autogluon.timeseries 1.4.1b20250907__py3-none-any.whl → 1.5.1b20260122__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/configs/hyperparameter_presets.py +13 -28
- autogluon/timeseries/configs/predictor_presets.py +23 -39
- autogluon/timeseries/dataset/ts_dataframe.py +97 -86
- autogluon/timeseries/learner.py +70 -35
- autogluon/timeseries/metrics/__init__.py +4 -4
- autogluon/timeseries/metrics/abstract.py +8 -8
- autogluon/timeseries/metrics/point.py +9 -9
- autogluon/timeseries/metrics/quantile.py +5 -5
- autogluon/timeseries/metrics/utils.py +4 -4
- autogluon/timeseries/models/__init__.py +4 -1
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -50
- autogluon/timeseries/models/abstract/model_trial.py +2 -1
- autogluon/timeseries/models/abstract/tunable.py +8 -8
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +58 -62
- autogluon/timeseries/models/autogluon_tabular/per_step.py +27 -16
- autogluon/timeseries/models/autogluon_tabular/transforms.py +11 -9
- autogluon/timeseries/models/chronos/__init__.py +2 -1
- autogluon/timeseries/models/chronos/chronos2.py +395 -0
- autogluon/timeseries/models/chronos/model.py +127 -89
- autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +69 -37
- autogluon/timeseries/models/ensemble/__init__.py +36 -2
- autogluon/timeseries/models/ensemble/abstract.py +14 -46
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +240 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +185 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +186 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
- autogluon/timeseries/models/ensemble/{greedy.py → ensemble_selection.py} +41 -61
- autogluon/timeseries/models/ensemble/per_item_greedy.py +172 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +45 -0
- autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +25 -22
- autogluon/timeseries/models/ensemble/weighted/greedy.py +64 -0
- autogluon/timeseries/models/gluonts/abstract.py +32 -31
- autogluon/timeseries/models/gluonts/dataset.py +11 -11
- autogluon/timeseries/models/gluonts/models.py +0 -7
- autogluon/timeseries/models/local/__init__.py +0 -7
- autogluon/timeseries/models/local/abstract_local_model.py +15 -18
- autogluon/timeseries/models/local/naive.py +2 -2
- autogluon/timeseries/models/local/npts.py +7 -1
- autogluon/timeseries/models/local/statsforecast.py +13 -13
- autogluon/timeseries/models/multi_window/multi_window_model.py +39 -24
- autogluon/timeseries/models/registry.py +3 -4
- autogluon/timeseries/models/toto/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
- autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +196 -0
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
- autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
- autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +89 -0
- autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +305 -0
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
- autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
- autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
- autogluon/timeseries/models/toto/dataloader.py +108 -0
- autogluon/timeseries/models/toto/hf_pretrained_model.py +200 -0
- autogluon/timeseries/models/toto/model.py +249 -0
- autogluon/timeseries/predictor.py +541 -162
- autogluon/timeseries/regressor.py +27 -30
- autogluon/timeseries/splitter.py +3 -27
- autogluon/timeseries/trainer/ensemble_composer.py +444 -0
- autogluon/timeseries/trainer/model_set_builder.py +9 -9
- autogluon/timeseries/trainer/prediction_cache.py +16 -16
- autogluon/timeseries/trainer/trainer.py +300 -279
- autogluon/timeseries/trainer/utils.py +17 -0
- autogluon/timeseries/transforms/covariate_scaler.py +8 -8
- autogluon/timeseries/transforms/target_scaler.py +15 -15
- autogluon/timeseries/utils/constants.py +10 -0
- autogluon/timeseries/utils/datetime/lags.py +1 -3
- autogluon/timeseries/utils/datetime/seasonality.py +1 -3
- autogluon/timeseries/utils/features.py +31 -14
- autogluon/timeseries/utils/forecast.py +6 -7
- autogluon/timeseries/utils/timer.py +173 -0
- autogluon/timeseries/version.py +1 -1
- autogluon.timeseries-1.5.1b20260122-py3.11-nspkg.pth +1 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/METADATA +39 -22
- autogluon_timeseries-1.5.1b20260122.dist-info/RECORD +103 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/WHEEL +1 -1
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
- autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
- autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -580
- autogluon.timeseries-1.4.1b20250907-py3.9-nspkg.pth +0 -1
- autogluon.timeseries-1.4.1b20250907.dist-info/RECORD +0 -75
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.1b20250907.dist-info → autogluon_timeseries-1.5.1b20260122.dist-info}/zip-safe +0 -0
|
@@ -5,11 +5,12 @@ import os
|
|
|
5
5
|
import pprint
|
|
6
6
|
import time
|
|
7
7
|
from pathlib import Path
|
|
8
|
-
from typing import Any, Literal,
|
|
8
|
+
from typing import Any, Literal, Type, cast, overload
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
import pandas as pd
|
|
12
12
|
|
|
13
|
+
from autogluon.common.utils.decorators import apply_presets
|
|
13
14
|
from autogluon.common.utils.log_utils import (
|
|
14
15
|
add_log_to_file,
|
|
15
16
|
set_logger_verbosity,
|
|
@@ -17,15 +18,13 @@ from autogluon.common.utils.log_utils import (
|
|
|
17
18
|
)
|
|
18
19
|
from autogluon.common.utils.system_info import get_ag_system_info
|
|
19
20
|
from autogluon.common.utils.utils import check_saved_predictor_version, setup_outputdir
|
|
20
|
-
from autogluon.core.utils.decorators import apply_presets
|
|
21
21
|
from autogluon.core.utils.loaders import load_pkl, load_str
|
|
22
22
|
from autogluon.core.utils.savers import save_pkl, save_str
|
|
23
23
|
from autogluon.timeseries import __version__ as current_ag_version
|
|
24
24
|
from autogluon.timeseries.configs import get_predictor_presets
|
|
25
|
-
from autogluon.timeseries.dataset
|
|
25
|
+
from autogluon.timeseries.dataset import TimeSeriesDataFrame
|
|
26
26
|
from autogluon.timeseries.learner import TimeSeriesLearner
|
|
27
27
|
from autogluon.timeseries.metrics import TimeSeriesScorer, check_get_evaluation_metric
|
|
28
|
-
from autogluon.timeseries.splitter import ExpandingWindowSplitter
|
|
29
28
|
from autogluon.timeseries.trainer import TimeSeriesTrainer
|
|
30
29
|
from autogluon.timeseries.utils.forecast import make_future_data_frame
|
|
31
30
|
|
|
@@ -67,7 +66,7 @@ class TimeSeriesPredictor:
|
|
|
67
66
|
|
|
68
67
|
If ``freq`` is provided when creating the predictor, all data passed to the predictor will be automatically
|
|
69
68
|
resampled at this frequency.
|
|
70
|
-
eval_metric :
|
|
69
|
+
eval_metric : str | TimeSeriesScorer, default = "WQL"
|
|
71
70
|
Metric by which predictions will be ultimately evaluated on future test data. AutoGluon tunes hyperparameters
|
|
72
71
|
in order to improve this metric on validation data, and ranks models (on validation data) according to this
|
|
73
72
|
metric.
|
|
@@ -125,7 +124,7 @@ class TimeSeriesPredictor:
|
|
|
125
124
|
debug messages from AutoGluon and all logging in dependencies (GluonTS, PyTorch Lightning, AutoGluon-Tabular, etc.)
|
|
126
125
|
log_to_file: bool, default = True
|
|
127
126
|
Whether to save the logs into a file for later reference
|
|
128
|
-
log_file_path:
|
|
127
|
+
log_file_path: str | Path, default = "auto"
|
|
129
128
|
File path to save the logs.
|
|
130
129
|
If auto, logs will be saved under ``predictor_path/logs/predictor_log.txt``.
|
|
131
130
|
Will be ignored if ``log_to_file`` is set to False
|
|
@@ -146,20 +145,20 @@ class TimeSeriesPredictor:
|
|
|
146
145
|
|
|
147
146
|
def __init__(
|
|
148
147
|
self,
|
|
149
|
-
target:
|
|
150
|
-
known_covariates_names:
|
|
148
|
+
target: str | None = None,
|
|
149
|
+
known_covariates_names: list[str] | None = None,
|
|
151
150
|
prediction_length: int = 1,
|
|
152
|
-
freq:
|
|
153
|
-
eval_metric:
|
|
154
|
-
eval_metric_seasonal_period:
|
|
155
|
-
horizon_weight:
|
|
156
|
-
path:
|
|
151
|
+
freq: str | None = None,
|
|
152
|
+
eval_metric: str | TimeSeriesScorer | None = None,
|
|
153
|
+
eval_metric_seasonal_period: int | None = None,
|
|
154
|
+
horizon_weight: list[float] | None = None,
|
|
155
|
+
path: str | Path | None = None,
|
|
157
156
|
verbosity: int = 2,
|
|
158
157
|
log_to_file: bool = True,
|
|
159
|
-
log_file_path:
|
|
160
|
-
quantile_levels:
|
|
158
|
+
log_file_path: str | Path = "auto",
|
|
159
|
+
quantile_levels: list[float] | None = None,
|
|
161
160
|
cache_predictions: bool = True,
|
|
162
|
-
label:
|
|
161
|
+
label: str | None = None,
|
|
163
162
|
**kwargs,
|
|
164
163
|
):
|
|
165
164
|
self.verbosity = verbosity
|
|
@@ -221,20 +220,6 @@ class TimeSeriesPredictor:
|
|
|
221
220
|
ensemble_model_type=kwargs.pop("ensemble_model_type", None),
|
|
222
221
|
)
|
|
223
222
|
|
|
224
|
-
if "ignore_time_index" in kwargs:
|
|
225
|
-
raise TypeError(
|
|
226
|
-
"`ignore_time_index` argument to TimeSeriesPredictor.__init__() has been deprecated.\n"
|
|
227
|
-
"If your data has irregular timestamps, please either 1) specify the desired regular frequency when "
|
|
228
|
-
"creating the predictor as `TimeSeriesPredictor(freq=...)` or 2) manually convert timestamps to "
|
|
229
|
-
"regular frequency with `data.convert_frequency(freq=...)`."
