autogluon.timeseries 1.3.2b20250712__py3-none-any.whl → 1.4.1b20251116__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. autogluon/timeseries/configs/__init__.py +3 -2
  2. autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
  3. autogluon/timeseries/configs/predictor_presets.py +84 -0
  4. autogluon/timeseries/dataset/ts_dataframe.py +98 -72
  5. autogluon/timeseries/learner.py +19 -18
  6. autogluon/timeseries/metrics/__init__.py +5 -5
  7. autogluon/timeseries/metrics/abstract.py +17 -17
  8. autogluon/timeseries/metrics/point.py +1 -1
  9. autogluon/timeseries/metrics/quantile.py +2 -2
  10. autogluon/timeseries/metrics/utils.py +4 -4
  11. autogluon/timeseries/models/__init__.py +4 -0
  12. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +52 -75
  13. autogluon/timeseries/models/abstract/tunable.py +6 -6
  14. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +72 -76
  15. autogluon/timeseries/models/autogluon_tabular/per_step.py +104 -46
  16. autogluon/timeseries/models/autogluon_tabular/transforms.py +9 -7
  17. autogluon/timeseries/models/chronos/model.py +115 -78
  18. autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +76 -44
  19. autogluon/timeseries/models/ensemble/__init__.py +29 -2
  20. autogluon/timeseries/models/ensemble/abstract.py +16 -52
  21. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  22. autogluon/timeseries/models/ensemble/array_based/abstract.py +247 -0
  23. autogluon/timeseries/models/ensemble/array_based/models.py +50 -0
  24. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +10 -0
  25. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +87 -0
  26. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +133 -0
  27. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +141 -0
  28. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  29. autogluon/timeseries/models/ensemble/weighted/abstract.py +41 -0
  30. autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +8 -18
  31. autogluon/timeseries/models/ensemble/{greedy.py → weighted/greedy.py} +13 -13
  32. autogluon/timeseries/models/gluonts/abstract.py +26 -26
  33. autogluon/timeseries/models/gluonts/dataset.py +4 -4
  34. autogluon/timeseries/models/gluonts/models.py +27 -12
  35. autogluon/timeseries/models/local/abstract_local_model.py +14 -14
  36. autogluon/timeseries/models/local/naive.py +4 -0
  37. autogluon/timeseries/models/local/npts.py +1 -0
  38. autogluon/timeseries/models/local/statsforecast.py +30 -14
  39. autogluon/timeseries/models/multi_window/multi_window_model.py +34 -23
  40. autogluon/timeseries/models/registry.py +65 -0
  41. autogluon/timeseries/models/toto/__init__.py +3 -0
  42. autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
  43. autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
  44. autogluon/timeseries/models/toto/_internal/backbone/attention.py +197 -0
  45. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
  46. autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
  47. autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
  48. autogluon/timeseries/models/toto/_internal/backbone/rope.py +94 -0
  49. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +306 -0
  50. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
  51. autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
  52. autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
  53. autogluon/timeseries/models/toto/dataloader.py +108 -0
  54. autogluon/timeseries/models/toto/hf_pretrained_model.py +119 -0
  55. autogluon/timeseries/models/toto/model.py +236 -0
  56. autogluon/timeseries/predictor.py +94 -107
  57. autogluon/timeseries/regressor.py +31 -27
  58. autogluon/timeseries/splitter.py +7 -31
  59. autogluon/timeseries/trainer/__init__.py +3 -0
  60. autogluon/timeseries/trainer/ensemble_composer.py +250 -0
  61. autogluon/timeseries/trainer/model_set_builder.py +256 -0
  62. autogluon/timeseries/trainer/prediction_cache.py +149 -0
  63. autogluon/timeseries/{trainer.py → trainer/trainer.py} +182 -307
  64. autogluon/timeseries/trainer/utils.py +18 -0
  65. autogluon/timeseries/transforms/covariate_scaler.py +4 -4
  66. autogluon/timeseries/transforms/target_scaler.py +14 -14
