autogluon.timeseries 1.3.2b20250712__py3-none-any.whl → 1.4.1b20251116__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. autogluon/timeseries/configs/__init__.py +3 -2
  2. autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
  3. autogluon/timeseries/configs/predictor_presets.py +84 -0
  4. autogluon/timeseries/dataset/ts_dataframe.py +98 -72
  5. autogluon/timeseries/learner.py +19 -18
  6. autogluon/timeseries/metrics/__init__.py +5 -5
  7. autogluon/timeseries/metrics/abstract.py +17 -17
  8. autogluon/timeseries/metrics/point.py +1 -1
  9. autogluon/timeseries/metrics/quantile.py +2 -2
  10. autogluon/timeseries/metrics/utils.py +4 -4
  11. autogluon/timeseries/models/__init__.py +4 -0
  12. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -75
  13. autogluon/timeseries/models/abstract/tunable.py +6 -6
  14. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +72 -76
  15. autogluon/timeseries/models/autogluon_tabular/per_step.py +104 -46
  16. autogluon/timeseries/models/autogluon_tabular/transforms.py +9 -7
  17. autogluon/timeseries/models/chronos/model.py +115 -78
  18. autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +76 -44
  19. autogluon/timeseries/models/ensemble/__init__.py +29 -2
  20. autogluon/timeseries/models/ensemble/abstract.py +16 -52
  21. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  22. autogluon/timeseries/models/ensemble/array_based/abstract.py +247 -0
  23. autogluon/timeseries/models/ensemble/array_based/models.py +50 -0
  24. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +10 -0
  25. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +87 -0
  26. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +133 -0
  27. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +141 -0
  28. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  29. autogluon/timeseries/models/ensemble/weighted/abstract.py +41 -0
  30. autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +8 -18
  31. autogluon/timeseries/models/ensemble/{greedy.py → weighted/greedy.py} +13 -13
  32. autogluon/timeseries/models/gluonts/abstract.py +26 -26
  33. autogluon/timeseries/models/gluonts/dataset.py +4 -4
  34. autogluon/timeseries/models/gluonts/models.py +27 -12
  35. autogluon/timeseries/models/local/abstract_local_model.py +14 -14
  36. autogluon/timeseries/models/local/naive.py +4 -0
  37. autogluon/timeseries/models/local/npts.py +1 -0
  38. autogluon/timeseries/models/local/statsforecast.py +30 -14
  39. autogluon/timeseries/models/multi_window/multi_window_model.py +34 -23
  40. autogluon/timeseries/models/registry.py +65 -0
  41. autogluon/timeseries/models/toto/__init__.py +3 -0
  42. autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
  43. autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
  44. autogluon/timeseries/models/toto/_internal/backbone/attention.py +197 -0
  45. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
  46. autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
  47. autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
  48. autogluon/timeseries/models/toto/_internal/backbone/rope.py +94 -0
  49. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +306 -0
  50. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
  51. autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
  52. autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
  53. autogluon/timeseries/models/toto/dataloader.py +108 -0
  54. autogluon/timeseries/models/toto/hf_pretrained_model.py +119 -0
  55. autogluon/timeseries/models/toto/model.py +236 -0
  56. autogluon/timeseries/predictor.py +94 -107
  57. autogluon/timeseries/regressor.py +31 -27
  58. autogluon/timeseries/splitter.py +7 -31
