autogluon.timeseries 1.4.1b20250820__py3-none-any.whl → 1.4.1b20250901__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. autogluon/timeseries/configs/__init__.py +3 -2
  2. autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
  3. autogluon/timeseries/configs/predictor_presets.py +84 -0
  4. autogluon/timeseries/dataset/ts_dataframe.py +9 -9
  5. autogluon/timeseries/learner.py +14 -14
  6. autogluon/timeseries/metrics/__init__.py +5 -5
  7. autogluon/timeseries/metrics/abstract.py +11 -12
  8. autogluon/timeseries/models/__init__.py +2 -0
  9. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +39 -41
  10. autogluon/timeseries/models/abstract/tunable.py +6 -6
  11. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +30 -30
  12. autogluon/timeseries/models/autogluon_tabular/per_step.py +12 -12
  13. autogluon/timeseries/models/chronos/model.py +10 -10
  14. autogluon/timeseries/models/chronos/pipeline/base.py +8 -8
  15. autogluon/timeseries/models/chronos/pipeline/chronos.py +12 -12
  16. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +12 -12
  17. autogluon/timeseries/models/chronos/pipeline/utils.py +12 -12
  18. autogluon/timeseries/models/ensemble/abstract.py +19 -19
  19. autogluon/timeseries/models/ensemble/basic.py +8 -8
  20. autogluon/timeseries/models/ensemble/greedy.py +13 -13
  21. autogluon/timeseries/models/gluonts/abstract.py +24 -24
  22. autogluon/timeseries/models/gluonts/dataset.py +2 -2
  23. autogluon/timeseries/models/gluonts/models.py +7 -7
  24. autogluon/timeseries/models/local/abstract_local_model.py +12 -12
  25. autogluon/timeseries/models/local/statsforecast.py +11 -11
  26. autogluon/timeseries/models/multi_window/multi_window_model.py +33 -22
  27. autogluon/timeseries/models/registry.py +3 -3
  28. autogluon/timeseries/predictor.py +37 -37
  29. autogluon/timeseries/regressor.py +13 -13
  30. autogluon/timeseries/splitter.py +6 -6
  31. autogluon/timeseries/trainer/__init__.py +3 -0
  32. autogluon/timeseries/trainer/model_set_builder.py +256 -0
  33. autogluon/timeseries/trainer/prediction_cache.py +149 -0
  34. autogluon/timeseries/{trainer.py → trainer/trainer.py} +72 -128
  35. autogluon/timeseries/transforms/covariate_scaler.py +3 -3
  36. autogluon/timeseries/transforms/target_scaler.py +7 -7
  37. autogluon/timeseries/utils/datetime/lags.py +2 -2
  38. autogluon/timeseries/utils/datetime/time_features.py +2 -2
  39. autogluon/timeseries/utils/features.py +32 -32
  40. autogluon/timeseries/version.py +1 -1
  41. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/METADATA +5 -5
  42. autogluon.timeseries-1.4.1b20250901.dist-info/RECORD +75 -0
  43. autogluon/timeseries/configs/presets_configs.py +0 -79
  44. autogluon/timeseries/models/presets.py +0 -280
  45. autogluon.timeseries-1.4.1b20250820.dist-info/RECORD +0 -72
  46. /autogluon.timeseries-1.4.1b20250820-py3.9-nspkg.pth → /autogluon.timeseries-1.4.1b20250901-py3.9-nspkg.pth +0 -0
  47. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/LICENSE +0 -0
  48. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/NOTICE +0 -0
  49. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/WHEEL +0 -0
  50. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/namespace_packages.txt +0 -0
  51. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/top_level.txt +0 -0
  52. {autogluon.timeseries-1.4.1b20250820.dist-info → autogluon.timeseries-1.4.1b20250901.dist-info}/zip-safe +0 -0
@@ -1,4 +1,4 @@
1
- from typing import Literal, Optional, Protocol, Tuple, Union, overload
1
+ from typing import Literal, Optional, Protocol, Union, overload
2
2
 
3
3
  import numpy as np
4
4
  import pandas as pd
@@ -30,7 +30,7 @@ class LocalTargetScaler(TargetScaler):
30
30
  self.loc: Optional[pd.Series] = None
31
31
  self.scale: Optional[pd.Series] = None
32
32
 