  67. autogluon/timeseries/utils/datetime/lags.py +2 -2
  68. autogluon/timeseries/utils/datetime/time_features.py +2 -2
  69. autogluon/timeseries/utils/features.py +41 -37
  70. autogluon/timeseries/utils/forecast.py +5 -5
  71. autogluon/timeseries/utils/warning_filters.py +3 -1
  72. autogluon/timeseries/version.py +1 -1
  73. autogluon.timeseries-1.4.1b20251116-py3.9-nspkg.pth +1 -0
  74. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/METADATA +32 -17
  75. autogluon_timeseries-1.4.1b20251116.dist-info/RECORD +96 -0
  76. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/WHEEL +1 -1
  77. autogluon/timeseries/configs/presets_configs.py +0 -79
  78. autogluon/timeseries/evaluator.py +0 -6
  79. autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
  80. autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
  81. autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
  82. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -530
  83. autogluon/timeseries/models/presets.py +0 -358
  84. autogluon.timeseries-1.3.2b20250712-py3.9-nspkg.pth +0 -1
  85. autogluon.timeseries-1.3.2b20250712.dist-info/RECORD +0 -71
  86. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/LICENSE +0 -0
  87. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/NOTICE +0 -0
  88. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/namespace_packages.txt +0 -0
  89. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/top_level.txt +0 -0
  90. {autogluon.timeseries-1.3.2b20250712.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/zip-safe +0 -0
@@ -0,0 +1,256 @@
1
+ import copy
2
+ import logging
3
+ import re
4
+ from collections import defaultdict
5
+ from typing import Any, Optional, Type, Union
6
+
7
+ from autogluon.common import space
8
+ from autogluon.core import constants
9
+ from autogluon.timeseries.configs import get_hyperparameter_presets
10
+ from autogluon.timeseries.metrics import TimeSeriesScorer
11
+ from autogluon.timeseries.models import ModelRegistry
12
+ from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
13
+ from autogluon.timeseries.models.multi_window import MultiWindowBacktestingModel
14
+ from autogluon.timeseries.utils.features import CovariateMetadata
15
+
16
+ logger = logging.getLogger(__name__)
17
+
18
+
19
+ ModelKey = Union[str, Type[AbstractTimeSeriesModel]]
20
+ ModelHyperparameters = dict[str, Any]
21
+ TrainerHyperparameterSpec = dict[ModelKey, list[ModelHyperparameters]]
22
+
23
+
24
+ class TrainableModelSetBuilder:
25
+ """Responsible for building a list of model objects, in priority order, that will be trained by the
26
+ Trainer."""
27
+
28
+ VALID_AG_ARGS_KEYS = {
29
+ "name",
30
+ "name_prefix",
31
+ "name_suffix",
32
+ }
33
+
34
+ def __init__(
35
+ self,
36
+ path: str,
37
+ freq: Optional[str],
38
+ prediction_length: int,
39
+ eval_metric: TimeSeriesScorer,
40
+ target: str,
41
+ quantile_levels: list[float],
42
+ covariate_metadata: CovariateMetadata,
43
+ multi_window: bool,
44
+ ):
45
+ self.path = path
46
+ self.freq = freq
47
+ self.prediction_length = prediction_length
48
+ self.eval_metric = eval_metric
49
+ self.target = target
50
+ self.quantile_levels = quantile_levels
51
+ self.covariate_metadata = covariate_metadata
52
+ self.multi_window = multi_window
53
+
54
+ def get_model_set(
55
+ self,
56
+ hyperparameters: Union[str, dict, None],
57
+ hyperparameter_tune: bool,
58
+ excluded_model_types: Optional[list[str]],
59
+ banned_model_names: Optional[list[str]] = None,
60
+ ) -> list[AbstractTimeSeriesModel]:
61
+ """Resolve hyperparameters and create the requested list of models"""
62
+ models = []
63
+ banned_model_names = [] if banned_model_names is None else banned_model_names.copy()
64
+
65
+ # resolve and normalize hyperparameters
66
+ model_hp_map: TrainerHyperparameterSpec = HyperparameterBuilder(
67
+ hyperparameters=hyperparameters,
68
+ hyperparameter_tune=hyperparameter_tune,
69
+ excluded_model_types=excluded_model_types,
70
+ ).get_hyperparameters()
71
+
72
+ for k in model_hp_map.keys():
73
+ if isinstance(k, type) and not issubclass(k, AbstractTimeSeriesModel):
74
+ raise ValueError(f"Custom model type {k} must inherit from `AbstractTimeSeriesModel`.")