  59. autogluon/timeseries/trainer/__init__.py +3 -0
  60. autogluon/timeseries/trainer/ensemble_composer.py +250 -0
  61. autogluon/timeseries/trainer/model_set_builder.py +256 -0
  62. autogluon/timeseries/trainer/prediction_cache.py +149 -0
  63. autogluon/timeseries/{trainer.py → trainer/trainer.py} +182 -307
  64. autogluon/timeseries/trainer/utils.py +18 -0
  65. autogluon/timeseries/transforms/covariate_scaler.py +4 -4
  66. autogluon/timeseries/transforms/target_scaler.py +14 -14
  67. autogluon/timeseries/utils/datetime/lags.py +2 -2
  68. autogluon/timeseries/utils/datetime/time_features.py +2 -2
  69. autogluon/timeseries/utils/features.py +41 -37
  70. autogluon/timeseries/utils/forecast.py +5 -5
  71. autogluon/timeseries/utils/warning_filters.py +3 -1
  72. autogluon/timeseries/version.py +1 -1
  73. autogluon.timeseries-1.4.1b20251116-py3.9-nspkg.pth +1 -0
  74. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/METADATA +32 -17
  75. autogluon_timeseries-1.4.1b20251116.dist-info/RECORD +96 -0
  76. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/WHEEL +1 -1
  77. autogluon/timeseries/configs/presets_configs.py +0 -79
  78. autogluon/timeseries/evaluator.py +0 -6
  79. autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
  80. autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
  81. autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
  82. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -530
  83. autogluon/timeseries/models/presets.py +0 -358
  84. autogluon.timeseries-1.3.2b20250712-py3.9-nspkg.pth +0 -1
  85. autogluon.timeseries-1.3.2b20250712.dist-info/RECORD +0 -71
  86. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/LICENSE +0 -0
  87. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/NOTICE +0 -0
  88. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/namespace_packages.txt +0 -0
  89. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/top_level.txt +0 -0
  90. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/zip-safe +0 -0
@@ -1,358 +0,0 @@
1
- import copy
2
- import logging
3
- import re
4
- from collections import defaultdict
5
- from typing import Any, Dict, List, Optional, Type, Union
6
-
7
- from autogluon.common import space
8
- from autogluon.core import constants
9
- from autogluon.timeseries.metrics import TimeSeriesScorer
10
- from autogluon.timeseries.utils.features import CovariateMetadata
11
-
12
- from . import (
13
- ADIDAModel,
14
- ARIMAModel,
15
- AutoARIMAModel,
16
- AutoCESModel,
17
- AutoETSModel,
18
- AverageModel,
19
- ChronosModel,
20
- CrostonModel,
21
- DeepARModel,
22
- DirectTabularModel,
23
- DLinearModel,
24
- DynamicOptimizedThetaModel,
25
- ETSModel,
26
- IMAPAModel,
27
- NaiveModel,
28
- NPTSModel,
29
- PatchTSTModel,
30
- PerStepTabularModel,
31
- RecursiveTabularModel,
32
- SeasonalAverageModel,
33
- SeasonalNaiveModel,
34
- SimpleFeedForwardModel,
35
- TemporalFusionTransformerModel,
36
- ThetaModel,
37
- TiDEModel,
38
- WaveNetModel,
39
- ZeroModel,
40
- )
41
- from .abstract import AbstractTimeSeriesModel
42
- from .multi_window.multi_window_model import MultiWindowBacktestingModel
43
-
44
- logger = logging.getLogger(__name__)
45
-
46
- ModelHyperparameters = Dict[str, Any]
47
-
48
- # define the model zoo with their aliases
49
- MODEL_TYPES = dict(
50
- SimpleFeedForward=SimpleFeedForwardModel,
51
- DeepAR=DeepARModel,
52
- DLinear=DLinearModel,
53
- PatchTST=PatchTSTModel,
54
- TemporalFusionTransformer=TemporalFusionTransformerModel,
55
- TiDE=TiDEModel,
56
- WaveNet=WaveNetModel,
57
- RecursiveTabular=RecursiveTabularModel,
58
- DirectTabular=DirectTabularModel,
59
- PerStepTabular=PerStepTabularModel,
60
- Average=AverageModel,
61
- SeasonalAverage=SeasonalAverageModel,