33
- def _compute_loc_scale(self, target_series: pd.Series) -> Tuple[Optional[pd.Series], Optional[pd.Series]]:
33
+ def _compute_loc_scale(self, target_series: pd.Series) -> tuple[Optional[pd.Series], Optional[pd.Series]]:
34
34
  raise NotImplementedError
35
35
 
36
36
  def fit_transform(self, data: TimeSeriesDataFrame) -> TimeSeriesDataFrame:
@@ -45,7 +45,7 @@ class LocalTargetScaler(TargetScaler):
45
45
  self.scale = self.scale.clip(lower=self.min_scale).replace([np.inf, -np.inf], np.nan).fillna(1.0)
46
46
  return self
47
47
 
48
- def _reindex_loc_scale(self, item_index: pd.Index) -> Tuple[Union[np.ndarray, float], Union[np.ndarray, float]]:
48
+ def _reindex_loc_scale(self, item_index: pd.Index) -> tuple[Union[np.ndarray, float], Union[np.ndarray, float]]:
49
49
  """Reindex loc and scale parameters for the given item_ids and convert them to an array-like."""
50
50
  if self.loc is not None:
51
51
  loc = self.loc.reindex(item_index).to_numpy()
@@ -74,7 +74,7 @@ class LocalStandardScaler(LocalTargetScaler):
74
74
  The resulting affine transformation is (x - loc) / scale, where scale = std(x), loc = mean(x).
75
75
  """
76
76
 
77
- def _compute_loc_scale(self, target_series: pd.Series) -> Tuple[pd.Series, pd.Series]:
77
+ def _compute_loc_scale(self, target_series: pd.Series) -> tuple[pd.Series, pd.Series]:
78
78
  stats = target_series.groupby(level=ITEMID, sort=False).agg(["mean", "std"])
79
79
  return stats["mean"], stats["std"]
80
80
 
@@ -82,7 +82,7 @@ class LocalStandardScaler(LocalTargetScaler):
82
82
  class LocalMeanAbsScaler(LocalTargetScaler):
83
83
  """Applies mean absolute scaling to each time series in the dataset."""
84
84
 
85
- def _compute_loc_scale(self, target_series: pd.Series) -> Tuple[Optional[pd.Series], pd.Series]:
85
+ def _compute_loc_scale(self, target_series: pd.Series) -> tuple[Optional[pd.Series], pd.Series]:
86
86
  scale = target_series.abs().groupby(level=ITEMID, sort=False).agg("mean")
87
87
  return None, scale
88
88
 
@@ -93,7 +93,7 @@ class LocalMinMaxScaler(LocalTargetScaler):
93
93
  The resulting affine transformation is (x - loc) / scale, where scale = max(x) - min(x), loc = min(x) / scale.
94
94
  """
95
95
 
96
- def _compute_loc_scale(self, target_series: pd.Series) -> Tuple[pd.Series, pd.Series]:
96
+ def _compute_loc_scale(self, target_series: pd.Series) -> tuple[pd.Series, pd.Series]:
97
97
  stats = target_series.abs().groupby(level=ITEMID, sort=False).agg(["min", "max"])
98
98
  scale = (stats["max"] - stats["min"]).clip(lower=self.min_scale)
99
99
  loc = stats["min"]
@@ -117,7 +117,7 @@ class LocalRobustScaler(LocalTargetScaler):
117
117
  self.q_max = 0.75
118
118
  assert 0 < self.q_min < self.q_max < 1
119
119
 
120
- def _compute_loc_scale(self, target_series: pd.Series) -> Tuple[pd.Series, pd.Series]:
120
+ def _compute_loc_scale(self, target_series: pd.Series) -> tuple[pd.Series, pd.Series]:
121
121
  grouped = target_series.groupby(level=ITEMID, sort=False)
122
122
  loc = grouped.median()
123
123
  lower = grouped.quantile(self.q_min)
@@ -2,7 +2,7 @@
2
2
  Generate lag indices based on frequency string. Adapted from gluonts.time_feature.lag.
3
3
  """
4
4
 