75
+
76
+ model_priority_list = sorted(
77
+ model_hp_map.keys(), key=lambda x: ModelRegistry.get_model_priority(x), reverse=True
78
+ )
79
+
80
+ for model_key in model_priority_list:
81
+ model_type = self._get_model_type(model_key)
82
+
83
+ for model_hps in model_hp_map[model_key]:
84
+ ag_args = model_hps.pop(constants.AG_ARGS, {})
85
+
86
+ for key in ag_args:
87
+ if key not in self.VALID_AG_ARGS_KEYS:
88
+ raise ValueError(
89
+ f"Model {model_type} received unknown ag_args key: {key} (valid keys {self.VALID_AG_ARGS_KEYS})"
90
+ )
91
+ model_name_base = self._get_model_name(ag_args, model_type)
92
+
93
+ model_type_kwargs: dict[str, Any] = dict(
94
+ name=model_name_base,
95
+ hyperparameters=model_hps,
96
+ **self._get_default_model_init_kwargs(),
97
+ )
98
+
99
+ # add models while preventing name collisions
100
+ model = model_type(**model_type_kwargs)
101
+ model_type_kwargs.pop("name", None)
102
+
103
+ increment = 1
104
+ while model.name in banned_model_names:
105
+ increment += 1
106
+ model = model_type(name=f"{model_name_base}_{increment}", **model_type_kwargs)
107
+
108
+ if self.multi_window:
109
+ model = MultiWindowBacktestingModel(model_base=model, name=model.name, **model_type_kwargs) # type: ignore
110
+
111
+ banned_model_names.append(model.name)
112
+ models.append(model)
113
+
114
+ return models
115
+
116
+ def _get_model_type(self, model: ModelKey) -> Type[AbstractTimeSeriesModel]:
117
+ if isinstance(model, str):
118
+ model_type: Type[AbstractTimeSeriesModel] = ModelRegistry.get_model_class(model)
119
+ elif isinstance(model, type):
120
+ model_type = model
121
+ else:
122
+ raise ValueError(
123
+ f"Keys of the `hyperparameters` dictionary must be strings or types, received {type(model)}."
124
+ )
125
+
126
+ return model_type
127
+
128
+ def _get_default_model_init_kwargs(self) -> dict[str, Any]:
129
+ return dict(
130
+ path=self.path,
131
+ freq=self.freq,
132
+ prediction_length=self.prediction_length,
133
+ eval_metric=self.eval_metric,
134
+ target=self.target,
135
+ quantile_levels=self.quantile_levels,
136
+ covariate_metadata=self.covariate_metadata,
137
+ )
138
+
139
+ def _get_model_name(self, ag_args: dict[str, Any], model_type: Type[AbstractTimeSeriesModel]) -> str:
140
+ name = ag_args.get("name")
141
+ if name is None:
142
+ name_stem = re.sub(r"Model$", "", model_type.__name__)
143
+ name_prefix = ag_args.get("name_prefix", "")
144
+ name_suffix = ag_args.get("name_suffix", "")
145
+ name = name_prefix + name_stem + name_suffix
146
+ return name
147
+
148
+
149
+ class HyperparameterBuilder:
150
+ """Given user hyperparameter specifications, this class resolves them against presets, removes
151
+ excluded model types and canonicalizes the hyperparameter specification.