|
|
230
|
-
)
|
|
231
|
-
for k in ["learner_type", "learner_kwargs"]:
|
|
232
|
-
if k in kwargs:
|
|
233
|
-
val = kwargs.pop(k)
|
|
234
|
-
logger.warning(
|
|
235
|
-
f"Passing `{k}` to TimeSeriesPredictor has been deprecated and will be removed in v1.4. "
|
|
236
|
-
f"The provided value {val} will be ignored."
|
|
237
|
-
)
|
|
238
223
|
if len(kwargs) > 0:
|
|
239
224
|
for key in kwargs:
|
|
240
225
|
raise TypeError(f"TimeSeriesPredictor.__init__() got an unexpected keyword argument '{key}'")
|
|
@@ -243,7 +228,16 @@ class TimeSeriesPredictor:
|
|
|
243
228
|
def _trainer(self) -> TimeSeriesTrainer:
|
|
244
229
|
return self._learner.load_trainer() # noqa
|
|
245
230
|
|
|
246
|
-
|
|
231
|
+
@property
|
|
232
|
+
def is_fit(self) -> bool:
|
|
233
|
+
return self._learner.is_fit
|
|
234
|
+
|
|
235
|
+
def _assert_is_fit(self, method_name: str) -> None:
|
|
236
|
+
"""Check if predictor is fit and raise AssertionError with informative message if not."""
|
|
237
|
+
if not self.is_fit:
|
|
238
|
+
raise AssertionError(f"Predictor is not fit. Call `.fit` before calling `.{method_name}`. ")
|
|
239
|
+
|
|
240
|
+
def _setup_log_to_file(self, log_to_file: bool, log_file_path: str | Path) -> None:
|
|
247
241
|
if log_to_file:
|
|
248
242
|
if log_file_path == "auto":
|
|
249
243
|
log_file_path = os.path.join(self.path, "logs", self._predictor_log_file_name)
|
|
@@ -253,7 +247,7 @@ class TimeSeriesPredictor:
|
|
|
253
247
|
|
|
254
248
|
def _to_data_frame(
|
|
255
249
|
self,
|
|
256
|
-
data:
|
|
250
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
257
251
|
name: str = "data",
|
|
258
252
|
) -> TimeSeriesDataFrame:
|
|
259
253
|
if isinstance(data, TimeSeriesDataFrame):
|
|
@@ -274,7 +268,7 @@ class TimeSeriesPredictor:
|
|
|
274
268
|
|
|
275
269
|
def _check_and_prepare_data_frame(
|
|
276
270
|
self,
|
|
277
|
-
data:
|
|
271
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
278
272
|
name: str = "data",
|
|
279
273
|
) -> TimeSeriesDataFrame:
|
|
280
274
|
"""Ensure that TimeSeriesDataFrame has a sorted index and a valid frequency.
|
|
@@ -283,7 +277,7 @@ class TimeSeriesPredictor:
|
|
|
283
277
|
|
|
284
278
|
Parameters
|
|
285
279
|
----------
|
|
286
|
-
data :
|
|
280
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
287
281
|
Data as a dataframe or path to file storing the data.
|
|
288
282
|
name : str
|
|
289
283
|
Name of the data that will be used in log messages (e.g., 'train_data', 'tuning_data', or 'data').
|
|
@@ -326,7 +320,7 @@ class TimeSeriesPredictor:
|
|
|
326
320
|
return df
|
|
327
321
|
|
|
328
322
|
def _check_and_prepare_data_frame_for_evaluation(
|
|
329
|
-
self, data: TimeSeriesDataFrame, cutoff:
|
|
323
|
+
self, data: TimeSeriesDataFrame, cutoff: int | None = None, name: str = "data"
|
|
330
324
|
) -> TimeSeriesDataFrame:
|
|
331
325
|
"""
|
|
332
326
|
Make sure that provided evaluation data includes both historical and future time series values.
|
|
@@ -366,36 +360,10 @@ class TimeSeriesPredictor:
|
|
|
366
360
|
f"Median time series length is {median_length:.0f} (min={min_length}, max={max_length}). "
|
|
367
361
|
)
|
|
368
362
|
|
|
369
|
-
def _reduce_num_val_windows_if_necessary(
|
|
370
|
-
self,
|
|
371
|
-
train_data: TimeSeriesDataFrame,
|
|
372
|
-
original_num_val_windows: int,
|
|
373
|
-
val_step_size: int,
|
|
374
|
-
) -> int:
|
|
375
|
-
"""Adjust num_val_windows based on the length of time series in train_data.
|
|
376
|
-
|
|
377
|
-
Chooses num_val_windows such that TS with median length is long enough to perform num_val_windows validations
|
|
378
|
-
(at least 1, at most `original_num_val_windows`).
|
|
379
|
-
|
|
380
|
-
In other words, find largest `num_val_windows` that satisfies
|
|
381
|
-
median_length >= min_train_length + prediction_length + (num_val_windows - 1) * val_step_size
|
|
382
|
-
"""
|
|
383
|
-
median_length = train_data.num_timesteps_per_item().median()
|
|
384
|
-
num_val_windows_for_median_ts = int(
|
|
385
|
-
(median_length - self._min_train_length - self.prediction_length) // val_step_size + 1
|
|
386
|
-
)
|
|
387
|
-
new_num_val_windows = min(original_num_val_windows, max(1, num_val_windows_for_median_ts))
|
|
388
|
-
if new_num_val_windows < original_num_val_windows:
|
|
389
|
-
logger.warning(
|
|
390
|
-
f"Time series in train_data are too short for chosen num_val_windows={original_num_val_windows}. "
|
|
391
|
-
f"Reducing num_val_windows to {new_num_val_windows}."
|
|
392
|
-
)
|
|
393
|
-
return new_num_val_windows
|
|
394
|
-
|
|
395
363
|
def _filter_useless_train_data(
|
|
396
364
|
self,
|
|
397
365
|
train_data: TimeSeriesDataFrame,
|
|
398
|
-
num_val_windows: int,
|
|
366
|
+
num_val_windows: tuple[int, ...],
|
|
399
367
|
val_step_size: int,
|
|
400
368
|
) -> TimeSeriesDataFrame:
|
|
401
369
|
"""Remove time series from train_data that either contain all NaNs or are too short for chosen settings.
|
|
@@ -406,7 +374,8 @@ class TimeSeriesPredictor:
|
|
|
406
374
|
In other words, this method removes from train_data all time series with only NaN values or length less than
|
|
407
375
|
min_train_length + prediction_length + (num_val_windows - 1) * val_step_size
|
|
408
376
|
"""
|
|
409
|
-
|
|
377
|
+
total_num_val_windows = sum(num_val_windows)
|
|
378
|
+
min_length = self._min_train_length + self.prediction_length + (total_num_val_windows - 1) * val_step_size
|
|
410
379
|
train_lengths = train_data.num_timesteps_per_item()
|
|
411
380
|
too_short_items = train_lengths.index[train_lengths < min_length]
|
|
412
381
|
|
|
@@ -417,7 +386,9 @@ class TimeSeriesPredictor:
|
|
|
417
386
|
)
|
|
418
387
|
train_data = train_data.query("item_id not in @too_short_items")
|
|
419
388
|
|
|
420
|
-
all_nan_items = train_data.item_ids[
|
|
389
|
+
all_nan_items = train_data.item_ids[
|
|
390
|
+
train_data[self.target].isna().groupby(TimeSeriesDataFrame.ITEMID, sort=False).all()
|
|
391
|
+
]
|
|
421
392
|
if len(all_nan_items) > 0:
|
|
422
393
|
logger.info(f"\tRemoving {len(all_nan_items)} time series consisting of only NaN values from train_data.")