5
- from typing import List, Optional
5
+ from typing import Optional
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -72,7 +72,7 @@ def get_lags_for_frequency(
72
72
  lag_ub: int = 1200,
73
73
  num_lags: Optional[int] = None,
74
74
  num_default_lags: int = 7,
75
- ) -> List[int]:
75
+ ) -> list[int]:
76
76
  """
77
77
  Generates a list of lags that that are appropriate for the given frequency
78
78
  string.
@@ -2,7 +2,7 @@
2
2
  Generate time features based on frequency string. Adapted from gluonts.time_feature.time_feature.
3
3
  """
4
4
 
5
- from typing import Callable, List
5
+ from typing import Callable
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -56,7 +56,7 @@ def second_of_minute(index: pd.DatetimeIndex) -> np.ndarray:
56
56
  return _normalize(index.second, num=60)
57
57
 
58
58
 
59
- def get_time_features_for_frequency(freq) -> List[Callable]:
59
+ def get_time_features_for_frequency(freq) -> list[Callable]:
60
60
  features_by_offset_name = {
61
61
  "YE": [],
62
62
  "QE": [quarter_of_year],
@@ -2,7 +2,7 @@ import logging
2
2
  import reprlib
3
3
  import time
4
4
  from dataclasses import asdict, dataclass, field
5
- from typing import Any, Dict, List, Literal, Optional, Tuple
5
+ from typing import Any, Literal, Optional
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -24,50 +24,50 @@ logger = logging.getLogger(__name__)
24
24
  class CovariateMetadata:
25
25
  """Provides mapping from different covariate types to columns in the dataset."""
26
26
 
27
- static_features_cat: List[str] = field(default_factory=list)
28
- static_features_real: List[str] = field(default_factory=list)
29
- known_covariates_real: List[str] = field(default_factory=list)
30
- known_covariates_cat: List[str] = field(default_factory=list)
31
- past_covariates_real: List[str] = field(default_factory=list)
32
- past_covariates_cat: List[str] = field(default_factory=list)
27
+ static_features_cat: list[str] = field(default_factory=list)
28
+ static_features_real: list[str] = field(default_factory=list)
29
+ known_covariates_real: list[str] = field(default_factory=list)
30
+ known_covariates_cat: list[str] = field(default_factory=list)
31
+ past_covariates_real: list[str] = field(default_factory=list)
32
+ past_covariates_cat: list[str] = field(default_factory=list)
33
33
 
34
34
  @property
35
- def static_features(self) -> List[str]:
35
+ def static_features(self) -> list[str]:
36
36
  return self.static_features_cat + self.static_features_real
37
37
 
38
38
  @property
39
- def known_covariates(self) -> List[str]:
39
+ def known_covariates(self) -> list[str]:
40
40
  return self.known_covariates_cat + self.known_covariates_real
41
41
 
42
42
  @property
43
- def past_covariates(self) -> List[str]:
43
+ def past_covariates(self) -> list[str]:
44
44
  return self.past_covariates_cat + self.past_covariates_real
45
45
 
46
46
  @property
47
- def covariates(self) -> List[str]:
47
+ def covariates(self) -> list[str]:
48
48
  return self.known_covariates + self.past_covariates
49
49
 
50
50
  @property
51
- def covariates_real(self) -> List[str]:
51
+ def covariates_real(self) -> list[str]:
52
52
  return self.known_covariates_real + self.past_covariates_real
53
53
 
54
54
  @property
55
- def covariates_cat(self) -> List[str]:
55
+ def covariates_cat(self) -> list[str]:
56
56
  return self.known_covariates_cat + self.past_covariates_cat
57
57
 
58
58
  @property
59
- def real_features(self) -> List[str]:
59
+ def real_features(self) -> list[str]:
60
60
  return self.static_features_real + self.covariates_real
61
61
 
62
62
  @property
63
- def cat_features(self) -> List[str]:
63
+ def cat_features(self) -> list[str]:
64
64
  return self.static_features_cat + self.covariates_cat
65
65
 
66
66
  @property
67
- def all_features(self) -> List[str]:
67
+ def all_features(self) -> list[str]:
68
68
  return self.static_features + self.covariates
69
69
 