152
+ """
153
+
154
+ def __init__(
155
+ self,
156
+ hyperparameters: Union[str, dict, None],
157
+ hyperparameter_tune: bool,
158
+ excluded_model_types: Optional[list[str]],
159
+ ):
160
+ self.hyperparameters = hyperparameters
161
+ self.hyperparameter_tune = hyperparameter_tune
162
+ self.excluded_model_types = excluded_model_types
163
+
164
+ def get_hyperparameters(self) -> TrainerHyperparameterSpec:
165
+ hyperparameter_dict = {}
166
+ hp_presets = get_hyperparameter_presets()
167
+
168
+ if self.hyperparameters is None:
169
+ hyperparameter_dict = hp_presets["default"]
170
+ elif isinstance(self.hyperparameters, str):
171
+ try:
172
+ hyperparameter_dict = hp_presets[self.hyperparameters]
173
+ except KeyError:
174
+ raise ValueError(f"{self.hyperparameters} is not a valid preset.")
175
+ elif isinstance(self.hyperparameters, dict):
176
+ hyperparameter_dict = copy.deepcopy(self.hyperparameters)
177
+ else:
178
+ raise ValueError(
179
+ f"hyperparameters must be a dict, a string or None (received {type(self.hyperparameters)}). "
180
+ f"Please see the documentation for TimeSeriesPredictor.fit"
181
+ )
182
+
183
+ return self._check_and_clean_hyperparameters(hyperparameter_dict) # type: ignore
184
+
185
+ def _check_and_clean_hyperparameters(
186
+ self,
187
+ hyperparameters: dict[ModelKey, Union[ModelHyperparameters, list[ModelHyperparameters]]],
188
+ ) -> TrainerHyperparameterSpec:
189
+ """Convert the hyperparameters dictionary to a unified format:
190
+ - Remove 'Model' suffix from model names, if present
191
+ - Make sure that each value in the hyperparameters dict is a list with model configurations
192
+ - Checks if hyperparameters contain searchspaces
193
+ """
194
+ excluded_models = self._get_excluded_models()
195
+ hyperparameters_clean = defaultdict(list)
196
+ for model_name, model_hyperparameters in hyperparameters.items():
197
+ # Handle model names ending with "Model", e.g., "DeepARModel" is mapped to "DeepAR"
198
+ if isinstance(model_name, str):
199
+ model_name = self._normalize_model_type_name(model_name)
200
+ if model_name in excluded_models:
201
+ logger.info(
202
+ f"\tFound '{model_name}' model in `hyperparameters`, but '{model_name}' "
203
+ "is present in `excluded_model_types` and will be removed."
204
+ )
205
+ continue
206
+ if not isinstance(model_hyperparameters, list):
207
+ model_hyperparameters = [model_hyperparameters]
208
+ hyperparameters_clean[model_name].extend(model_hyperparameters)
209
+
210
+ self._verify_searchspaces(hyperparameters_clean)
211
+
212
+ return dict(hyperparameters_clean)
213
+
214
+ def _get_excluded_models(self) -> set[str]:
215
+ excluded_models = set()
216
+ if self.excluded_model_types is not None and len(self.excluded_model_types) > 0:
217
+ if not isinstance(self.excluded_model_types, list):
218
+ raise ValueError(f"`excluded_model_types` must be a list, received {type(self.excluded_model_types)}")
219
+ logger.info(f"Excluded model types: {self.excluded_model_types}")
220
+ for model in self.excluded_model_types:
221
+ if not isinstance(model, str):
222
+ raise ValueError(f"Each entry in `excluded_model_types` must be a string, received {type(model)}")
223
+ excluded_models.add(self._normalize_model_type_name(model))
224
+ return excluded_models
225
+
226
+ @staticmethod
227
+ def _normalize_model_type_name(model_name: str) -> str:
228
+ return model_name.removesuffix("Model")
229
+
230
+ def _verify_searchspaces(self, hyperparameters: dict[str, list[ModelHyperparameters]]):
231
+ if self.hyperparameter_tune:
232
+ for model, model_hps_list in hyperparameters.items():
233
+ for model_hps in model_hps_list:
234
+ if contains_searchspace(model_hps):
235
+ return
236
+
237
+ raise ValueError(
238
+ "Hyperparameter tuning specified, but no model contains a hyperparameter search space. "
239
+ "Please disable hyperparameter tuning with `hyperparameter_tune_kwargs=None` or provide a search space "
240
+ "for at least one model."
