
|
|
126
|
-
force=False,
|
|
127
|
-
**kwargs,
|
|
128
|
-
):
|
|
129
|
-
"""
|
|
130
|
-
Load the model, either from a local path or from the HuggingFace Hub.
|
|
131
|
-
Supports the same arguments as ``AutoConfig`` and ``AutoModel``
|
|
132
|
-
from ``transformers``.
|
|
133
|
-
|
|
134
|
-
When a local path is provided, supports both a folder or a .tar.gz archive.
|
|
135
|
-
"""
|
|
136
|
-
from transformers import AutoConfig
|
|
137
|
-
|
|
138
|
-
kwargs.setdefault("resume_download", None) # silence huggingface_hub warning
|
|
139
|
-
if str(pretrained_model_name_or_path).startswith("s3://"):
|
|
140
|
-
from .utils import cache_model_from_s3
|
|
141
|
-
|
|
142
|
-
local_model_path = cache_model_from_s3(str(pretrained_model_name_or_path), force=force)
|
|
143
|
-
return cls.from_pretrained(local_model_path, *model_args, **kwargs)
|
|
144
|
-
|
|
145
|
-
torch_dtype = kwargs.get("torch_dtype", "auto")
|
|
146
|
-
if torch_dtype != "auto" and isinstance(torch_dtype, str):
|
|
147
|
-
kwargs["torch_dtype"] = cls.dtypes[torch_dtype]
|
|
148
|
-
|
|
149
|
-
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
150
|
-
is_valid_config = hasattr(config, "chronos_pipeline_class") or hasattr(config, "chronos_config")
|
|
151
|
-
|
|
152
|
-
if not is_valid_config:
|
|
153
|
-
raise ValueError("Not a Chronos config file")
|
|
154
|
-
|
|
155
|
-
pipeline_class_name = getattr(config, "chronos_pipeline_class", "ChronosPipeline")
|
|
156
|
-
class_: Optional[BaseChronosPipeline] = PipelineRegistry.REGISTRY.get(pipeline_class_name) # type: ignore
|
|
157
|
-
if class_ is None:
|
|
158
|
-
raise ValueError(f"Trying to load unknown pipeline class: {pipeline_class_name}")
|
|
159
|
-
|
|
160
|
-
return class_.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|