autogluon.timeseries 1.4.1b20250820__py3-none-any.whl → 1.4.1b20250901__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. autogluon/timeseries/configs/__init__.py +3 -2
  2. autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
  3. autogluon/timeseries/configs/predictor_presets.py +84 -0
  4. autogluon/timeseries/dataset/ts_dataframe.py +9 -9
  5. autogluon/timeseries/learner.py +14 -14
  6. autogluon/timeseries/metrics/__init__.py +5 -5
  7. autogluon/timeseries/metrics/abstract.py +11 -12
  8. autogluon/timeseries/models/__init__.py +2 -0
  9. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +39 -41
  10. autogluon/timeseries/models/abstract/tunable.py +6 -6
  11. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +30 -30
  12. autogluon/timeseries/models/autogluon_tabular/per_step.py +12 -12
  13. autogluon/timeseries/models/chronos/model.py +10 -10
  14. autogluon/timeseries/models/chronos/pipeline/base.py +8 -8
  15. autogluon/timeseries/models/chronos/pipeline/chronos.py +12 -12
  16. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +12 -12
  17. autogluon/timeseries/models/chronos/pipeline/utils.py +12 -12
  18. autogluon/timeseries/models/ensemble/abstract.py +19 -19
  19. autogluon/timeseries/models/ensemble/basic.py +8 -8
  20. autogluon/timeseries/models/ensemble/greedy.py +13 -13
  21. autogluon/timeseries/models/gluonts/abstract.py +24 -24
  22. autogluon/timeseries/models/gluonts/dataset.py +2 -2
  23. autogluon/timeseries/models/gluonts/models.py +7 -7
  24. autogluon/timeseries/models/local/abstract_local_model.py +12 -12
  25. autogluon/timeseries/models/local/statsforecast.py +11 -11
  26. autogluon/timeseries/models/multi_window/multi_window_model.py +33 -22
  27. autogluon/timeseries/models/registry.py +3 -3
  28. autogluon/timeseries/predictor.py +37 -37
  29. autogluon/timeseries/regressor.py +13 -13
  30. autogluon/timeseries/splitter.py +6 -6
  31. autogluon/timeseries/trainer/__init__.py +3 -0
  32. autogluon/timeseries/trainer/model_set_builder.py +256 -0
  33. autogluon/timeseries/trainer/prediction_cache.py +149 -0
  34. autogluon/timeseries/{trainer.py → trainer/trainer.py} +72 -128
  35. autogluon/timeseries/transforms/covariate_scaler.py +3 -3
  36. autogluon/timeseries/transforms/target_scaler.py +7 -7
  37. autogluon/timeseries/utils/datetime/lags.py +2 -2
  38. autogluon/timeseries/utils/datetime/time_features.py +2 -2
  39. autogluon/timeseries/utils/features.py +32 -32
  40. autogluon/timeseries/version.py +1 -1
  41. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/METADATA +5 -5
  42. autogluon.timeseries-1.4.1b20250901.dist-info/RECORD +75 -0
  43. autogluon/timeseries/configs/presets_configs.py +0 -79
  44. autogluon/timeseries/models/presets.py +0 -280
  45. autogluon.timeseries-1.4.1b20250820.dist-info/RECORD +0 -72
  46. /autogluon.timeseries-1.4.1b20250820-py3.9-nspkg.pth → /autogluon.timeseries-1.4.1b20250901-py3.9-nspkg.pth +0 -0
  47. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/LICENSE +0 -0
  48. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/NOTICE +0 -0
  49. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/WHEEL +0 -0
  50. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/namespace_packages.txt +0 -0
  51. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/top_level.txt +0 -0
  52. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/zip-safe +0 -0
@@ -1,280 +0,0 @@
1
- import copy
2
- import logging