|
|
423
394
|
train_data = train_data.query("item_id not in @all_nan_items")
|
|
@@ -435,27 +406,28 @@ class TimeSeriesPredictor:
|
|
|
435
406
|
@apply_presets(get_predictor_presets())
|
|
436
407
|
def fit(
|
|
437
408
|
self,
|
|
438
|
-
train_data:
|
|
439
|
-
tuning_data:
|
|
440
|
-
time_limit:
|
|
441
|
-
presets:
|
|
442
|
-
hyperparameters:
|
|
443
|
-
hyperparameter_tune_kwargs:
|
|
444
|
-
excluded_model_types:
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
409
|
+
train_data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
410
|
+
tuning_data: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
411
|
+
time_limit: int | None = None,
|
|
412
|
+
presets: str | None = None,
|
|
413
|
+
hyperparameters: str | dict[str | Type, Any] | None = None,
|
|
414
|
+
hyperparameter_tune_kwargs: str | dict | None = None,
|
|
415
|
+
excluded_model_types: list[str] | None = None,
|
|
416
|
+
ensemble_hyperparameters: dict[str, Any] | list[dict[str, Any]] | None = None,
|
|
417
|
+
num_val_windows: int | tuple[int, ...] | Literal["auto"] = 1,
|
|
418
|
+
val_step_size: int | None = None,
|
|
419
|
+
refit_every_n_windows: int | None | Literal["auto"] = 1,
|
|
448
420
|
refit_full: bool = False,
|
|
449
421
|
enable_ensemble: bool = True,
|
|
450
422
|
skip_model_selection: bool = False,
|
|
451
|
-
random_seed:
|
|
452
|
-
verbosity:
|
|
423
|
+
random_seed: int | None = 123,
|
|
424
|
+
verbosity: int | None = None,
|
|
453
425
|
) -> "TimeSeriesPredictor":
|
|
454
426
|
"""Fit probabilistic forecasting models to the given time series dataset.
|
|
455
427
|
|
|
456
428
|
Parameters
|
|
457
429
|
----------
|
|
458
|
-
train_data :
|
|
430
|
+
train_data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
459
431
|
Training data in the :class:`~autogluon.timeseries.TimeSeriesDataFrame` format.
|
|
460
432
|
|
|
461
433
|
Time series with length ``<= (num_val_windows + 1) * prediction_length`` will be ignored during training.
|
|
@@ -481,7 +453,7 @@ class TimeSeriesPredictor:
|
|
|
481
453
|
|
|
482
454
|
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
|
483
455
|
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
|
484
|
-
tuning_data :
|
|
456
|
+
tuning_data : TimeSeriesDataFrame | pd.DataFrame | Path | str, optional
|
|
485
457
|
Data reserved for model selection and hyperparameter tuning, rather than training individual models. Also
|
|
486
458
|
used to compute the validation scores. Note that only the last ``prediction_length`` time steps of each
|
|
487
459
|
time series are used for computing the validation score.
|
|
@@ -515,18 +487,23 @@ class TimeSeriesPredictor:
|
|
|
515
487
|
Available presets:
|
|
516
488
|
|
|
517
489
|
- ``"fast_training"``: Simple statistical and tree-based ML models. These models are fast to train but may not be very accurate.
|
|
518
|
-
- ``"medium_quality"``: Same models as above, plus deep learning models ``TemporalFusionTransformer`` and Chronos-
|
|
490
|
+
- ``"medium_quality"``: Same models as above, plus deep learning models ``TemporalFusionTransformer`` and Chronos-2 (small). Produces good forecasts with reasonable training time.
|
|
519
491
|
- ``"high_quality"``: A mix of multiple DL, ML and statistical forecasting models available in AutoGluon that offers the best forecast accuracy. Much more accurate than ``medium_quality``, but takes longer to train.
|
|
520
492
|
- ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
|
|
521
493
|
|
|
522
|
-
Available presets with the `Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting>`_
|
|
494
|
+
Available presets with the `Chronos-2 and Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting>`_ models:
|
|
523
495
|
|
|
496
|
+
- ``"chronos2"``: `Chronos-2 <https://huggingface.co/amazon/chronos-2>`_ base model for zero-shot forecasting.
|
|
497
|
+
- ``"chronos2_small"``: Smaller Chronos-2 model for faster zero-shot forecasting with lower memory footprint.
|
|
498
|
+
- ``"chronos2_ensemble"``: Ensemble combining zero-shot Chronos-2 base model with fine-tuned Chronos-2 small model for improved accuracy.
|
|
524
499
|
- ``"bolt_{model_size}"``: where model size is one of ``tiny,mini,small,base``. Uses the Chronos-Bolt pretrained model for zero-shot forecasting.
|
|
525
|
-
See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
|
|
526
500
|
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
501
|
+
See the documentation for ``Chronos2`` and ``Chronos`` models in :ref:`Forecasting Time Series - Model Zoo <forecasting_model_zoo>`
|
|
502
|
+
or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
|
|
503
|
+
|
|
504
|
+
Exact definitions of all presets can be found in the source code
|
|
505
|
+
[`1 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/predictor_presets.py>`_,
|
|
506
|
+
`2 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/hyperparameter_presets.py>`_].
|
|
530
507
|
|
|
531
508
|
If no ``presets`` are selected, user-provided values for ``hyperparameters`` will be used (defaulting to their
|
|
532
509
|
default values specified below).
|
|
@@ -602,6 +579,8 @@ class TimeSeriesPredictor:
|
|
|
602
579
|
* "bayes": Perform HPO with HyperOpt on GluonTS-backed models via Ray tune. Perform random search on other models.
|
|
603
580
|
* "auto": alias for "bayes"
|
|
604
581
|
|
|
582
|
+
To enable HyperOpt, install the corresponding extra with ``pip install "autogluon.timeseries[ray]"``.
|
|
583
|
+
|
|
605
584
|
The "scheduler" and "searcher" key are required when providing a dict.
|
|
606
585
|
|
|
607
586
|
Example::
|
|
@@ -623,13 +602,39 @@ class TimeSeriesPredictor:
|
|
|
623
602
|
presets="high_quality",
|
|
624
603
|
excluded_model_types=["DeepAR"],
|
|
625
604
|
)
|
|
626
|
-
|
|
605
|
+
ensemble_hyperparameters : dict or list of dict, optional
|
|
606
|
+
Hyperparameters for ensemble models. Can be a single dict for one ensemble layer, or a list of dicts
|
|
607
|
+
for multiple ensemble layers (multi-layer stacking).
|
|
608
|
+
|
|
609
|
+
For single-layer ensembling (default)::
|
|
610
|
+
|
|
611
|
+
predictor.fit(
|
|
612
|
+
...,
|
|
613
|
+
ensemble_hyperparameters={"WeightedEnsemble": {"ensemble_size": 10}},
|
|
614
|
+
)
|
|
615
|
+
|
|
616
|
+
For multi-layer ensembling, provide a list where each element configures one ensemble layer::
|
|
617
|
+
|
|
618
|
+
predictor.fit(
|
|
619
|
+
...,
|
|
620
|
+
num_val_windows=(2, 3),
|
|
621
|
+
ensemble_hyperparameters=[
|
|
622
|
+
{"WeightedEnsemble": {"ensemble_size": 5}, "SimpleAverageEnsemble": {}}, # Layer 1
|
|
623
|
+
{"PerformanceWeightedEnsemble": {}}, # Layer 2
|
|
624
|
+
],
|
|
625
|
+
)
|
|
626
|
+
|
|
627
|
+
When using multi-layer ensembling, ``num_val_windows`` must be a tuple of integers, and ``len(ensemble_hyperparameters)`` must match ``len(num_val_windows)``.
|
|
628
|
+
num_val_windows : int | tuple[int, ...] | "auto", default = 1
|
|
627
629
|
Number of backtests done on ``train_data`` for each trained model to estimate the validation performance.
|
|
628
|
-
|
|
629
|
-
|
|
630
|
+
This parameter is also used to control multi-layer ensembling.
|
|
631
|
+
|
|
632
|
+
If set to ``"auto"``, the value will be determined automatically based on dataset properties (number of
|
|
633
|
+
time series and median time series length).
|
|
630
634
|
|
|
631
|
-
Increasing this parameter increases the training time roughly by a factor of
|
|
632
|
-
See ``refit_every_n_windows`` and ``val_step_size`` for
|
|
635
|
+
Increasing this parameter increases the training time roughly by a factor of
|
|
636
|
+
``num_val_windows // refit_every_n_windows``. See ``refit_every_n_windows`` and ``val_step_size`` for
|
|
637
|
+
details.
|
|
633
638
|
|
|
634
639
|
For example, for ``prediction_length=2``, ``num_val_windows=3`` and ``val_step_size=1`` the folds are::
|
|
635
640
|
|
|
@@ -640,17 +645,41 @@ class TimeSeriesPredictor:
|
|
|
640
645
|
|
|
641
646
|
where ``x`` are the train time steps and ``y`` are the validation time steps.
|
|
642
647
|
|
|
643
|
-
This
|
|
648
|
+
This parameter can also be used to control how many of the backtesting windows are reserved for training
|
|
649
|
+
multiple layers of ensemble models. By default, AutoGluon-TimeSeries uses only a single layer of ensembles
|
|
650
|
+
trained on the backtest windows specified by the ``num_val_windows`` parameter. However, the
|
|
651
|
+
``ensemble_hyperparameters`` argument can be used to specify multiple layers of ensembles. In this case,
|
|
652
|
+
a tuple of integers can be provided in ``num_val_windows`` to control how many of the backtesting windows
|
|
653
|
+
will be used to train which ensemble layers.
|
|
654
|
+
|
|
655
|
+
For example, if ``len(ensemble_hyperparameters) == 2``, a 2-tuple ``num_val_windows=(2, 3)`` is analogous
|
|
656
|
+
to ``num_val_windows=5``, except the first layer of ensemble models will be trained on the first two
|
|
657
|
+
backtest windows, and the second layer will be trained on the latter three. Validation scores of all models
|
|
658
|
+
will be computed on the last three windows.
|
|
659
|
+
|
|
660
|
+
If ``len(ensemble_hyperparameters) == 1``, then ``num_val_windows=(5,)`` has the same effect as
|
|
661
|
+
``num_val_windows=5``.