70
- def to_dict(self) -> Dict[str, Any]:
70
+ def to_dict(self) -> dict[str, Any]:
71
71
  return asdict(self)
72
72
 
73
73
 
@@ -120,13 +120,13 @@ class TimeSeriesFeatureGenerator:
120
120
 
121
121
  Parameters
122
122
  ----------
123
- target : str
123
+ target
124
124
  Name of the target column.
125
- known_covariates_names : List[str]
125
+ known_covariates_names
126
126
  Columns that contain covariates that are known into the future.
127
- float_dtype : str, default = "float32"
127
+ float_dtype
128
128
  Numpy float dtype to which all numeric columns (float, int, bool) will be converted both in static & dynamic dfs.
129
- num_samples : int or None, default = 20_000
129
+ num_samples
130
130
  Number of rows sampled from the training dataset to speed up computation of the median (used later for imputation).
131
131
  If set to `None`, median will be computed using all rows.
132
132
  """
@@ -134,7 +134,7 @@ class TimeSeriesFeatureGenerator:
134
134
  def __init__(
135
135
  self,
136
136
  target: str,
137
- known_covariates_names: List[str],
137
+ known_covariates_names: list[str],
138
138
  float_dtype: str = "float32",
139
139
  num_samples: Optional[int] = 20_000,
140
140
  ):
@@ -143,8 +143,8 @@ class TimeSeriesFeatureGenerator:
143
143
  self.num_samples = num_samples
144
144
 
145
145
  self._is_fit = False
146
- self.known_covariates_names: List[str] = list(known_covariates_names)
147
- self.past_covariates_names: List[str] = []
146
+ self.known_covariates_names: list[str] = list(known_covariates_names)
147
+ self.past_covariates_names: list[str] = []
148
148
  self.known_covariates_pipeline = ContinuousAndCategoricalFeatureGenerator()
149
149
  self.past_covariates_pipeline = ContinuousAndCategoricalFeatureGenerator()
150
150
  # Cat features with cat_count=1 are fine in static_features since they are repeated for all time steps in a TS
@@ -154,7 +154,7 @@ class TimeSeriesFeatureGenerator:
154
154
  self._train_static_real_median: Optional[pd.Series] = None
155
155
 
156
156
  @property
157
- def required_column_names(self) -> List[str]:
157
+ def required_column_names(self) -> list[str]:
158
158
  return [self.target] + list(self.known_covariates_names) + list(self.past_covariates_names)
159
159
 
160
160
  @property
@@ -262,13 +262,13 @@ class TimeSeriesFeatureGenerator:
262
262
  return self._impute_covariates(ts_df, column_names=self.covariate_metadata.covariates_real)
263
263
 
264
264
  @staticmethod
265
- def _concat_dfs(dfs_to_concat: List[pd.DataFrame]) -> pd.DataFrame:
265
+ def _concat_dfs(dfs_to_concat: list[pd.DataFrame]) -> pd.DataFrame:
266
266
  if len(dfs_to_concat) == 1:
267
267
  return dfs_to_concat[0]
268
268
  else:
269
269
  return pd.concat(dfs_to_concat, axis=1, copy=False)
270
270
 
271
- def _impute_covariates(self, ts_df: TimeSeriesDataFrame, column_names: List[str]) -> TimeSeriesDataFrame:
271
+ def _impute_covariates(self, ts_df: TimeSeriesDataFrame, column_names: list[str]) -> TimeSeriesDataFrame:
272
272
  """Impute missing values in selected columns with ffill, bfill, and median imputation."""
273
273
  if len(column_names) > 0:
274
274
  # ffill + bfill covariates that have at least some observed values
@@ -346,10 +346,10 @@ class TimeSeriesFeatureGenerator:
346
346
  return None
347
347
 