3
- import re
4
- from collections import defaultdict
5
- from typing import Any, Dict, List, Optional, Set, Type, Union
6
-
7
- from autogluon.common import space
8
- from autogluon.core import constants
9
- from autogluon.timeseries.metrics import TimeSeriesScorer
10
- from autogluon.timeseries.utils.features import CovariateMetadata
11
-
12
- from .abstract import AbstractTimeSeriesModel
13
- from .multi_window.multi_window_model import MultiWindowBacktestingModel
14
- from .registry import ModelRegistry
15
-
16
- logger = logging.getLogger(__name__)
17
-
18
- ModelHyperparameters = Dict[str, Any]
19
-
20
-
21
- VALID_AG_ARGS_KEYS = {
22
- "name",
23
- "name_prefix",
24
- "name_suffix",
25
- }
26
-
27
-
28
- def get_default_hps(key):
29
- default_model_hps = {
30
- "very_light": {
31
- "Naive": {},
32
- "SeasonalNaive": {},
33
- "ETS": {},
34
- "Theta": {},
35
- "RecursiveTabular": {"max_num_samples": 100_000},
36
- "DirectTabular": {"max_num_samples": 100_000},
37
- },
38
- "light": {
39
- "Naive": {},
40
- "SeasonalNaive": {},
41
- "ETS": {},
42
- "Theta": {},
43
- "RecursiveTabular": {},
44
- "DirectTabular": {},
45
- "TemporalFusionTransformer": {},
46
- "Chronos": {"model_path": "bolt_small"},
47
- },
48
- "light_inference": {
49
- "SeasonalNaive": {},
50
- "DirectTabular": {},
51
- "RecursiveTabular": {},
52
- "TemporalFusionTransformer": {},
53
- "PatchTST": {},
54
- },
55
- "default": {
56
- "SeasonalNaive": {},
57
- "AutoETS": {},
58
- "NPTS": {},
59
- "DynamicOptimizedTheta": {},
60
- "RecursiveTabular": {},
61
- "DirectTabular": {},
62
- "TemporalFusionTransformer": {},
63
- "PatchTST": {},
64
- "DeepAR": {},
65
- "Chronos": [
66
- {
67
- "ag_args": {"name_suffix": "ZeroShot"},
68
- "model_path": "bolt_base",
69
- },
70
- {
71
- "ag_args": {"name_suffix": "FineTuned"},
72
- "model_path": "bolt_small",
73
- "fine_tune": True,
74
- "target_scaler": "standard",
75
- "covariate_regressor": {"model_name": "CAT", "model_hyperparameters": {"iterations": 1_000}},
76
- },
77
- ],
78
- "TiDE": {
79
- "encoder_hidden_dim": 256,
80
- "decoder_hidden_dim": 256,
81
- "temporal_hidden_dim": 64,
82
- "num_batches_per_epoch": 100,
83
- "lr": 1e-4,
84
- },
85
- },
86
- }
87
- return default_model_hps[key]
88
-
89
-
90
- def get_preset_models(
91
- freq: Optional[str],
92
- prediction_length: int,
93
- path: str,
94
- eval_metric: Union[str, TimeSeriesScorer],
95
- hyperparameters: Union[str, Dict, None],
96
- hyperparameter_tune: bool,
97
- covariate_metadata: CovariateMetadata,
98
- all_assigned_names: List[str],
99
- excluded_model_types: Optional[List[str]],
100
- multi_window: bool = False,
101
- **kwargs,
102
- ):
103
- """
104
- Create a list of models according to hyperparameters. If hyperparamaters=None,
105
- will create models according to presets.
106
- """
107
- models = []
108
- hyperparameter_dict = get_hyperparameter_dict(hyperparameters, hyperparameter_tune)
109
-
110
- model_priority_list = sorted(
111
- hyperparameter_dict.keys(), key=lambda x: ModelRegistry.get_model_priority(x), reverse=True
112
- )
113
- excluded_models = get_excluded_models(excluded_model_types)
114
- all_assigned_names = all_assigned_names.copy()
115
-
116
- for model in model_priority_list:
117
- if isinstance(model, str):
118
- if model in excluded_models:
119
- logger.info(
120
- f"\tFound '{model}' model in `hyperparameters`, but '{model}' "
121
- "is present in `excluded_model_types` and will be removed."