241
+ )
242
+ else:
243
+ for model, model_hps_list in hyperparameters.items():
244
+ for model_hps in model_hps_list:
245
+ if contains_searchspace(model_hps):
246
+ raise ValueError(
247
+ f"Hyperparameter tuning not specified, so hyperparameters must have fixed values. "
248
+ f"However, for model {model} hyperparameters {model_hps} contain a search space."
249
+ )
250
+
251
+
252
+ def contains_searchspace(model_hyperparameters: ModelHyperparameters) -> bool:
253
+ for hp_value in model_hyperparameters.values():
254
+ if isinstance(hp_value, space.Space):
255
+ return True
256
+ return False
@@ -0,0 +1,149 @@
1
+ import logging
2
+ from abc import ABC, abstractmethod
3
+ from pathlib import Path
4
+ from typing import Any, Optional
5
+
6
+ from autogluon.common.utils.utils import hash_pandas_df
7
+ from autogluon.core.utils.loaders import load_pkl
8
+ from autogluon.core.utils.savers import save_pkl
9
+ from autogluon.timeseries import TimeSeriesDataFrame
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ class PredictionCache(ABC):
15
+ """A prediction cache is an abstract key-value store for time series predictions. The storage is keyed by
16
+ (data, known_covariates) pairs and stores (model_pred_dict, pred_time_dict) pair values. In this stored pair,
17
+ (model_pred_dict, pred_time_dict), both dictionaries are keyed by model names.
18
+ """
19
+
20
+ def __init__(self, root_path: str):
21
+ self.root_path = Path(root_path)
22
+
23
+ @abstractmethod
24
+ def get(
25
+ self, data: TimeSeriesDataFrame, known_covariates: Optional[TimeSeriesDataFrame]
26
+ ) -> tuple[dict[str, Optional[TimeSeriesDataFrame]], dict[str, float]]:
27
+ pass
28
+
29
+ @abstractmethod
30
+ def put(
31
+ self,
32
+ data: TimeSeriesDataFrame,
33
+ known_covariates: Optional[TimeSeriesDataFrame],
34
+ model_pred_dict: dict[str, Optional[TimeSeriesDataFrame]],
35
+ pred_time_dict: dict[str, float],
36
+ ) -> None:
37
+ pass
38
+
39
+ @abstractmethod
40
+ def clear(self) -> None:
41
+ pass
42
+
43
+
44
+ def get_prediction_cache(use_cache: bool, root_path: str) -> PredictionCache:
45
+ if use_cache:
46
+ return FileBasedPredictionCache(root_path=root_path)
47
+ else:
48
+ return NoOpPredictionCache(root_path=root_path)
49
+
50
+
51
+ def compute_dataset_hash(data: TimeSeriesDataFrame, known_covariates: Optional[TimeSeriesDataFrame] = None) -> str:
52
+ """Compute a unique string that identifies the time series dataset."""
53
+ combined_hash = hash_pandas_df(data) + hash_pandas_df(known_covariates) + hash_pandas_df(data.static_features)
54
+ return combined_hash
55
+
56
+
57
+ class NoOpPredictionCache(PredictionCache):
58
+ """A dummy (no-op) prediction cache."""