348
348
  @staticmethod
349
- def _detect_and_log_column_types(transformed_df: pd.DataFrame) -> Tuple[List[str], List[str]]:
349
+ def _detect_and_log_column_types(transformed_df: pd.DataFrame) -> tuple[list[str], list[str]]:
350
350
  """Log & return names of categorical and real-valued columns in the DataFrame."""
351
- cat_column_names: List[str] = []
352
- real_column_names: List[str] = []
351
+ cat_column_names: list[str] = []
352
+ real_column_names: list[str] = []
353
353
  for column_name, column_dtype in transformed_df.dtypes.items():
354
354
  if isinstance(column_dtype, pd.CategoricalDtype):
355
355
  cat_column_names.append(str(column_name))
@@ -362,9 +362,9 @@ class TimeSeriesFeatureGenerator:
362
362
 
363
363
  @staticmethod
364
364
  def _check_required_columns_are_present(
365
- data: TimeSeriesDataFrame, required_column_names: List[str], data_frame_name: str
365
+ data: TimeSeriesDataFrame, required_column_names: list[str], data_frame_name: str
366
366
  ) -> None:
367
- missing_columns = pd.Index(required_column_names).difference(data.columns)
367
+ missing_columns = pd.Index(required_column_names).difference(data.columns) # type: ignore
368
368
  if len(missing_columns) > 0:
369
369
  raise ValueError(
370
370
  f"{len(missing_columns)} columns are missing from {data_frame_name}: {reprlib.repr(missing_columns.to_list())}"
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250820"
3
+ __version__ = "1.4.1b20250901"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20250820
3
+ Version: 1.4.1b20250901
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.4.1b20250820
59
- Requires-Dist: autogluon.common==1.4.1b20250820
60
- Requires-Dist: autogluon.features==1.4.1b20250820
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250820
58
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20250901
59
+ Requires-Dist: autogluon.common==1.4.1b20250901
60
+ Requires-Dist: autogluon.features==1.4.1b20250901
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250901
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -0,0 +1,75 @@
1
+ autogluon.timeseries-1.4.1b20250901-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
+ autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
+ autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
+ autogluon/timeseries/learner.py,sha256=eQrqFVOmL-2JC85LgCMkbyoLpKS02Dilg1T8RUeS_LI,13887
5
+ autogluon/timeseries/predictor.py,sha256=7X4YsWYa3Xk2RI1Irf2O-c3-I82Zqhg-cgj8cj_4AoA,88427
6
+ autogluon/timeseries/regressor.py,sha256=lc8Qr3-8v4oxajtCnV3sxpUaW6vxXXJOA6Kr-qVne4k,11926
7
+ autogluon/timeseries/splitter.py,sha256=8ACkuCXeUhQGUx4jz_Vv17q814WrHJQeKvq2v4-oE6s,3158
8
+ autogluon/timeseries/version.py,sha256=DurfNRu1wHc-WOAmHcK0c7FQyI6vSMxFUlL1CmSv3fg,91
9
+ autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
10
+ autogluon/timeseries/configs/hyperparameter_presets.py,sha256=GbI2sd3uakWtaeaMyF7B5z_lmyfb6ToK6PZEUZTyG9w,2031
11
+ autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
12
+ autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=EwxKBScspwKnJTqIk2Icukk8vIrbKYObOMAkNIn4zc8,51760
14
+ autogluon/timeseries/metrics/__init__.py,sha256=YJPXxsJ0tRDXq7p-sTZSLb0DuXMJH6sT1PgbZ3tMt30,3594
15
+ autogluon/timeseries/metrics/abstract.py,sha256=6jbluvHXfLc_cuK1Fx0ZYle2sR4WGG6YxFQhkor46Q8,11545
16
+ autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
17
+ autogluon/timeseries/metrics/quantile.py,sha256=x0cq44fXRoMiuI4BVQ7mpWk1YgrK4OwLTlJAhCHQ7Xg,4634
18
+ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
+ autogluon/timeseries/models/__init__.py,sha256=9YnqkOILtVEkbICk7J3VlMkMNySs-f5ErIUKrE5-fys,1294
20