122
- )
123
- continue
124
- model_type: Type[AbstractTimeSeriesModel] = ModelRegistry.get_model_class(model)
125
- elif isinstance(model, type):
126
- if not issubclass(model, AbstractTimeSeriesModel):
127
- raise ValueError(f"Custom model type {model} must inherit from `AbstractTimeSeriesModel`.")
128
- model_type = model
129
- else:
130
- raise ValueError(
131
- f"Keys of the `hyperparameters` dictionary must be strings or types, received {type(model)}."
132
- )
133
-
134
- for model_hps in hyperparameter_dict[model]:
135
- ag_args = model_hps.pop(constants.AG_ARGS, {})
136
- for key in ag_args:
137
- if key not in VALID_AG_ARGS_KEYS:
138
- raise ValueError(
139
- f"Model {model_type} received unknown ag_args key: {key} (valid keys {VALID_AG_ARGS_KEYS})"
140
- )
141
- model_name_base = get_model_name(ag_args, model_type)
142
-
143
- model_type_kwargs: Dict[str, Any] = dict(
144
- name=model_name_base,
145
- path=path,
146
- freq=freq,
147
- prediction_length=prediction_length,
148
- eval_metric=eval_metric,
149
- covariate_metadata=covariate_metadata,
150
- hyperparameters=model_hps,
151
- **kwargs,
152
- )
153
-
154
- # add models while preventing name collisions
155
- model = model_type(**model_type_kwargs)
156
- model_type_kwargs.pop("name", None)
157
-
158
- increment = 1
159
- while model.name in all_assigned_names:
160
- increment += 1
161
- model = model_type(name=f"{model_name_base}_{increment}", **model_type_kwargs)
162
-
163
- if multi_window:
164
- model = MultiWindowBacktestingModel(model_base=model, name=model.name, **model_type_kwargs) # type: ignore
165
-
166
- all_assigned_names.append(model.name)
167
- models.append(model)
168
-
169
- return models
170
-
171
-
172
- def get_excluded_models(excluded_model_types: Optional[List[str]]) -> Set[str]:
173
- excluded_models = set()
174
- if excluded_model_types is not None and len(excluded_model_types) > 0:
175
- if not isinstance(excluded_model_types, list):
176
- raise ValueError(f"`excluded_model_types` must be a list, received {type(excluded_model_types)}")
177
- logger.info(f"Excluded model types: {excluded_model_types}")
178
- for model in excluded_model_types:
179
- if not isinstance(model, str):
180
- raise ValueError(f"Each entry in `excluded_model_types` must be a string, received {type(model)}")
181
- excluded_models.add(normalize_model_type_name(model))
182
- return excluded_models
183
-
184
-
185
- def get_hyperparameter_dict(
186
- hyperparameters: Union[str, Dict[str, Union[ModelHyperparameters, List[ModelHyperparameters]]], None],
187
- hyperparameter_tune: bool,
188
- ) -> Dict[str, List[ModelHyperparameters]]:
189
- hyperparameter_dict = {}
190
-
191
- if hyperparameters is None:
192
- hyperparameter_dict = copy.deepcopy(get_default_hps("default"))
193
- elif isinstance(hyperparameters, str):
194
- hyperparameter_dict = copy.deepcopy(get_default_hps(hyperparameters))
195
- elif isinstance(hyperparameters, dict):
196
- hyperparameter_dict = copy.deepcopy(hyperparameters)
197
- else:
198
- raise ValueError(
199
- f"hyperparameters must be a dict, a string or None (received {type(hyperparameters)}). "
200
- f"Please see the documentation for TimeSeriesPredictor.fit"
201
- )
202
-
203
- hyperparameter_dict = check_and_clean_hyperparameters(
204
- hyperparameter_dict, must_contain_searchspace=hyperparameter_tune
205
- )
206
-
207
- return hyperparameter_dict
208
-
209
-
210
- def normalize_model_type_name(model_name: str) -> str:
211
- """Remove 'Model' suffix from the end of the string, if it's present."""
