autogluon.timeseries 1.2.1b20250214__py3-none-any.whl → 1.2.1b20250216__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +1 -12
- autogluon/timeseries/models/presets.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/METADATA +9 -7
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/RECORD +12 -12
- /autogluon.timeseries-1.2.1b20250214-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250216-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250214.dist-info → autogluon.timeseries-1.2.1b20250216.dist-info}/zip-safe +0 -0
@@ -183,18 +183,12 @@ class AbstractTimeSeriesModel(AbstractModel):
|
|
183
183
|
def _get_default_auxiliary_params(self) -> dict:
|
184
184
|
# TODO: refine to values that are absolutely necessary
|
185
185
|
return dict(
|
186
|
-
# Ratio of memory usage allowed by the model. Values > 1.0 have an increased risk of causing OOM errors.
|
187
|
-
# Used in memory checks during model training to avoid OOM errors.
|
188
|
-
max_memory_usage_ratio=1.0,
|
189
186
|
# ratio of given time_limit to use during fit(). If time_limit == 10 and max_time_limit_ratio=0.3,
|
190
187
|
# time_limit would be changed to 3.
|
191
188
|
max_time_limit_ratio=self.default_max_time_limit_ratio,
|
192
189
|
# max time_limit value during fit(). If the provided time_limit is greater than this value, it will be
|
193
190
|
# replaced by max_time_limit. Occurs after max_time_limit_ratio is applied.
|
194
191
|
max_time_limit=None,
|
195
|
-
# min time_limit value during fit(). If the provided time_limit is less than this value, it will be replaced
|
196
|
-
# by min_time_limit. Occurs after max_time_limit is applied.
|
197
|
-
min_time_limit=0,
|
198
192
|
)
|
199
193
|
|
200
194
|
def initialize(self, **kwargs) -> dict:
|
@@ -357,16 +351,12 @@ class AbstractTimeSeriesModel(AbstractModel):
|
|
357
351
|
original_time_limit = time_limit
|
358
352
|
max_time_limit_ratio = self.params_aux["max_time_limit_ratio"]
|
359
353
|
max_time_limit = self.params_aux["max_time_limit"]
|
360
|
-
min_time_limit = self.params_aux["min_time_limit"]
|
361
354
|
|
362
355
|
time_limit *= max_time_limit_ratio
|
363
356
|
|
364
357
|
if max_time_limit is not None:
|
365
358
|
time_limit = min(time_limit, max_time_limit)
|
366
359
|
|
367
|
-
if min_time_limit is not None:
|
368
|
-
time_limit = max(time_limit, min_time_limit)
|
369
|
-
|
370
360
|
if original_time_limit != time_limit:
|
371
361
|
time_limit_og_str = f"{original_time_limit:.2f}s" if original_time_limit is not None else "None"
|
372
362
|
time_limit_str = f"{time_limit:.2f}s" if time_limit is not None else "None"
|
@@ -374,8 +364,7 @@ class AbstractTimeSeriesModel(AbstractModel):
|
|
374
364
|
f"\tTime limit adjusted due to model hyperparameters: "
|
375
365
|
f"{time_limit_og_str} -> {time_limit_str} "
|
376
366
|
f"(ag.max_time_limit={max_time_limit}, "
|
377
|
-
f"ag.max_time_limit_ratio={max_time_limit_ratio}
|
378
|
-
f"ag.min_time_limit={min_time_limit})",
|
367
|
+
f"ag.max_time_limit_ratio={max_time_limit_ratio}"
|
379
368
|
)
|
380
369
|
|
381
370
|
return time_limit
|
@@ -182,7 +182,7 @@ def get_preset_models(
|
|
182
182
|
freq: Optional[str],
|
183
183
|
prediction_length: int,
|
184
184
|
path: str,
|
185
|
-
eval_metric: str
|
185
|
+
eval_metric: Union[str, TimeSeriesScorer],
|
186
186
|
eval_metric_seasonal_period: Optional[int],
|
187
187
|
hyperparameters: Union[str, Dict, None],
|
188
188
|
hyperparameter_tune: bool,
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250216
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
59
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250216
|
59
|
+
Requires-Dist: autogluon.common==1.2.1b20250216
|
60
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250216
|
61
61
|
Provides-Extra: all
|
62
62
|
Provides-Extra: chronos-onnx
|
63
63
|
Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
|
@@ -89,9 +89,11 @@ Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
|
|
89
89
|
|
90
90
|
[Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
|
91
91
|
|
92
|
-
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
93
92
|
</div>
|
94
93
|
|
94
|
+
AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
95
|
+
|
96
|
+
|
95
97
|
## 💾 Installation
|
96
98
|
|
97
99
|
AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
|
@@ -131,8 +133,8 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
131
133
|
| :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
|
132
134
|
| :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
|
133
135
|
| :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
|
134
|
-
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
135
|
-
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
136
|
+
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
137
|
+
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
136
138
|
| :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
|
137
139
|
|
138
140
|
### Scientific Publications
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.2.
|
1
|
+
autogluon.timeseries-1.2.1b20250216-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=HTE8a_R_9U0z-KlxyoELm-64BXNRzFu3mIEbTab
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=dIXttb0SOGS8IAwZOMANNDc796spN0LMysGUvuKgskU,9623
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=L9FT5qERcqlWTgH9IgE6QsO0aBNj2nivRKF2Oy4UJOk,57250
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=U2riSgboLHrGAsTKaN_NObA5VbiSqKggEC1ucbkCW7M,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -17,9 +17,9 @@ autogluon/timeseries/metrics/point.py,sha256=g7L8jVUKc5YVjETZ-B7syK9nZswfKxLFlkN
|
|
17
17
|
autogluon/timeseries/metrics/quantile.py,sha256=eemdLbo3y2wstnVkuA-f55YXywctUmSW1EhIW4BsoH4,3965
|
18
18
|
autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
|
20
|
-
autogluon/timeseries/models/presets.py,sha256=
|
20
|
+
autogluon/timeseries/models/presets.py,sha256=GezDk-p591Mlhm5UTIjKKJqQE2mnWw9rdsDYKen4zJo,12478
|
21
21
|
autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
|
22
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
22
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=UVBsYw3JiaFVA-Oh_n80OUd8Qq2_6j_kmVsKbf8E9pA,35011
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=H2UlpnJcIIEi_swYn9AJUPFGT4qwFSmzZ7yvC3I2pUU,33039
|
@@ -58,11 +58,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
58
58
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
59
59
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
60
60
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
61
|
-
autogluon.timeseries-1.2.
|
62
|
-
autogluon.timeseries-1.2.
|
63
|
-
autogluon.timeseries-1.2.
|
64
|
-
autogluon.timeseries-1.2.
|
65
|
-
autogluon.timeseries-1.2.
|
66
|
-
autogluon.timeseries-1.2.
|
67
|
-
autogluon.timeseries-1.2.
|
68
|
-
autogluon.timeseries-1.2.
|
61
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
62
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/METADATA,sha256=Zsoqc8qRYh8ohvVFCMPLBV98K-z76UUl3ziydrKGTCU,12684
|
63
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
64
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
65
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
66
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
67
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
68
|
+
autogluon.timeseries-1.2.1b20250216.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|