|
|
662
|
+
|
|
663
|
+
If ``tuning_data`` is provided and ``len(ensemble_hyperparameters) == 1``, then this parameter is ignored.
|
|
664
|
+
Validation and ensemble training will be performed on ``tuning_data``.
|
|
665
|
+
|
|
666
|
+
If ``tuning_data`` is provided and ``len(ensemble_hyperparameters) > 1``, then this method expects that
|
|
667
|
+
``len(num_val_windows) > 1``. In this case, the last element of ``num_val_windows`` will be ignored. The
|
|
668
|
+
last layer of ensemble training will be performed on ``tuning_data``. Validation scores will likewise be
|
|
669
|
+
computed on ``tuning_data``.
|
|
670
|
+
|
|
644
671
|
val_step_size : int or None, default = None
|
|
645
672
|
Step size between consecutive validation windows. If set to ``None``, defaults to ``prediction_length``
|
|
646
673
|
provided when creating the predictor.
|
|
647
674
|
|
|
648
|
-
|
|
649
|
-
refit_every_n_windows: int
|
|
675
|
+
If ``tuning_data`` is provided and ``len(ensemble_hyperparameters) == 1``, then this parameter is ignored.
|
|
676
|
+
refit_every_n_windows: int | None | "auto", default = 1
|
|
650
677
|
When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
|
|
651
678
|
windows, where the number of validation windows is specified by ``num_val_windows``. Note that in the
|
|
652
679
|
default setting where ``num_val_windows=1``, this argument has no effect.
|
|
653
680
|
|
|
681
|
+
If set to ``"auto"``, the value will be determined automatically based on ``num_val_windows``.
|
|
682
|
+
|
|
654
683
|
If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
|
|
655
684
|
``refit_every_n_windows=1``, i.e., all models will be refit for each validation window.
|
|
656
685
|
refit_full : bool, default = False
|
|
@@ -673,8 +702,10 @@ class TimeSeriesPredictor:
|
|
|
673
702
|
|
|
674
703
|
"""
|
|
675
704
|
time_start = time.time()
|
|
676
|
-
if self.
|
|
677
|
-
raise AssertionError(
|
|
705
|
+
if self.is_fit:
|
|
706
|
+
raise AssertionError(
|
|
707
|
+
"Predictor is already fit! To fit additional models create a new `TimeSeriesPredictor`."
|
|
708
|
+
)
|
|
678
709
|
|
|
679
710
|
if verbosity is None:
|
|
680
711
|
verbosity = self.verbosity
|
|
@@ -720,40 +751,57 @@ class TimeSeriesPredictor:
|
|
|
720
751
|
|
|
721
752
|
if val_step_size is None:
|
|
722
753
|
val_step_size = self.prediction_length
|
|
754
|
+
median_timeseries_length = int(train_data.num_timesteps_per_item().median())
|
|
723
755
|
|
|
724
|
-
|
|
725
|
-
|
|
726
|
-
|
|
756
|
+
# Early validation: check length mismatch when num_val_windows is explicitly provided
|
|
757
|
+
if num_val_windows != "auto" and ensemble_hyperparameters is not None:
|
|
758
|
+
num_layers = len(ensemble_hyperparameters) if isinstance(ensemble_hyperparameters, list) else 1
|
|
759
|
+
num_windows_tuple = num_val_windows if isinstance(num_val_windows, tuple) else (num_val_windows,)
|
|
760
|
+
if len(num_windows_tuple) != num_layers:
|
|
761
|
+
raise ValueError(
|
|
762
|
+
f"Length mismatch: num_val_windows has {len(num_windows_tuple)} element(s) but "
|
|
763
|
+
f"ensemble_hyperparameters has {num_layers} layer(s). These must match when num_val_windows "
|
|
764
|
+
f"is explicitly provided. Use num_val_windows='auto' to automatically determine the number of windows."
|
|
765
|
+
)
|
|
766
|
+
|
|
767
|
+
if num_val_windows == "auto":
|
|
768
|
+
num_val_windows = self._recommend_num_val_windows_auto(
|
|
769
|
+
median_timeseries_length=median_timeseries_length,
|
|
770
|
+
val_step_size=val_step_size,
|
|
771
|
+
num_items=train_data.num_items,
|
|
772
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
727
773
|
)
|
|
774
|
+
logger.info(f"Automatically setting num_val_windows={num_val_windows} based on dataset properties")
|
|
775
|
+
|
|
776
|
+
num_val_windows, ensemble_hyperparameters = self._validate_and_normalize_validation_and_ensemble_inputs(
|
|
777
|
+
num_val_windows=num_val_windows,
|
|
778
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
779
|
+
val_step_size=val_step_size,
|
|
780
|
+
median_timeseries_length=median_timeseries_length,
|
|
781
|
+
tuning_data_provided=tuning_data is not None,
|
|
782
|
+
)
|
|
728
783
|
|
|
729
784
|
if tuning_data is not None:
|
|
730
785
|
tuning_data = self._check_and_prepare_data_frame(tuning_data, name="tuning_data")
|
|
731
786
|
tuning_data = self._check_and_prepare_data_frame_for_evaluation(tuning_data, name="tuning_data")
|
|
732
787
|
logger.info(f"Provided tuning_data has {self._get_dataset_stats(tuning_data)}")
|
|
733
|
-
# TODO: Use num_val_windows to perform multi-window backtests on tuning_data
|
|
734
|
-
if num_val_windows > 0:
|
|
735
|
-
logger.warning(
|
|
736
|
-
"\tSetting num_val_windows = 0 (disabling backtesting on train_data) because tuning_data is provided."
|
|
737
|
-
)
|
|
738
|
-
num_val_windows = 0
|
|
739
788
|
|
|
740
|
-
if
|
|
741
|
-
|
|
789
|
+
if refit_every_n_windows == "auto":
|
|
790
|
+
refit_every_n_windows = self._recommend_refit_every_n_windows_auto(num_val_windows)
|
|
791
|
+
logger.info(
|
|
792
|
+
f"Automatically setting refit_every_n_windows={refit_every_n_windows} based on num_val_windows"
|
|
793
|
+
)
|
|
742
794
|
|
|
743
|
-
if num_val_windows <= 1 and refit_every_n_windows is not None and refit_every_n_windows > 1:
|
|
795
|
+
if sum(num_val_windows) <= 1 and refit_every_n_windows is not None and refit_every_n_windows > 1:
|
|
744
796
|
logger.warning(
|
|
745
|
-
f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to
|
|
746
|
-
"
|
|
797
|
+
f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to "
|
|
798
|
+
f"{num_val_windows}. refit_every_n_windows will have no effect."
|
|
747
799
|
)
|
|
748
800
|
|
|
749
801
|
if not skip_model_selection:
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
)
|
|
753
|
-
|
|
754
|
-
val_splitter = ExpandingWindowSplitter(
|
|
755
|
-
prediction_length=self.prediction_length, num_val_windows=num_val_windows, val_step_size=val_step_size
|
|
756
|
-
)
|
|
802
|
+
# When tuning_data is provided, ignore the last element of num_val_windows for filtering purposes
|
|
803
|
+
filter_num_val_windows = num_val_windows[:-1] if tuning_data is not None else num_val_windows
|
|
804
|
+
train_data = self._filter_useless_train_data(train_data, filter_num_val_windows, val_step_size)
|
|
757
805
|
|
|
758
806
|
time_left = None if time_limit is None else time_limit - (time.time() - time_start)
|
|
759
807
|
self._learner.fit(
|
|
@@ -762,9 +810,11 @@ class TimeSeriesPredictor:
|
|
|
762
810
|
val_data=tuning_data,
|
|
763
811
|
hyperparameter_tune_kwargs=hyperparameter_tune_kwargs,
|
|
764
812
|
excluded_model_types=excluded_model_types,
|
|
813
|
+
ensemble_hyperparameters=ensemble_hyperparameters,
|
|
765
814
|
time_limit=time_left,
|
|
766
815
|
verbosity=verbosity,
|
|
767
|
-
|
|
816
|
+
num_val_windows=num_val_windows,
|
|
817
|
+
val_step_size=val_step_size,
|
|
768
818
|
refit_every_n_windows=refit_every_n_windows,
|
|
769
819
|
skip_model_selection=skip_model_selection,
|
|
770
820
|
enable_ensemble=enable_ensemble,
|
|
@@ -779,23 +829,152 @@ class TimeSeriesPredictor:
|
|
|
779
829
|
self.save()
|
|
780
830
|
return self
|
|
781
831
|
|
|
832
|
+
def _recommend_num_val_windows_auto(
|
|
833
|
+
self,
|
|
834
|
+
num_items: int,
|
|
835
|
+
median_timeseries_length: int,
|
|
836
|
+
val_step_size: int,
|
|
837
|
+
ensemble_hyperparameters: dict[str, Any] | list[dict[str, Any]] | None = None,
|
|
838
|
+
) -> tuple[int, ...]:
|
|
839
|
+
if num_items < 20:
|
|
840
|
+
recommended_windows = 5
|
|
841
|
+
elif num_items < 100:
|
|
842
|
+
recommended_windows = 3
|
|
843
|
+
else:
|
|
844
|
+
recommended_windows = 2
|
|
845
|
+
|
|
846
|
+
min_train_length = max(2 * self.prediction_length + 1, 10)
|
|
847
|
+
max_windows = int((median_timeseries_length - min_train_length - self.prediction_length) // val_step_size + 1)
|
|
848
|
+
total_windows = min(recommended_windows, max(1, max_windows))
|
|
849
|
+
|
|
850
|
+
num_layers = len(ensemble_hyperparameters) if isinstance(ensemble_hyperparameters, list) else 1
|
|
851
|
+
if total_windows >= num_layers:
|
|
852
|
+
# Distribute windows: most to first layer, 1 to each remaining layer
|
|
853
|
+
return (total_windows - num_layers + 1,) + (1,) * (num_layers - 1)
|
|
854
|
+
else:
|
|
855
|
+
# Insufficient windows: return tuple matching num_layers, will be reduced downstream
|
|
856
|
+
return (1,) * num_layers
|
|
857
|
+
|
|
858
|
+
def _recommend_refit_every_n_windows_auto(self, num_val_windows: tuple[int, ...]) -> int:
|
|
859
|
+
# Simple mapping for total_windows -> refit_ever_n_windows: 1 -> 1, 2 -> 1, 3 -> 2, 4 -> 2, 5 -> 2
|
|
860
|
+
total_windows = sum(num_val_windows)
|
|
861
|
+
return int(round(total_windows**0.5))
|
|
862
|
+
|
|
863
|
+
def _validate_and_normalize_validation_and_ensemble_inputs(
|
|
864
|
+
self,
|
|
865
|
+
num_val_windows: int | tuple[int, ...],
|
|
866
|
+
ensemble_hyperparameters: dict[str, Any] | list[dict[str, Any]] | None,
|
|
867
|
+
val_step_size: int,
|
|
868
|
+
median_timeseries_length: float,
|
|
869
|
+
tuning_data_provided: bool,
|
|
870
|
+
) -> tuple[tuple[int, ...], list[dict[str, Any]] | None]:
|
|
871
|
+
"""Validate and normalize num_val_windows and ensemble_hyperparameters for multi-layer ensembling."""