212
- if model_name.endswith("Model"):
213
- model_name = model_name[: -len("Model")]
214
- return model_name
215
-
216
-
217
- def check_and_clean_hyperparameters(
218
- hyperparameters: Dict[str, Union[ModelHyperparameters, List[ModelHyperparameters]]],
219
- must_contain_searchspace: bool,
220
- ) -> Dict[str, List[ModelHyperparameters]]:
221
- """Convert the hyperparameters dictionary to a unified format:
222
- - Remove 'Model' suffix from model names, if present
223
- - Make sure that each value in the hyperparameters dict is a list with model configurations
224
- - Checks if hyperparameters contain searchspaces
225
- """
226
- hyperparameters_clean = defaultdict(list)
227
- for key, value in hyperparameters.items():
228
- # Handle model names ending with "Model", e.g., "DeepARModel" is mapped to "DeepAR"
229
- if isinstance(key, str):
230
- key = normalize_model_type_name(key)
231
- if not isinstance(value, list):
232
- value = [value]
233
- hyperparameters_clean[key].extend(value)
234
-
235
- if must_contain_searchspace:
236
- verify_contains_at_least_one_searchspace(hyperparameters_clean)
237
- else:
238
- verify_contains_no_searchspaces(hyperparameters_clean)
239
-
240
- return dict(hyperparameters_clean)
241
-
242
-
243
- def get_model_name(ag_args: Dict[str, Any], model_type: Type[AbstractTimeSeriesModel]) -> str:
244
- name = ag_args.get("name")
245
- if name is None:
246
- name_stem = re.sub(r"Model$", "", model_type.__name__)
247
- name_prefix = ag_args.get("name_prefix", "")
248
- name_suffix = ag_args.get("name_suffix", "")
249
- name = name_prefix + name_stem + name_suffix
250
- return name
251
-
252
-
253
- def contains_searchspace(model_hyperparameters: ModelHyperparameters) -> bool:
254
- for hp_value in model_hyperparameters.values():
255
- if isinstance(hp_value, space.Space):
256
- return True
257
- return False
258
-
259
-
260
- def verify_contains_at_least_one_searchspace(hyperparameters: Dict[str, List[ModelHyperparameters]]):
261
- for model, model_hps_list in hyperparameters.items():
262
- for model_hps in model_hps_list:
263
- if contains_searchspace(model_hps):
264
- return
265
-
266
- raise ValueError(
267
- "Hyperparameter tuning specified, but no model contains a hyperparameter search space. "
268
- "Please disable hyperparameter tuning with `hyperparameter_tune_kwargs=None` or provide a search space "
269
- "for at least one model."
270
- )
271
-
272
-
273
- def verify_contains_no_searchspaces(hyperparameters: Dict[str, List[ModelHyperparameters]]):
274
- for model, model_hps_list in hyperparameters.items():
275
- for model_hps in model_hps_list:
276
- if contains_searchspace(model_hps):
277
- raise ValueError(
278
- f"Hyperparameter tuning not specified, so hyperparameters must have fixed values. "
279
- f"However, for model {model} hyperparameters {model_hps} contain a search space."