62
- Naive=NaiveModel,
63
- SeasonalNaive=SeasonalNaiveModel,
64
- Zero=ZeroModel,
65
- AutoETS=AutoETSModel,
66
- AutoCES=AutoCESModel,
67
- AutoARIMA=AutoARIMAModel,
68
- DynamicOptimizedTheta=DynamicOptimizedThetaModel,
69
- NPTS=NPTSModel,
70
- Theta=ThetaModel,
71
- ETS=ETSModel,
72
- ARIMA=ARIMAModel,
73
- ADIDA=ADIDAModel,
74
- Croston=CrostonModel,
75
- CrostonSBA=CrostonModel, # Alias for backward compatibility
76
- IMAPA=IMAPAModel,
77
- Chronos=ChronosModel,
78
- )
79
-
80
- DEFAULT_MODEL_NAMES = {v: k for k, v in MODEL_TYPES.items()}
81
- DEFAULT_MODEL_PRIORITY = dict(
82
- Naive=100,
83
- SeasonalNaive=100,
84
- Average=100,
85
- SeasonalAverage=100,
86
- Zero=100,
87
- RecursiveTabular=90,
88
- DirectTabular=85,
89
- PerStepTabular=70, # TODO: Update priority
90
- # All local models are grouped together to make sure that joblib parallel pool is reused
91
- NPTS=80,
92
- ETS=80,
93
- CrostonSBA=80, # Alias for backward compatibility
94
- Croston=80,
95
- Theta=75,
96
- DynamicOptimizedTheta=75,
97
- AutoETS=70,
98
- AutoARIMA=60,
99
- Chronos=55,
100
- # Models that can early stop are trained at the end
101
- TemporalFusionTransformer=45,
102
- DeepAR=40,
103
- TiDE=30,
104
- PatchTST=30,
105
- # Models below are not included in any presets
106
- WaveNet=25,
107
- AutoCES=10,
108
- ARIMA=10,
109
- ADIDA=10,
110
- IMAPA=10,
111
- SimpleFeedForward=10,
112
- )
113
- DEFAULT_CUSTOM_MODEL_PRIORITY = 0
114
-
115
- VALID_AG_ARGS_KEYS = {
116
- "name",
117
- "name_prefix",
118
- "name_suffix",
119
- }
120
-
121
-
122
- def get_default_hps(key):
123
- default_model_hps = {
124
- "very_light": {
125
- "Naive": {},
126
- "SeasonalNaive": {},
127
- "ETS": {},
128
- "Theta": {},
129
- "RecursiveTabular": {"max_num_samples": 100_000},
130
- "DirectTabular": {"max_num_samples": 100_000},
131
- },
132
- "light": {
133
- "Naive": {},
134
- "SeasonalNaive": {},
135
- "ETS": {},
136
- "Theta": {},
137
- "RecursiveTabular": {},
138
- "DirectTabular": {},
139
- "TemporalFusionTransformer": {},
140
- "Chronos": {"model_path": "bolt_small"},
141
- },
142
- "light_inference": {
143
- "SeasonalNaive": {},
144
- "DirectTabular": {},
145
- "RecursiveTabular": {},
146
- "TemporalFusionTransformer": {},
147
- "PatchTST": {},
148
- },
149
- "default": {
150
- "SeasonalNaive": {},
151
- "AutoETS": {},
152
- "NPTS": {},
153
- "DynamicOptimizedTheta": {},
154
- "RecursiveTabular": {},
155
- "DirectTabular": {},
156
- "TemporalFusionTransformer": {},
157
- "PatchTST": {},
158
- "DeepAR": {},
159
- "Chronos": [
160
- {
161
- "ag_args": {"name_suffix": "ZeroShot"},
162
- "model_path": "bolt_base",
163
- },
164
- {
165
- "ag_args": {"name_suffix": "FineTuned"},
166
- "model_path": "bolt_small",
167
- "fine_tune": True,
168
- "target_scaler": "standard",
169
- "covariate_regressor": {"model_name": "CAT", "model_hyperparameters": {"iterations": 1_000}},
170
- },
171
- ],
172
- "TiDE": {
173
- "encoder_hidden_dim": 256,
174
- "decoder_hidden_dim": 256,
175
- "temporal_hidden_dim": 64,
176
- "num_batches_per_epoch": 100,
177
- "lr": 1e-4,
178
- },
179
- },
180
- }
181
- return default_model_hps[key]
182
-
183
-
184
- def get_preset_models(
185
- freq: Optional[str],
186
- prediction_length: int,
187
- path: str,
188
- eval_metric: Union[str, TimeSeriesScorer],
189
- hyperparameters: Union[str, Dict, None],
190
- hyperparameter_tune: bool,
191
- covariate_metadata: CovariateMetadata,
192
- all_assigned_names: List[str],
193
- excluded_model_types: Optional[List[str]],
194
- multi_window: bool = False,
195
- **kwargs,
196
- ):
197
- """
198
- Create a list of models according to hyperparameters. If hyperparamaters=None,
199
- will create models according to presets.