|
|
872
|
+
if ensemble_hyperparameters is not None and isinstance(ensemble_hyperparameters, dict):
|
|
873
|
+
ensemble_hyperparameters = [ensemble_hyperparameters]
|
|
874
|
+
|
|
875
|
+
num_val_windows = self._normalize_num_val_windows_input(num_val_windows, tuning_data_provided)
|
|
876
|
+
num_val_windows = self._reduce_num_val_windows_if_necessary(
|
|
877
|
+
num_val_windows, val_step_size, median_timeseries_length, tuning_data_provided
|
|
878
|
+
)
|
|
879
|
+
|
|
880
|
+
if ensemble_hyperparameters is not None and len(num_val_windows) < len(ensemble_hyperparameters):
|
|
881
|
+
logger.warning(
|
|
882
|
+
f"Time series too short: reducing ensemble layers from {len(ensemble_hyperparameters)} to "
|
|
883
|
+
f"{len(num_val_windows)}. Only the first {len(num_val_windows)} ensemble layer(s) will be trained."
|
|
884
|
+
)
|
|
885
|
+
ensemble_hyperparameters = ensemble_hyperparameters[: len(num_val_windows)]
|
|
886
|
+
|
|
887
|
+
return num_val_windows, ensemble_hyperparameters
|
|
888
|
+
|
|
889
|
+
def _normalize_num_val_windows_input(
|
|
890
|
+
self,
|
|
891
|
+
num_val_windows: int | tuple[int, ...],
|
|
892
|
+
tuning_data_provided: bool,
|
|
893
|
+
) -> tuple[int, ...]:
|
|
894
|
+
if isinstance(num_val_windows, int):
|
|
895
|
+
num_val_windows = (num_val_windows,)
|
|
896
|
+
if not isinstance(num_val_windows, tuple):
|
|
897
|
+
raise TypeError(f"num_val_windows must be int or tuple[int, ...], got {type(num_val_windows)}")
|
|
898
|
+
if len(num_val_windows) == 0:
|
|
899
|
+
raise ValueError("num_val_windows tuple cannot be empty")
|
|
900
|
+
if tuning_data_provided:
|
|
901
|
+
num_val_windows = num_val_windows[:-1] + (1,)
|
|
902
|
+
logger.warning(
|
|
903
|
+
f"\tTuning data is provided. Setting num_val_windows = {num_val_windows}. Validation scores will"
|
|
904
|
+
" be computed on a single window of tuning_data."
|
|
905
|
+
)
|
|
906
|
+
if not all(isinstance(n, int) and n > 0 for n in num_val_windows):
|
|
907
|
+
raise ValueError("All elements of num_val_windows must be positive integers.")
|
|
908
|
+
return num_val_windows
|
|
909
|
+
|
|
910
|
+
def _reduce_num_val_windows_if_necessary(
|
|
911
|
+
self,
|
|
912
|
+
num_val_windows: tuple[int, ...],
|
|
913
|
+
val_step_size: int,
|
|
914
|
+
median_time_series_length: float,
|
|
915
|
+
tuning_data_provided: bool,
|
|
916
|
+
) -> tuple[int, ...]:
|
|
917
|
+
"""Adjust num_val_windows based on the length of time series in train_data.
|
|
918
|
+
|
|
919
|
+
Chooses num_val_windows such that TS with median length is long enough to perform num_val_windows validations
|
|
920
|
+
(at least 1, at most `original_num_val_windows`).
|
|
921
|
+
|
|
922
|
+
In other words, find largest `num_val_windows` that satisfies
|
|
923
|
+
median_length >= min_train_length + prediction_length + (num_val_windows - 1) * val_step_size
|
|
924
|
+
|
|
925
|
+
If tuning_data is provided, the last element of `num_val_windows` is ignored when computing the number of
|
|
926
|
+
requested validation windows.
|
|
927
|
+
"""
|
|
928
|
+
num_val_windows_for_median_ts = int(
|
|
929
|
+
(median_time_series_length - self._min_train_length - self.prediction_length) // val_step_size + 1
|
|
930
|
+
)
|
|
931
|
+
max_allowed = max(1, num_val_windows_for_median_ts)
|
|
932
|
+
total_requested = sum(num_val_windows) if not tuning_data_provided else sum(num_val_windows[:-1])
|
|
933
|
+
|
|
934
|
+
if max_allowed >= total_requested:
|
|
935
|
+
return num_val_windows
|
|
936
|
+
|
|
937
|
+
logger.warning(
|
|
938
|
+
f"Time series in train_data are too short for chosen num_val_windows={num_val_windows}. "
|
|
939
|
+
f"Reducing num_val_windows to {max_allowed} total windows."
|
|
940
|
+
)
|
|
941
|
+
|
|
942
|
+
result = list(num_val_windows)
|
|
943
|
+
|
|
944
|
+
# Starting from the last group of windows, reduce number of windows in each group by 1,
|
|
945
|
+
# until sum(num_val_windows) <= max_allowed is satisfied.
|
|
946
|
+
for i in range(len(result) - 1, -1, -1):
|
|
947
|
+
while result[i] > 1 and sum(result) > max_allowed:
|
|
948
|
+
result[i] -= 1
|
|
949
|
+
if sum(result) <= max_allowed:
|
|
950
|
+
break
|
|
951
|
+
|
|
952
|
+
# It is possible that the above for loop reduced the number of windows in each group to 1
|
|
953
|
+
# (i.e. result = [1] * len(num_val_windows)), but still sum(result) > max_allowed. In this
|
|
954
|
+
# case we set result = [1] * max_allowed
|
|
955
|
+
if sum(result) > max_allowed:
|
|
956
|
+
result = [1] * max_allowed
|
|
957
|
+
|
|
958
|
+
return tuple(result)
|
|
959
|
+
|
|
782
960
|
def model_names(self) -> list[str]:
|
|
783
961
|
"""Returns the list of model names trained by this predictor object."""
|
|
962
|
+
self._assert_is_fit("model_names")
|
|
784
963
|
return self._trainer.get_model_names()
|
|
785
964
|
|
|
786
965
|
def predict(
|
|
787
966
|
self,
|
|
788
|
-
data:
|
|
789
|
-
known_covariates:
|
|
790
|
-
model:
|
|
967
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
968
|
+
known_covariates: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
969
|
+
model: str | None = None,
|
|
791
970
|
use_cache: bool = True,
|
|
792
|
-
random_seed:
|
|
971
|
+
random_seed: int | None = 123,
|
|
793
972
|
) -> TimeSeriesDataFrame:
|
|
794
973
|
"""Return quantile and mean forecasts for the given dataset, starting from the end of each time series.
|
|
795
974
|
|
|
796
975
|
Parameters
|
|
797
976
|
----------
|
|
798
|
-
data :
|
|
977
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
799
978
|
Historical time series data for which the forecast needs to be made.