+ autogluon/timeseries/models/registry.py,sha256=8n7W04ql0ckNQUzKcAW7bxreLI8wTAUTymACgLklH9M,2158
21
+ autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=97HOi7fRPxtx8Y9hq-xdJI-kLMp6Z-8LUSvcfBjXFsM,31978
23
+ autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
+ autogluon/timeseries/models/abstract/tunable.py,sha256=jA6p-FPZkMva67B-1foqvHK-1rr0IdEfp9RvGW1WS9I,7155
25
+ autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=k3a0JqBeuLQfjCtZ8MA7UvS2eqHjwbw0-4kN_StMMUQ,37623
27
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=M5rhj_jjcQz27wPYm6NEBEE0aHgXe0Bl6HFc2NIuLdU,23159
28
+ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
+ autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
30
+ autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
31
+ autogluon/timeseries/models/chronos/model.py,sha256=UYLI1HVwsW5KfA-jXqJdBel-7N6l6ggdBVrjLLaq9P0,32333
32
+ autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
33
+ autogluon/timeseries/models/chronos/pipeline/base.py,sha256=Us-TUpHSN3mM3ut05IVc2a9Q6KYq1n9pTb7JZG7b6kA,5546
34
+ autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=bgow5FkHG7y5qWBXcggqXemnistJUfrl0lWFXcGXg5g,20197
35
+ autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=KJYgxASTW2VhS0ObkP5DUQXyfnTRTXzjRD5Gm-FQFI4,21355
36
+ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=WYeCKFP5dxs4u09XTncBI2486VV22O1DiM9a3ZvZ1OE,12790
37
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
38
+ autogluon/timeseries/models/ensemble/abstract.py,sha256=wvtXNZTwiYpIurPkOYSzsi3XTRRx5guJLMYLmXTdOeQ,5695
39
+ autogluon/timeseries/models/ensemble/basic.py,sha256=aSQRYylUpFZVk_Lpv5GY8uYgmE0_ipLy_tx6ELTZyWc,3426
40
+ autogluon/timeseries/models/ensemble/greedy.py,sha256=zXJFenn1XxNNvCp4TlmIq1Dx3pUDWjKG1K3HsejmDeY,7323
41
+ autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
42
+ autogluon/timeseries/models/gluonts/abstract.py,sha256=fYXV5fQk79LtPtpa4uk8MzCUGZ5J6n47ClEYuYSBDLY,27770
43
+ autogluon/timeseries/models/gluonts/dataset.py,sha256=iUVKZyec1efVW2-71AWn-m9cowXYYj5hJM1JWuioscA,5115
44
+ autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
45
+ autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
46
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=A3sNYMA67UbbEKIIN30BcBdE_NpwaBtcG22O5mVWS6k,11482
47
+ autogluon/timeseries/models/local/naive.py,sha256=xur3WWhLaS9Iix_p_yfaStbr58nL5K4rV0dReTm3BQQ,7496
48
+ autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736nHOvhSAgagYMc,4203
49
+ autogluon/timeseries/models/local/statsforecast.py,sha256=sZ6aEFzAyPNZX3rMULGWFht0Toapjb3EwHe5Rb76ZxA,33318
50
+ autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
51
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=Hn-H2jLdeuB0_TxhAdununS8ti-iO-WSl3FOoxzcEJA,12369
52
+ autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
53
+ autogluon/timeseries/trainer/model_set_builder.py,sha256=s6tozfND3lLfst6Vxa_oP_wgCmDapyCJYFmCjkEn-es,10788
54
+ autogluon/timeseries/trainer/prediction_cache.py,sha256=Vi6EbMiMheq_smA93U_MoMxYUV85RdPm0dvJFdsM8K4,5551
55
+ autogluon/timeseries/trainer/trainer.py,sha256=LF2X5UNnrU8w5h_i09SphGWvGFvZ6KvPDq89Z3GzZZQ,54959
56
+ autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
57
+ autogluon/timeseries/transforms/covariate_scaler.py,sha256=9lEfDS4wnVZohQNnm9OcAXr3voUl83RCnctKR3O66iU,7030
58
+ autogluon/timeseries/transforms/target_scaler.py,sha256=kTQrXAsDHCnYuqfpaVuvefyTgyp_ylDpUIPz7pArjeY,6043
59
+ autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
+ autogluon/timeseries/utils/features.py,sha256=tdL7jZKeySO7dgB09FweR44wPCmfWg8-ZM5uVzeyvYQ,22593
61
+ autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
62
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