59
+
60
+ def get(
61
+ self, data: TimeSeriesDataFrame, known_covariates: Optional[TimeSeriesDataFrame]
62
+ ) -> tuple[dict[str, Optional[TimeSeriesDataFrame]], dict[str, float]]:
63
+ return {}, {}
64
+
65
+ def put(
66
+ self,
67
+ data: TimeSeriesDataFrame,
68
+ known_covariates: Optional[TimeSeriesDataFrame],
69
+ model_pred_dict: dict[str, Optional[TimeSeriesDataFrame]],
70
+ pred_time_dict: dict[str, float],
71
+ ) -> None:
72
+ pass
73
+
74
+ def clear(self) -> None:
75
+ pass
76
+
77
+
78
+ class FileBasedPredictionCache(PredictionCache):
79
+ """A file-backed cache of model predictions."""
80
+
81
+ _cached_predictions_filename = "cached_predictions.pkl"
82
+
83
+ @property
84
+ def path(self) -> Path:
85
+ return Path(self.root_path) / self._cached_predictions_filename
86
+
87
+ def get(
88
+ self, data: TimeSeriesDataFrame, known_covariates: Optional[TimeSeriesDataFrame]
89
+ ) -> tuple[dict[str, Optional[TimeSeriesDataFrame]], dict[str, float]]:
90
+ dataset_hash = compute_dataset_hash(data, known_covariates)
91
+ return self._get_cached_pred_dicts(dataset_hash)
92
+
93
+ def put(
94
+ self,
95
+ data: TimeSeriesDataFrame,
96
+ known_covariates: Optional[TimeSeriesDataFrame],
97
+ model_pred_dict: dict[str, Optional[TimeSeriesDataFrame]],
98
+ pred_time_dict: dict[str, float],
99
+ ) -> None:
100
+ dataset_hash = compute_dataset_hash(data, known_covariates)
101
+ self._save_cached_pred_dicts(dataset_hash, model_pred_dict, pred_time_dict)
102
+
103
+ def clear(self) -> None:
104
+ if self.path.exists():
105
+ logger.debug(f"Removing existing cached predictions file {self.path}")
106
+ self.path.unlink()
107
+
108
+ def _load_cached_predictions(self) -> dict[str, dict[str, dict[str, Any]]]:
109
+ if self.path.exists():
110
+ try:
111
+ cached_predictions = load_pkl.load(str(self.path))
112
+ except Exception:
113
+ cached_predictions = {}
114
+ else:
115
+ cached_predictions = {}
116
+ return cached_predictions
117
+
118
+ def _get_cached_pred_dicts(
119
+ self, dataset_hash: str
120
+ ) -> tuple[dict[str, Optional[TimeSeriesDataFrame]], dict[str, float]]:
121
+ """Load cached predictions for given dataset_hash from disk, if possible.
122
+
123
+ If loading fails for any reason, empty dicts are returned.
124
+ """
125
+ cached_predictions = self._load_cached_predictions()
126
+ if dataset_hash in cached_predictions:
127
+ try:
128
+ model_pred_dict = cached_predictions[dataset_hash]["model_pred_dict"]
129
+ pred_time_dict = cached_predictions[dataset_hash]["pred_time_dict"]
130
+ assert model_pred_dict.keys() == pred_time_dict.keys()
131
+ return model_pred_dict, pred_time_dict
132
+ except Exception:
133
+ logger.warning("Cached predictions are corrupted. Predictions will be made from scratch.")
134
+ return {}, {}
135
+
136
+ def _save_cached_pred_dicts(
137
+ self,
138
+ dataset_hash: str,
139
+ model_pred_dict: dict[str, Optional[TimeSeriesDataFrame]],
140
+ pred_time_dict: dict[str, float],
141
+ ) -> None:
142
+ cached_predictions = self._load_cached_predictions()
143
+ # Do not save results for models that failed
144
+ cached_predictions[dataset_hash] = {
145
+ "model_pred_dict": {k: v for k, v in model_pred_dict.items() if v is not None},
146
+ "pred_time_dict": {k: v for k, v in pred_time_dict.items() if v is not None},
147
+ }
148
+ save_pkl.save(str(self.path), object=cached_predictions)
149
+ logger.debug(f"Cached predictions saved to {self.path}")