|
|
800
979
|
|
|
801
980
|
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
|
@@ -803,7 +982,7 @@ class TimeSeriesPredictor:
|
|
|
803
982
|
|
|
804
983
|
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
|
805
984
|
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
|
806
|
-
known_covariates :
|
|
985
|
+
known_covariates : TimeSeriesDataFrame | pd.DataFrame | Path | str, optional
|
|
807
986
|
If ``known_covariates_names`` were specified when creating the predictor, it is necessary to provide the
|
|
808
987
|
values of the known covariates for each time series during the forecast horizon. Specifically:
|
|
809
988
|
|
|
@@ -853,6 +1032,7 @@ class TimeSeriesPredictor:
|
|
|
853
1032
|
B 2020-03-04 17.1
|
|
854
1033
|
2020-03-05 8.3
|
|
855
1034
|
"""
|
|
1035
|
+
self._assert_is_fit("predict")
|
|
856
1036
|
# Save original item_id order to return predictions in the same order as input data
|
|
857
1037
|
data = self._to_data_frame(data)
|
|
858
1038
|
original_item_id_order = data.item_ids
|
|
@@ -866,14 +1046,209 @@ class TimeSeriesPredictor:
|
|
|
866
1046
|
use_cache=use_cache,
|
|
867
1047
|
random_seed=random_seed,
|
|
868
1048
|
)
|
|
869
|
-
return cast(TimeSeriesDataFrame, predictions.reindex(original_item_id_order, level=ITEMID))
|
|
1049
|
+
return cast(TimeSeriesDataFrame, predictions.reindex(original_item_id_order, level=TimeSeriesDataFrame.ITEMID))
|
|
1050
|
+
|
|
1051
|
+
@overload
|
|
1052
|
+
def backtest_predictions(
|
|
1053
|
+
self,
|
|
1054
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1055
|
+
*,
|
|
1056
|
+
model: str | None = None,
|
|
1057
|
+
num_val_windows: int | None = None,
|
|
1058
|
+
val_step_size: int | None = None,
|
|
1059
|
+
use_cache: bool = True,
|
|
1060
|
+
) -> list[TimeSeriesDataFrame]: ...
|
|
1061
|
+
|
|
1062
|
+
@overload
|
|
1063
|
+
def backtest_predictions(
|
|
1064
|
+
self,
|
|
1065
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1066
|
+
*,
|
|
1067
|
+
model: list[str],
|
|
1068
|
+
num_val_windows: int | None = None,
|
|
1069
|
+
val_step_size: int | None = None,
|
|
1070
|
+
use_cache: bool = True,
|
|
1071
|
+
) -> dict[str, list[TimeSeriesDataFrame]]: ...
|
|
1072
|
+
|
|
1073
|
+
def backtest_predictions(
|
|
1074
|
+
self,
|
|
1075
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1076
|
+
*,
|
|
1077
|
+
model: str | list[str] | None = None,
|
|
1078
|
+
num_val_windows: int | None = None,
|
|
1079
|
+
val_step_size: int | None = None,
|
|
1080
|
+
use_cache: bool = True,
|
|
1081
|
+
) -> list[TimeSeriesDataFrame] | dict[str, list[TimeSeriesDataFrame]]:
|
|
1082
|
+
"""Return predictions for multiple validation windows.
|
|
1083
|
+
|
|
1084
|
+
When ``data=None``, returns the predictions that were saved during training. Otherwise, generates new
|
|
1085
|
+
predictions by splitting ``data`` into multiple windows using an expanding window strategy.
|
|
1086
|
+
|
|
1087
|
+
The corresponding target values for each window can be obtained using
|
|
1088
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_targets`.
|
|
1089
|
+
|
|
1090
|
+
Parameters
|
|
1091
|
+
----------
|
|
1092
|
+
data : TimeSeriesDataFrame, optional
|
|
1093
|
+
Time series data to generate predictions for. If ``None``, returns the predictions that were saved
|
|
1094
|
+
during training on ``train_data``.
|
|
1095
|
+
|
|
1096
|
+
If provided, all time series in ``data`` must have length at least
|
|
1097
|
+
``prediction_length + (num_val_windows - 1) * val_step_size + 1``.
|
|
1098
|
+
|
|
1099
|
+
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
|
1100
|
+
the predictor.
|
|
1101
|
+
model : str, list[str], or None, default = None
|
|
1102
|
+
Name of the model(s) to generate predictions with. By default, the best model during training
|
|
1103
|
+
(with highest validation score) will be used.
|
|
1104
|
+
|
|
1105
|
+
- If ``str``: Returns predictions for a single model as a list.
|
|
1106
|
+
- If ``list[str]``: Returns predictions for multiple models as a dict mapping model names to lists.
|
|
1107
|
+
- If ``None``: Uses the best model.
|
|
1108
|
+
num_val_windows : int, optional
|
|
1109
|
+
Number of validation windows to generate. If ``None``, uses the ``num_val_windows`` value from training
|
|
1110
|
+
configuration when ``data=None``, otherwise defaults to 1.
|
|
1111
|
+
|
|
1112
|
+
For example, with ``prediction_length=2``, ``num_val_windows=3``, and ``val_step_size=1``, the validation
|
|
1113
|
+
windows are::
|
|
1114
|
+
|
|
1115
|
+
|-------------------|
|
|
1116
|
+
| x x x x x y y - - |
|
|
1117
|
+
| x x x x x x y y - |
|
|
1118
|
+
| x x x x x x x y y |
|
|
1119
|
+
|
|
1120
|
+
where ``x`` denotes training time steps and ``y`` denotes validation time steps for each window.
|
|
1121
|
+
val_step_size : int, optional
|
|
1122
|
+
Number of time steps between the start of consecutive validation windows. If ``None``, defaults to
|
|
1123
|
+
``prediction_length``.
|
|
1124
|
+
use_cache : bool, default = True
|
|
1125
|
+
If True, will attempt to use cached predictions. If False, cached predictions will be ignored.
|
|
1126
|
+
This argument is ignored if ``cache_predictions`` was set to False when creating the ``TimeSeriesPredictor``.
|
|
1127
|
+
|
|
1128
|
+
Returns
|
|
1129
|
+
-------
|
|
1130
|
+
list[TimeSeriesDataFrame] or dict[str, list[TimeSeriesDataFrame]]
|
|
1131
|
+
Predictions for each validation window.
|
|
1132
|
+
|
|
1133
|
+
- If ``model`` is a ``str`` or ``None``: Returns a list of length ``num_val_windows``, where each element
|
|
1134
|
+
contains the predictions for one validation window.
|
|
1135
|
+
- If ``model`` is a ``list[str]``: Returns a dict mapping each model name to a list of predictions for
|
|
1136
|
+
each validation window.
|
|
1137
|
+
|
|
1138
|
+
Examples
|
|
1139
|
+
--------
|
|
1140
|
+
Make predictions on new data with the best model
|
|
1141
|
+
|
|
1142
|
+
>>> predictor.backtest_predictions(test_data, num_val_windows=2)
|
|
1143
|
+
|
|
1144
|
+
Load validation predictions for all models that were saved during training
|
|
1145
|
+
|
|
1146
|
+
>>> predictor.backtest_predictions(model=predictor.model_names())
|
|
1147
|
+
|
|
1148
|
+
See Also
|
|
1149
|
+
--------
|
|
1150
|
+
backtest_targets
|
|
1151
|
+
Return target values aligned with predictions.
|
|
1152
|
+
evaluate
|
|
1153
|
+
Evaluate forecast accuracy on a hold-out set.
|
|
1154
|
+
predict
|
|
1155
|
+
Generate forecasts for future time steps.
|
|
1156
|
+
"""
|
|
1157
|
+
self._assert_is_fit("backtest_predictions")
|
|
1158
|
+
if data is not None:
|
|
1159
|
+
data = self._check_and_prepare_data_frame(data)
|
|
1160
|
+
|
|
1161
|
+
if model is None:
|
|
1162
|
+
model_names = [self.model_best]
|
|
1163
|
+
elif isinstance(model, str):
|
|
1164
|
+
model_names = [model]
|
|
1165
|
+
else:
|
|
1166
|
+
model_names = model
|
|
1167
|
+
|
|
1168
|
+
result = self._learner.backtest_predictions(
|
|
1169
|
+
data=data,
|
|
1170
|
+
model_names=model_names,
|
|
1171
|
+
num_val_windows=num_val_windows,
|
|
1172
|
+
val_step_size=val_step_size,
|
|
1173
|
+
use_cache=use_cache,
|
|
1174
|
+
)
|
|
1175
|
+
|
|
1176
|
+
if isinstance(model, list):
|
|
1177
|
+
return result
|
|
1178
|
+
else:
|
|
1179
|
+
return result[model_names[0]]
|
|
1180
|
+
|
|
1181
|
+
def backtest_targets(
|
|
1182
|
+
self,
|
|
1183
|
+
data: TimeSeriesDataFrame | None = None,
|
|
1184
|
+
*,
|
|
1185
|
+
num_val_windows: int | None = None,
|
|
1186
|
+
val_step_size: int | None = None,
|
|
1187
|
+
) -> list[TimeSeriesDataFrame]:
|
|
1188
|
+
"""Return target values for each validation window.
|
|
1189
|
+
|
|
1190
|
+
Returns the actual target values corresponding to each validation window used in
|
|
1191
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`. The returned targets are aligned
|
|
1192
|
+
with the predictions, making it easy to compute custom evaluation metrics or analyze forecast errors.
|
|
1193
|
+
|
|
1194
|
+
Parameters
|
|
1195
|
+
----------
|
|
1196
|
+
data : TimeSeriesDataFrame, optional
|
|
1197
|
+
Time series data to extract targets from. If ``None``, returns the targets from the validation windows
|
|
1198
|
+
used during training.
|
|
1199
|
+
|
|
1200
|
+
If provided, all time series in ``data`` must have length at least
|
|
1201
|
+
``prediction_length + (num_val_windows - 1) * val_step_size + 1``.
|
|
1202
|
+
|
|
1203
|
+
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
|
1204
|
+
the predictor.
