autogluon.timeseries 1.2.1b20250214__py3-none-any.whl → 1.2.1b20250216__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -183,18 +183,12 @@ class AbstractTimeSeriesModel(AbstractModel):
183
183
  def _get_default_auxiliary_params(self) -> dict:
184
184
  # TODO: refine to values that are absolutely necessary
185
185
  return dict(
186
- # Ratio of memory usage allowed by the model. Values > 1.0 have an increased risk of causing OOM errors.
187
- # Used in memory checks during model training to avoid OOM errors.
188
- max_memory_usage_ratio=1.0,
189
186
  # ratio of given time_limit to use during fit(). If time_limit == 10 and max_time_limit_ratio=0.3,
190
187
  # time_limit would be changed to 3.
191
188
  max_time_limit_ratio=self.default_max_time_limit_ratio,
192
189
  # max time_limit value during fit(). If the provided time_limit is greater than this value, it will be
193
190
  # replaced by max_time_limit. Occurs after max_time_limit_ratio is applied.
194
191
  max_time_limit=None,
195
- # min time_limit value during fit(). If the provided time_limit is less than this value, it will be replaced
196
- # by min_time_limit. Occurs after max_time_limit is applied.
197
- min_time_limit=0,
198
192
  )
199
193
 
200
194
  def initialize(self, **kwargs) -> dict:
@@ -357,16 +351,12 @@ class AbstractTimeSeriesModel(AbstractModel):
357
351
  original_time_limit = time_limit
358
352
  max_time_limit_ratio = self.params_aux["max_time_limit_ratio"]
359
353
  max_time_limit = self.params_aux["max_time_limit"]
360
- min_time_limit = self.params_aux["min_time_limit"]
361
354
 
362
355
  time_limit *= max_time_limit_ratio
363
356
 
364
357
  if max_time_limit is not None:
365
358
  time_limit = min(time_limit, max_time_limit)
366
359
 
367
- if min_time_limit is not None:
368
- time_limit = max(time_limit, min_time_limit)
369
-
370
360
  if original_time_limit != time_limit:
371
361
  time_limit_og_str = f"{original_time_limit:.2f}s" if original_time_limit is not None else "None"
372
362
  time_limit_str = f"{time_limit:.2f}s" if time_limit is not None else "None"
@@ -374,8 +364,7 @@ class AbstractTimeSeriesModel(AbstractModel):
374
364
  f"\tTime limit adjusted due to model hyperparameters: "
375
365
  f"{time_limit_og_str} -> {time_limit_str} "
376
366
  f"(ag.max_time_limit={max_time_limit}, "
377
- f"ag.max_time_limit_ratio={max_time_limit_ratio}, "
378
- f"ag.min_time_limit={min_time_limit})",
367
+ f"ag.max_time_limit_ratio={max_time_limit_ratio}"
379
368
  )
380
369
 
381
370
  return time_limit
@@ -182,7 +182,7 @@ def get_preset_models(
182
182
  freq: Optional[str],
183
183
  prediction_length: int,
184
184
  path: str,
185
- eval_metric: str | TimeSeriesScorer,
185
+ eval_metric: Union[str, TimeSeriesScorer],
186
186
  eval_metric_seasonal_period: Optional[int],
187
187
  hyperparameters: Union[str, Dict, None],
188
188
  hyperparameter_tune: bool,
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250214"
3
+ __version__ = "1.2.1b20250216"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20250214
3
+ Version: 1.2.1b20250216
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250214
59
- Requires-Dist: autogluon.common==1.2.1b20250214
60
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250214
58
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250216
59
+ Requires-Dist: autogluon.common==1.2.1b20250216
60
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250216
61
61
  Provides-Extra: all
62
62
  Provides-Extra: chronos-onnx
63
63
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
@@ -89,9 +89,11 @@ Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
89
89
 
90
90
  [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
91
91
 
92
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
93
92
  </div>
94
93
 
94
+ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
95
+
96
+
95
97
  ## 💾 Installation
96
98
 
97
99
  AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
@@ -131,8 +133,8 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
131
133
  | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
132
134
  | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
133
135
  | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
134
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
135
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
136
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
137
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
136
138
  | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
137
139
 
138
140
  ### Scientific Publications
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.2.1b20250214-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2.1b20250216-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=HTE8a_R_9U0z-KlxyoELm-64BXNRzFu3mIEbTab
6
6
  autogluon/timeseries/regressor.py,sha256=dIXttb0SOGS8IAwZOMANNDc796spN0LMysGUvuKgskU,9623
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=L9FT5qERcqlWTgH9IgE6QsO0aBNj2nivRKF2Oy4UJOk,57250
9
- autogluon/timeseries/version.py,sha256=8Tmp21TkXTfD8Z5sz4QOVI4VADn1m2dhdYptL7KOEGE,91
9
+ autogluon/timeseries/version.py,sha256=U2riSgboLHrGAsTKaN_NObA5VbiSqKggEC1ucbkCW7M,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -17,9 +17,9 @@ autogluon/timeseries/metrics/point.py,sha256=g7L8jVUKc5YVjETZ-B7syK9nZswfKxLFlkN
17
17
  autogluon/timeseries/metrics/quantile.py,sha256=eemdLbo3y2wstnVkuA-f55YXywctUmSW1EhIW4BsoH4,3965
18
18
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
19
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
20
- autogluon/timeseries/models/presets.py,sha256=dEjdRgd1WhtjUK2LRkLnc05cBamz3mwzaX4PV58EzKg,12472
20
+ autogluon/timeseries/models/presets.py,sha256=GezDk-p591Mlhm5UTIjKKJqQE2mnWw9rdsDYKen4zJo,12478
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=dWjimc3oyOkmYxL_fQ5lJ5F_oLKuYAhtDO17AUHdo7k,35685
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=UVBsYw3JiaFVA-Oh_n80OUd8Qq2_6j_kmVsKbf8E9pA,35011
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
25
25
  autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=H2UlpnJcIIEi_swYn9AJUPFGT4qwFSmzZ7yvC3I2pUU,33039
@@ -58,11 +58,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
58
58
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
59
59
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
60
60
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
61
- autogluon.timeseries-1.2.1b20250214.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
62
- autogluon.timeseries-1.2.1b20250214.dist-info/METADATA,sha256=LWhz0ZoFRC6eFK-Lck9_D0E9W1libGsX9d-SUl6yPBQ,12662
63
- autogluon.timeseries-1.2.1b20250214.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
64
- autogluon.timeseries-1.2.1b20250214.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
65
- autogluon.timeseries-1.2.1b20250214.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
66
- autogluon.timeseries-1.2.1b20250214.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
- autogluon.timeseries-1.2.1b20250214.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
68
- autogluon.timeseries-1.2.1b20250214.dist-info/RECORD,,
61
+ autogluon.timeseries-1.2.1b20250216.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
62
+ autogluon.timeseries-1.2.1b20250216.dist-info/METADATA,sha256=Zsoqc8qRYh8ohvVFCMPLBV98K-z76UUl3ziydrKGTCU,12684
63
+ autogluon.timeseries-1.2.1b20250216.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
64
+ autogluon.timeseries-1.2.1b20250216.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
65
+ autogluon.timeseries-1.2.1b20250216.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
66
+ autogluon.timeseries-1.2.1b20250216.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
+ autogluon.timeseries-1.2.1b20250216.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
68
+ autogluon.timeseries-1.2.1b20250216.dist-info/RECORD,,