63
+ autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
64
+ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
65
+ autogluon/timeseries/utils/datetime/lags.py,sha256=rjJtdBU0M41R1jwfmvCbo045s-6XBjhGVnGBQJ9-U1E,5997
66
+ autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
67
+ autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
68
+ autogluon.timeseries-1.4.1b20250901.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
69
+ autogluon.timeseries-1.4.1b20250901.dist-info/METADATA,sha256=DrZmr9IiJJZqKwPv4SG8EjkopWhqpHUUGweKVIkZDjQ,12463
70
+ autogluon.timeseries-1.4.1b20250901.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
71
+ autogluon.timeseries-1.4.1b20250901.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
72
+ autogluon.timeseries-1.4.1b20250901.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
73
+ autogluon.timeseries-1.4.1b20250901.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
74
+ autogluon.timeseries-1.4.1b20250901.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
75
+ autogluon.timeseries-1.4.1b20250901.dist-info/RECORD,,
@@ -1,79 +0,0 @@
1
- """Preset configurations for autogluon.timeseries Predictors"""
2
-
3
- from autogluon.timeseries.models.presets import get_default_hps
4
-
5
- # TODO: change default HPO settings when other HPO strategies (e.g., Ray tune) are available
6
- # TODO: add refit_full arguments once refitting is available
7
-
8
- TIMESERIES_PRESETS_CONFIGS = dict(
9
- best_quality={"hyperparameters": "default", "num_val_windows": 2},
10
- high_quality={"hyperparameters": "default"},
11
- medium_quality={"hyperparameters": "light"},
12
- fast_training={"hyperparameters": "very_light"},
13
- # Chronos-Bolt models
14
- bolt_tiny={
15
- "hyperparameters": {"Chronos": {"model_path": "bolt_tiny"}},
16
- "skip_model_selection": True,
17
- },
18
- bolt_mini={
19
- "hyperparameters": {"Chronos": {"model_path": "bolt_mini"}},
20
- "skip_model_selection": True,
21
- },
22
- bolt_small={
23
- "hyperparameters": {"Chronos": {"model_path": "bolt_small"}},
24
- "skip_model_selection": True,
25
- },
26
- bolt_base={
27
- "hyperparameters": {"Chronos": {"model_path": "bolt_base"}},
28
- "skip_model_selection": True,
29
- },
30
- # Original Chronos models
31
- chronos_tiny={
32
- "hyperparameters": {"Chronos": {"model_path": "tiny"}},
33
- "skip_model_selection": True,
34
- },
35
- chronos_mini={
36
- "hyperparameters": {"Chronos": {"model_path": "mini"}},
37
- "skip_model_selection": True,
38
- },
39
- chronos_small={
40
- "hyperparameters": {"Chronos": {"model_path": "small"}},
41
- "skip_model_selection": True,
42
- },
43
- chronos_base={
44
- "hyperparameters": {"Chronos": {"model_path": "base"}},
45
- "skip_model_selection": True,
46
- },
47
- chronos_large={
48
- "hyperparameters": {"Chronos": {"model_path": "large", "batch_size": 8}},
49
- "skip_model_selection": True,
50
- },
51
- chronos_ensemble={
52
- "hyperparameters": {
53
- "Chronos": {"model_path": "small"},
54
- **get_default_hps("light_inference"),
55
- }
56
- },
57
- chronos_large_ensemble={
58
- "hyperparameters": {
59
- "Chronos": {"model_path": "large", "batch_size": 8},
60
- **get_default_hps("light_inference"),
61
- }
62
- },
63
- )
64
-
65
- TIMESERIES_PRESETS_ALIASES = dict(
66
- chronos="chronos_small",
67
- best="best_quality",
68
- high="high_quality",
69
- medium="medium_quality",
70
- bq="best_quality",
71
- hq="high_quality",
72
- mq="medium_quality",
73
- )
74
-
75
- # update with aliases
76
- TIMESERIES_PRESETS_CONFIGS = {
77
- **TIMESERIES_PRESETS_CONFIGS,
78
- **{k: TIMESERIES_PRESETS_CONFIGS[v].copy() for k, v in TIMESERIES_PRESETS_ALIASES.items()},
79
- }