|
|
1205
|
+
num_val_windows : int, optional
|
|
1206
|
+
Number of validation windows to extract targets for. If ``None``, uses the ``num_val_windows`` value from
|
|
1207
|
+
training configuration when ``data=None``, otherwise defaults to 1.
|
|
1208
|
+
|
|
1209
|
+
This should match the ``num_val_windows`` argument passed to
|
|
1210
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`.
|
|
1211
|
+
val_step_size : int, optional
|
|
1212
|
+
Number of time steps between the start of consecutive validation windows. If ``None``, defaults to
|
|
1213
|
+
``prediction_length``.
|
|
1214
|
+
|
|
1215
|
+
This should match the ``val_step_size`` argument passed to
|
|
1216
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`.
|
|
1217
|
+
|
|
1218
|
+
Returns
|
|
1219
|
+
-------
|
|
1220
|
+
list[TimeSeriesDataFrame]
|
|
1221
|
+
Target values for each validation window. Returns a list of length ``num_val_windows``,
|
|
1222
|
+
where each element contains the full time series data for one validation window.
|
|
1223
|
+
Each dataframe includes both historical context and the last ``prediction_length`` time steps
|
|
1224
|
+
that represent the target values to compare against predictions.
|
|
1225
|
+
|
|
1226
|
+
The returned targets are aligned with the output of
|
|
1227
|
+
:meth:`~autogluon.timeseries.TimeSeriesPredictor.backtest_predictions`, so ``targets[i]`` corresponds
|
|
1228
|
+
to ``predictions[i]`` for the i-th validation window.
|
|
1229
|
+
|
|
1230
|
+
See Also
|
|
1231
|
+
--------
|
|
1232
|
+
backtest_predictions
|
|
1233
|
+
Return predictions for multiple validation windows.
|
|
1234
|
+
evaluate
|
|
1235
|
+
Evaluate forecast accuracy on a hold-out set.
|
|
1236
|
+
"""
|
|
1237
|
+
self._assert_is_fit("backtest_targets")
|
|
1238
|
+
if data is not None:
|
|
1239
|
+
data = self._check_and_prepare_data_frame(data)
|
|
1240
|
+
return self._learner.backtest_targets(
|
|
1241
|
+
data=data,
|
|
1242
|
+
num_val_windows=num_val_windows,
|
|
1243
|
+
val_step_size=val_step_size,
|
|
1244
|
+
)
|
|
870
1245
|
|
|
871
1246
|
def evaluate(
|
|
872
1247
|
self,
|
|
873
|
-
data:
|
|
874
|
-
model:
|
|
875
|
-
metrics:
|
|
876
|
-
cutoff:
|
|
1248
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
1249
|
+
model: str | None = None,
|
|
1250
|
+
metrics: str | TimeSeriesScorer | list[str | TimeSeriesScorer] | None = None,
|
|
1251
|
+
cutoff: int | None = None,
|
|
877
1252
|
display: bool = False,
|
|
878
1253
|
use_cache: bool = True,
|
|
879
1254
|
) -> dict[str, float]:
|
|
@@ -890,7 +1265,7 @@ class TimeSeriesPredictor:
|
|
|
890
1265
|
|
|
891
1266
|
Parameters
|
|
892
1267
|
----------
|
|
893
|
-
data :
|
|
1268
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
894
1269
|
The data to evaluate the best model on. If a ``cutoff`` is not provided, the last ``prediction_length``
|
|
895
1270
|
time steps of each time series in ``data`` will be held out for prediction and forecast accuracy will
|
|
896
1271
|
be calculated on these time steps. When a ``cutoff`` is provided, the ``-cutoff``-th to the
|
|
@@ -907,7 +1282,7 @@ class TimeSeriesPredictor:
|
|
|
907
1282
|
model : str, optional
|
|
908
1283
|
Name of the model that you would like to evaluate. By default, the best model during training
|
|
909
1284
|
(with highest validation score) will be used.
|
|
910
|
-
metrics : str, TimeSeriesScorer or list[
|
|
1285
|
+
metrics : str, TimeSeriesScorer or list[str | TimeSeriesScorer], optional
|
|
911
1286
|
Metric or a list of metrics to compute scores with. Defaults to ``self.eval_metric``. Supports both
|
|
912
1287
|
metric names as strings and custom metrics based on TimeSeriesScorer.
|
|
913
1288
|
cutoff : int, optional
|
|
@@ -928,7 +1303,7 @@ class TimeSeriesPredictor:
|
|
|
928
1303
|
will have their signs flipped to obey this convention. For example, negative MAPE values will be reported.
|
|
929
1304
|
To get the ``eval_metric`` score, do ``output[predictor.eval_metric.name]``.
|
|
930
1305
|
"""
|
|
931
|
-
|
|
1306
|
+
self._assert_is_fit("evaluate")
|
|
932
1307
|
data = self._check_and_prepare_data_frame(data)
|
|
933
1308
|
data = self._check_and_prepare_data_frame_for_evaluation(data, cutoff=cutoff)
|
|
934
1309
|
|
|
@@ -940,15 +1315,15 @@ class TimeSeriesPredictor:
|
|
|
940
1315
|
|
|
941
1316
|
def feature_importance(
|
|
942
1317
|
self,
|
|
943
|
-
data:
|
|
944
|
-
model:
|
|
945
|
-
metric:
|
|
946
|
-
features:
|
|
947
|
-
time_limit:
|
|
1318
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
1319
|
+
model: str | None = None,
|
|
1320
|
+
metric: str | TimeSeriesScorer | None = None,
|
|
1321
|
+
features: list[str] | None = None,
|
|
1322
|
+
time_limit: float | None = None,
|
|
948
1323
|
method: Literal["naive", "permutation"] = "permutation",
|
|
949
1324
|
subsample_size: int = 50,
|
|
950
|
-
num_iterations:
|
|
951
|
-
random_seed:
|
|
1325
|
+
num_iterations: int | None = None,
|
|
1326
|
+
random_seed: int | None = 123,
|
|
952
1327
|
relative_scores: bool = False,
|
|
953
1328
|
include_confidence_band: bool = True,
|
|
954
1329
|
confidence_level: float = 0.99,
|
|
@@ -1045,6 +1420,7 @@ class TimeSeriesPredictor:
|
|
|
1045
1420
|
'importance': The estimated feature importance score.
|
|
1046
1421
|
'stddev': The standard deviation of the feature importance score. If NaN, then not enough ``num_iterations`` were used.
|
|
1047
1422
|
"""
|
|
1423
|
+
self._assert_is_fit("feature_importance")
|
|
1048
1424
|
if data is not None:
|
|
1049
1425
|
data = self._check_and_prepare_data_frame(data)
|
|
1050
1426
|
data = self._check_and_prepare_data_frame_for_evaluation(data)
|
|
@@ -1063,7 +1439,7 @@ class TimeSeriesPredictor:
|
|
|
1063
1439
|
include_confidence_band=include_confidence_band,
|
|
1064
1440
|
confidence_level=confidence_level,
|
|
1065
1441
|
)
|
|
1066
|
-
return fi_df
|
|
1442
|
+
return fi_df.sort_values("importance", ascending=False)
|
|
1067
1443
|
|
|
1068
1444
|
@classmethod
|
|
1069
1445
|
def _load_version_file(cls, path: str) -> str:
|
|
@@ -1091,7 +1467,7 @@ class TimeSeriesPredictor:
|
|
|
1091
1467
|
return version
|
|
1092
1468
|
|
|
1093
1469
|
@classmethod
|
|
1094
|
-
def load(cls, path:
|
|
1470
|
+
def load(cls, path: str | Path, require_version_match: bool = True) -> "TimeSeriesPredictor":
|
|
1095
1471
|
"""Load an existing ``TimeSeriesPredictor`` from given ``path``.
|
|
1096
1472
|
|
|
1097
1473
|
.. warning::
|
|
@@ -1175,15 +1551,14 @@ class TimeSeriesPredictor:
|
|
|
1175
1551
|
@property
|
|
1176
1552
|
def model_best(self) -> str:
|
|
1177
1553
|
"""Returns the name of the best model from trainer."""
|
|
1554
|
+
self._assert_is_fit("model_best")
|
|
1178
1555
|
if self._trainer.model_best is not None:
|
|
1179
1556
|
models = self._trainer.get_model_names()
|
|
1180
1557
|
if self._trainer.model_best in models:
|
|
1181
1558
|
return self._trainer.model_best
|
|
1182
1559
|
return self._trainer.get_model_best()
|
|
1183
1560
|
|
|
1184
|
-
def persist(
|
|
1185
|
-
self, models: Union[Literal["all", "best"], list[str]] = "best", with_ancestors: bool = True
|
|
1186
|
-
) -> list[str]:
|
|
1561
|
+
def persist(self, models: Literal["all", "best"] | list[str] = "best", with_ancestors: bool = True) -> list[str]:
|
|
1187
1562
|
"""Persist models in memory for reduced inference latency. This is particularly important if the models are being used for online
|
|
1188
1563
|
inference where low latency is critical. If models are not persisted in memory, they are loaded from disk every time they are
|
|
1189
1564
|
asked to make predictions. This is especially cumbersome for large deep learning based models which have to be loaded into
|
|
@@ -1206,6 +1581,7 @@ class TimeSeriesPredictor:
|
|
|
1206
1581
|
list_of_models : list[str]
|
|
1207
1582
|
List of persisted model names.