200
- """
201
- models = []
202
- if hyperparameters is None:
203
- hp_string = "default"
204
- hyperparameters = copy.deepcopy(get_default_hps(hp_string))
205
- elif isinstance(hyperparameters, str):
206
- hyperparameters = copy.deepcopy(get_default_hps(hyperparameters))
207
- elif isinstance(hyperparameters, dict):
208
- hyperparameters = copy.deepcopy(hyperparameters)
209
- else:
210
- raise ValueError(
211
- f"hyperparameters must be a dict, a string or None (received {type(hyperparameters)}). "
212
- f"Please see the documentation for TimeSeriesPredictor.fit"
213
- )
214
- hyperparameters = check_and_clean_hyperparameters(hyperparameters, must_contain_searchspace=hyperparameter_tune)
215
-
216
- excluded_models = set()
217
- if excluded_model_types is not None and len(excluded_model_types) > 0:
218
- if not isinstance(excluded_model_types, list):
219
- raise ValueError(f"`excluded_model_types` must be a list, received {type(excluded_model_types)}")
220
- logger.info(f"Excluded model types: {excluded_model_types}")
221
- for model in excluded_model_types:
222
- if not isinstance(model, str):
223
- raise ValueError(f"Each entry in `excluded_model_types` must be a string, received {type(model)}")
224
- excluded_models.add(normalize_model_type_name(model))
225
-
226
- all_assigned_names = set(all_assigned_names)
227
-
228
- model_priority_list = sorted(hyperparameters.keys(), key=lambda x: DEFAULT_MODEL_PRIORITY.get(x, 0), reverse=True)
229
-
230
- for model in model_priority_list:
231
- if isinstance(model, str):
232
- if model not in MODEL_TYPES:
233
- raise ValueError(f"Model {model} is not supported. Available models: {sorted(MODEL_TYPES)}")
234
- if model in excluded_models:
235
- logger.info(
236
- f"\tFound '{model}' model in `hyperparameters`, but '{model}' "
237
- "is present in `excluded_model_types` and will be removed."
238
- )
239
- continue
240
- model_type = MODEL_TYPES[model]
241
- elif isinstance(model, type):
242
- if not issubclass(model, AbstractTimeSeriesModel):
243
- raise ValueError(f"Custom model type {model} must inherit from `AbstractTimeSeriesModel`.")
244
- model_type = model
245
- else:
246
- raise ValueError(
247
- f"Keys of the `hyperparameters` dictionary must be strings or types, received {type(model)}."
248
- )
249
-
250
- for model_hps in hyperparameters[model]:
251
- ag_args = model_hps.pop(constants.AG_ARGS, {})
252
- for key in ag_args:
253
- if key not in VALID_AG_ARGS_KEYS:
254
- raise ValueError(
255
- f"Model {model_type} received unknown ag_args key: {key} (valid keys {VALID_AG_ARGS_KEYS})"
256
- )
257
- model_name_base = get_model_name(ag_args, model_type)
258
-
259
- model_type_kwargs = dict(
260
- name=model_name_base,
261
- path=path,
262
- freq=freq,
263
- prediction_length=prediction_length,
264
- eval_metric=eval_metric,
265
- covariate_metadata=covariate_metadata,
266
- hyperparameters=model_hps,
267
- **kwargs,
268
- )
269
-
270
- # add models while preventing name collisions
271
- model = model_type(**model_type_kwargs)
272
-
273
- model_type_kwargs.pop("name", None)
274
- increment = 1
275
- while model.name in all_assigned_names:
276
- increment += 1
277
- model = model_type(name=f"{model_name_base}_{increment}", **model_type_kwargs)
278
-
279
- if multi_window:
280
- model = MultiWindowBacktestingModel(model_base=model, name=model.name, **model_type_kwargs)
281
-
282
- all_assigned_names.add(model.name)
283
- models.append(model)
284
-
285
- return models
286
-
287
-
288
- def normalize_model_type_name(model_name: str) -> str:
289
- """Remove 'Model' suffix from the end of the string, if it's present."""