280
- )
@@ -1,72 +0,0 @@
1
- autogluon.timeseries-1.4.1b20250820-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
- autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
- autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
- autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
- autogluon/timeseries/predictor.py,sha256=3FysrdmmR6NhxwukFIr6WbEL5zfW9nygKPDyKrZ1pRE,88447
6
- autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
7
- autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
- autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=S2ZZQJcoKT498Nmq-Gu28zMiZsIYa6iD670boLDdwfg,91
10
- autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
- autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
- autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=wrplaDMUortKUdoaudtR57Mp6yR23j-NG2z0S4bIg3M,51757
14
- autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
15
- autogluon/timeseries/metrics/abstract.py,sha256=Nu2WKMRmJT-oIpNHMOa5Ulw5WlOKA8jB-rm6Bnf2I2o,11864
16
- autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
17
- autogluon/timeseries/metrics/quantile.py,sha256=x0cq44fXRoMiuI4BVQ7mpWk1YgrK4OwLTlJAhCHQ7Xg,4634
18
- autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
- autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
20
- autogluon/timeseries/models/presets.py,sha256=gHgZuvgq_8eKkh6R2GtnsTo20ZGbbN5FfLG-m25aSk0,10462
21
- autogluon/timeseries/models/registry.py,sha256=6t1_NyU__-JYhUoCp8wm8mAt998McW-2rEkUJQe1wKE,2170
22
- autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
23
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=LK1snlL0ycBOd96FSxjczev29yTmAI8u7o5c-vSAB3s,32585
24
- autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
25
- autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
26
- autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
27
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=cMOxBgeD2inecHPTB9W46gDBjgg8ixetnogWEzWT-cU,37724
28
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=MAc7DoKPq7IUOhkxph_piUbPg0hcSjIMZ7uVPb0AHAY,23172
29
- autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
30
- autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
31
- autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
32
- autogluon/timeseries/models/chronos/model.py,sha256=t510gtBHM9LAg2sNxznl2L86B-VDwhp--pcDJe77iRc,32336
33
- autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
34
- autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
35
- autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=C44HGXa_eW80gnnsTgTdsD18aVH-pe-DqkxUYcQx7K4,20216
36
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=BGov6fKr3hip_b0vVQEGAjvRFyc-bucmFPq0s8OoIwU,21410
37
- autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=rWqT3DB9upZb7GFVMOxc-ww2EhH8bD7TmEZNi_xTAbE,13033
38
- autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
39
- autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
40
- autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
41
- autogluon/timeseries/models/ensemble/greedy.py,sha256=s4gz5Qqrf34Wtu6E1JtyK3EvIyoBHJDM859GhcqxfDA,7320
42
- autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
43
- autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
44
- autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
45
- autogluon/timeseries/models/gluonts/models.py,sha256=5HGdUtgFW4kmhk_LZYCl7qtL1yASShFdL_iT34x-B5M,25913
46
- autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
47
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=BVCMC0wNMwrrDfZy_SQJeEajPmYBAyUlMu4qrTkWJBQ,11535
48
- autogluon/timeseries/models/local/naive.py,sha256=xur3WWhLaS9Iix_p_yfaStbr58nL5K4rV0dReTm3BQQ,7496
49
- autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736nHOvhSAgagYMc,4203
50
- autogluon/timeseries/models/local/statsforecast.py,sha256=1sGPA4jCmJZAdRMY9o8t1C2ZZDQVxyBhJw7YbQXKUYU,33324
51
- autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
52
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
53
- autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
54
- autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
55
- autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
56
- autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
- autogluon/timeseries/utils/features.py,sha256=nkrUI7RwH2znec2jGNnKdBPSviS_LSKeAC_gD5TdVlU,22673
58
- autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
59
- autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
60
- autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
61
- autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
62
- autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
63
- autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
64
- autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
65
- autogluon.timeseries-1.4.1b20250820.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
66
- autogluon.timeseries-1.4.1b20250820.dist-info/METADATA,sha256=YJJQLGWvgvE9fvD1txGDxysCYyz6QmPfSlAepiLiWhY,12463
67
- autogluon.timeseries-1.4.1b20250820.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
68
- autogluon.timeseries-1.4.1b20250820.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
69
- autogluon.timeseries-1.4.1b20250820.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.4.1b20250820.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
71
- autogluon.timeseries-1.4.1b20250820.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
72
- autogluon.timeseries-1.4.1b20250820.dist-info/RECORD,,