|
|
1208
1583
|
"""
|
|
1584
|
+
self._assert_is_fit("persist")
|
|
1209
1585
|
return self._learner.persist_trainer(models=models, with_ancestors=with_ancestors)
|
|
1210
1586
|
|
|
1211
1587
|
def unpersist(self) -> list[str]:
|
|
@@ -1224,10 +1600,10 @@ class TimeSeriesPredictor:
|
|
|
1224
1600
|
|
|
1225
1601
|
def leaderboard(
|
|
1226
1602
|
self,
|
|
1227
|
-
data:
|
|
1228
|
-
cutoff:
|
|
1603
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str | None = None,
|
|
1604
|
+
cutoff: int | None = None,
|
|
1229
1605
|
extra_info: bool = False,
|
|
1230
|
-
extra_metrics:
|
|
1606
|
+
extra_metrics: list[str | TimeSeriesScorer] | None = None,
|
|
1231
1607
|
display: bool = False,
|
|
1232
1608
|
use_cache: bool = True,
|
|
1233
1609
|
**kwargs,
|
|
@@ -1252,7 +1628,7 @@ class TimeSeriesPredictor:
|
|
|
1252
1628
|
|
|
1253
1629
|
Parameters
|
|
1254
1630
|
----------
|
|
1255
|
-
data :
|
|
1631
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str, optional
|
|
1256
1632
|
dataset used for additional evaluation. Must include both historical and future data (i.e., length of all
|
|
1257
1633
|
time series in ``data`` must be at least ``prediction_length + 1``, if ``cutoff`` is not provided,
|
|
1258
1634
|
``-cutoff + 1`` otherwise).
|
|
@@ -1271,7 +1647,7 @@ class TimeSeriesPredictor:
|
|
|
1271
1647
|
If True, the leaderboard will contain an additional column ``hyperparameters`` with the hyperparameters used
|
|
1272
1648
|
by each model during training. An empty dictionary ``{}`` means that the model was trained with default
|
|
1273
1649
|
hyperparameters.
|
|
1274
|
-
extra_metrics : list[
|
|
1650
|
+
extra_metrics : list[str | TimeSeriesScorer], optional
|
|
1275
1651
|
A list of metrics to calculate scores for and include in the output DataFrame.
|
|
1276
1652
|
|
|
1277
1653
|
Only valid when ``data`` is specified. The scores refer to the scores on ``data`` (same data as used to
|
|
@@ -1293,6 +1669,7 @@ class TimeSeriesPredictor:
|
|
|
1293
1669
|
The leaderboard containing information on all models and in order of best model to worst in terms of
|
|
1294
1670
|
test performance.
|
|
1295
1671
|
"""
|
|
1672
|
+
self._assert_is_fit("leaderboard")
|
|
1296
1673
|
if "silent" in kwargs:
|
|
1297
1674
|
# keep `silent` logic for backwards compatibility
|
|
1298
1675
|
assert isinstance(kwargs["silent"], bool)
|
|
@@ -1317,12 +1694,12 @@ class TimeSeriesPredictor:
|
|
|
1317
1694
|
print(leaderboard)
|
|
1318
1695
|
return leaderboard
|
|
1319
1696
|
|
|
1320
|
-
def make_future_data_frame(self, data:
|
|
1697
|
+
def make_future_data_frame(self, data: TimeSeriesDataFrame | pd.DataFrame | Path | str) -> pd.DataFrame:
|
|
1321
1698
|
"""Generate a dataframe with the ``item_id`` and ``timestamp`` values corresponding to the forecast horizon.
|
|
1322
1699
|
|
|
1323
1700
|
Parameters
|
|
1324
1701
|
----------
|
|
1325
|
-
data :
|
|
1702
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
1326
1703
|
Historical time series data.
|
|
1327
1704
|
|
|
1328
1705
|
Returns
|
|
@@ -1370,6 +1747,7 @@ class TimeSeriesPredictor:
|
|
|
1370
1747
|
Dict containing various detailed information. We do not recommend directly printing this dict as it may
|
|
1371
1748
|
be very large.
|
|
1372
1749
|
"""
|
|
1750
|
+
self._assert_is_fit("fit_summary")
|
|
1373
1751
|
# TODO: HPO-specific information currently not reported in fit_summary
|
|
1374
1752
|
# TODO: Revisit after ray tune integration
|
|
1375
1753
|
|
|
@@ -1430,6 +1808,7 @@ class TimeSeriesPredictor:
|
|
|
1430
1808
|
``predictor.predict(data)`` is called will be the refit_full version instead of the original version of the
|
|
1431
1809
|
model. Has no effect if ``model`` is not the best model.
|
|
1432
1810
|
"""
|
|
1811
|
+
self._assert_is_fit("refit_full")
|
|
1433
1812
|
logger.warning(
|
|
1434
1813
|
"\tWARNING: refit_full functionality for TimeSeriesPredictor is experimental "
|
|
1435
1814
|
"and is not yet supported by all models."
|
|
@@ -1482,7 +1861,7 @@ class TimeSeriesPredictor:
|
|
|
1482
1861
|
trainer = self._trainer
|
|
1483
1862
|
train_data = trainer.load_train_data()
|
|
1484
1863
|
val_data = trainer.load_val_data()
|
|
1485
|
-
base_model_names = trainer.get_model_names(
|
|
1864
|
+
base_model_names = trainer.get_model_names(layer=0)
|
|
1486
1865
|
pred_proba_dict_val: dict[str, list[TimeSeriesDataFrame]] = {
|
|
1487
1866
|
model_name: trainer._get_model_oof_predictions(model_name)
|
|
1488
1867
|
for model_name in base_model_names
|
|
@@ -1498,7 +1877,7 @@ class TimeSeriesPredictor:
|
|
|
1498
1877
|
)
|
|
1499
1878
|
|
|
1500
1879
|
y_val: list[TimeSeriesDataFrame] = [
|
|
1501
|
-
select_target(df) for df in trainer.
|
|
1880
|
+
select_target(df) for df in trainer._get_validation_windows(train_data=train_data, val_data=val_data)
|
|
1502
1881
|
]
|
|
1503
1882
|
y_test: TimeSeriesDataFrame = select_target(test_data)
|
|
1504
1883
|
|
|
@@ -1518,27 +1897,27 @@ class TimeSeriesPredictor:
|
|
|
1518
1897
|
|
|
1519
1898
|
def plot(
|
|
1520
1899
|
self,
|
|
1521
|
-
data:
|
|
1522
|
-
predictions:
|
|
1523
|
-
quantile_levels:
|
|
1524
|
-
item_ids:
|
|
1900
|
+
data: TimeSeriesDataFrame | pd.DataFrame | Path | str,
|
|
1901
|
+
predictions: TimeSeriesDataFrame | None = None,
|
|
1902
|
+
quantile_levels: list[float] | None = None,
|
|
1903
|
+
item_ids: list[str | int] | None = None,
|
|
1525
1904
|
max_num_item_ids: int = 8,
|
|
1526
|
-
max_history_length:
|
|
1527
|
-
point_forecast_column:
|
|
1528
|
-
matplotlib_rc_params:
|
|
1905
|
+
max_history_length: int | None = None,
|
|
1906
|
+
point_forecast_column: str | None = None,
|
|
1907
|
+
matplotlib_rc_params: dict | None = None,
|
|
1529
1908
|
):
|
|
1530
1909
|
"""Plot historical time series values and the forecasts.
|
|
1531
1910
|
|
|
1532
1911
|
Parameters
|
|
1533
1912
|
----------
|
|
1534
|
-
data :
|
|
1913
|
+
data : TimeSeriesDataFrame | pd.DataFrame | Path | str
|
|
1535
1914
|
Observed time series data.
|
|
1536
1915
|
predictions : TimeSeriesDataFrame, optional
|
|
1537
1916
|
Predictions generated by calling :meth:`~autogluon.timeseries.TimeSeriesPredictor.predict`.
|
|
1538
1917
|
quantile_levels : list[float], optional
|
|
1539
1918
|
Quantile levels for which to plot the prediction intervals. Defaults to lowest & highest quantile levels
|
|
1540
1919
|
available in ``predictions``.
|
|
1541
|
-
item_ids : list[
|
|
1920
|
+
item_ids : list[str | int], optional
|
|
1542
1921
|
If provided, plots will only be generated for time series with these item IDs. By default (if set to
|
|
1543
1922
|
``None``), item IDs are selected randomly. In either case, plots are generated for at most
|
|
1544
1923
|
``max_num_item_ids`` time series.
|
|
@@ -1621,7 +2000,7 @@ class TimeSeriesPredictor:
|
|
|
1621
2000
|
for q in quantile_levels:
|
|
1622
2001
|
ax.fill_between(forecast.index, point_forecast, forecast[str(q)], color="C1", alpha=0.2)
|
|
1623
2002
|
if len(axes) > len(item_ids):
|
|
1624
|
-
axes[len(item_ids)].set_axis_off()
|
|
1625
|
-
handles, labels = axes[0].get_legend_handles_labels()
|
|
2003
|
+
axes[len(item_ids)].set_axis_off() # type: ignore
|
|
2004
|
+
handles, labels = axes[0].get_legend_handles_labels() # type: ignore
|
|
1626
2005
|
fig.legend(handles, labels, bbox_to_anchor=(0.5, 0.0), ncols=len(handles))
|
|
1627
2006
|
return fig
|