290
- if model_name.endswith("Model"):
291
- model_name = model_name[: -len("Model")]
292
- return model_name
293
-
294
-
295
- def check_and_clean_hyperparameters(
296
- hyperparameters: Dict[str, Union[ModelHyperparameters, List[ModelHyperparameters]]],
297
- must_contain_searchspace: bool,
298
- ) -> Dict[str, List[ModelHyperparameters]]:
299
- """Convert the hyperparameters dictionary to a unified format:
300
- - Remove 'Model' suffix from model names, if present
301
- - Make sure that each value in the hyperparameters dict is a list with model configurations
302
- - Checks if hyperparameters contain searchspaces
303
- """
304
- hyperparameters_clean = defaultdict(list)
305
- for key, value in hyperparameters.items():
306
- # Handle model names ending with "Model", e.g., "DeepARModel" is mapped to "DeepAR"
307
- if isinstance(key, str):
308
- key = normalize_model_type_name(key)
309
- if not isinstance(value, list):
310
- value = [value]
311
- hyperparameters_clean[key].extend(value)
312
-
313
- if must_contain_searchspace:
314
- verify_contains_at_least_one_searchspace(hyperparameters_clean)
315
- else:
316
- verify_contains_no_searchspaces(hyperparameters_clean)
317
-
318
- return dict(hyperparameters_clean)
319
-
320
-
321
- def get_model_name(ag_args: Dict[str, Any], model_type: Type[AbstractTimeSeriesModel]) -> str:
322
- name = ag_args.get("name")
323
- if name is None:
324
- name_stem = re.sub(r"Model$", "", model_type.__name__)
325
- name_prefix = ag_args.get("name_prefix", "")
326
- name_suffix = ag_args.get("name_suffix", "")
327
- name = name_prefix + name_stem + name_suffix
328
- return name
329
-
330
-
331
- def contains_searchspace(model_hyperparameters: ModelHyperparameters) -> bool:
332
- for hp_value in model_hyperparameters.values():
333
- if isinstance(hp_value, space.Space):
334
- return True
335
- return False
336
-
337
-
338
- def verify_contains_at_least_one_searchspace(hyperparameters: Dict[str, List[ModelHyperparameters]]):
339
- for model, model_hps_list in hyperparameters.items():
340
- for model_hps in model_hps_list:
341
- if contains_searchspace(model_hps):
342
- return
343
-
344
- raise ValueError(
345
- "Hyperparameter tuning specified, but no model contains a hyperparameter search space. "
346
- "Please disable hyperparameter tuning with `hyperparameter_tune_kwargs=None` or provide a search space "
347
- "for at least one model."
348
- )
349
-
350
-
351
- def verify_contains_no_searchspaces(hyperparameters: Dict[str, List[ModelHyperparameters]]):
352
- for model, model_hps_list in hyperparameters.items():
353
- for model_hps in model_hps_list:
354
- if contains_searchspace(model_hps):
355
- raise ValueError(
356
- f"Hyperparameter tuning not specified, so hyperparameters must have fixed values. "
357
- f"However, for model {model} hyperparameters {model_hps} contain a search space."
358
- )
@@ -1 +0,0 @@
1
- import sys, types, os;has_mfs = sys.version_info > (3, 5);p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = has_mfs and __import__('importlib.util');has_mfs and __import__('importlib.machinery');m = has_mfs and sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
@@ -1,71 +0,0 @@
1
- autogluon.timeseries-1.3.2b20250712-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
- autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
- autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
- autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
- autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zUZoy4,88168
6
- autogluon/timeseries/regressor.py,sha256=G0zecniv85wr8EXlXsbiqpKYHE5KeNALHRzPp_hO5qs,12001
7
- autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
- autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=C6OW_vajErF7r9El7B0X_XkhCzzEn70hhuGbhroLKSU,91
10
- autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
- autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
- autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=pvL85NCrwcIYr7lxFzY2NZ57yUL82nl6Ypdm1z3ho04,51193
14
- autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
15
- autogluon/timeseries/metrics/abstract.py,sha256=BpHVmzkzM6EN63NQrDRkApIeAyrpT6Y9LZiPEygaxvE,11829
16
- autogluon/timeseries/metrics/point.py,sha256=xllyGh11otbmUVHyIaceROPR3qyllWPQ9xlSmIGI3EI,18306
17
- autogluon/timeseries/metrics/quantile.py,sha256=vhmETtjPsIfVlvtILNAT6F2PtIDNPrOroy-U1FQbgw8,4632
18
- autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
- autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
20
- autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
21
- autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYeLT9KsUAHlWlCH9WVw7I_L65m8CMKZBMN7LIU,33112
23
- autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
- autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
- autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=CBQh23Li__Gmpsv1e5ucMjeBtLFcm2CJbpgqXVNOTNY,37614
27
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=qCC8ed4pqm6yoW743WJ2z1Nh6WV8-Z8EVqRwX9Lz6eE,20580
28
- autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
- autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
30
- autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
31
- autogluon/timeseries/models/chronos/model.py,sha256=zs8tbK4CMd-MvHrN_RZJ4sPcJiiLYiGDKtwgSLl9SZY,32315
32
- autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
33
- autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
34
- autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=C44HGXa_eW80gnnsTgTdsD18aVH-pe-DqkxUYcQx7K4,20216
35
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=BGov6fKr3hip_b0vVQEGAjvRFyc-bucmFPq0s8OoIwU,21410
36
- autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=rWqT3DB9upZb7GFVMOxc-ww2EhH8bD7TmEZNi_xTAbE,13033
37
- autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
38
- autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
39
- autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
40
- autogluon/timeseries/models/ensemble/greedy.py,sha256=s4gz5Qqrf34Wtu6E1JtyK3EvIyoBHJDM859GhcqxfDA,7320
41
- autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
42
- autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
43
- autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
44
- autogluon/timeseries/models/gluonts/models.py,sha256=Pi_zCRkslt2-LXkZpE56aRx9J4gRCOVabqYltPtI9tE,25718
45
- autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
46
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=BVCMC0wNMwrrDfZy_SQJeEajPmYBAyUlMu4qrTkWJBQ,11535
47
- autogluon/timeseries/models/local/naive.py,sha256=TAiQLt3fGCQoZKjBzmlhosV2XVEZ1urtPHDhM7Mf2i8,7408
48
- autogluon/timeseries/models/local/npts.py,sha256=I3y5g-718TVVhAbotfJ74wvLfLQ6HfLwA_ivrEWY7Qc,4182
49
- autogluon/timeseries/models/local/statsforecast.py,sha256=h2ra9yWEY8DTUSPzgwS8nBKdk7dThwPjY1Os-ewRId4,33044
50
- autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
51
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
52
- autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
53
- autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
54
- autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
55
- autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- autogluon/timeseries/utils/features.py,sha256=OeMvwVX4D2kwoFjuj0RZYZ7MgcbaeBjV97Ud1aUdvNc,22657
57
- autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
58
- autogluon/timeseries/utils/warning_filters.py,sha256=tHvhj9y7c3MP6JrjAedc7UiFFw0_mKYziDQupw8NhiQ,2538
59
- autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
60
- autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
61
- autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
- autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
- autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.3.2b20250712.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.3.2b20250712.dist-info/METADATA,sha256=IgR6RZQbUF8j9rMAow5LpeHS1R0EdXQm62mEf1SXkV8,12443
66
- autogluon.timeseries-1.3.2b20250712.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.3.2b20250712.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.3.2b20250712.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250712.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.3.2b20250712.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.3.2b20250712.dist-info/RECORD,,