autogluon.timeseries 1.2.1b20250211__py3-none-any.whl → 1.2.1b20250213__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +1 -1
- autogluon/timeseries/models/local/statsforecast.py +13 -9
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/METADATA +4 -4
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/RECORD +12 -12
- /autogluon.timeseries-1.2.1b20250211-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250213-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250211.dist-info → autogluon.timeseries-1.2.1b20250213.dist-info}/zip-safe +0 -0
@@ -131,7 +131,7 @@ class AbstractTimeSeriesModel(AbstractModel):
|
|
131
131
|
def __repr__(self) -> str:
|
132
132
|
return self.name
|
133
133
|
|
134
|
-
def save(self, path: str
|
134
|
+
def save(self, path: Optional[str] = None, verbose=True) -> str:
|
135
135
|
# Save self._oof_predictions as a separate file, not model attribute
|
136
136
|
if self._oof_predictions is not None:
|
137
137
|
save_pkl.save(
|
@@ -51,15 +51,7 @@ class AbstractProbabilisticStatsForecastModel(AbstractStatsForecastModel):
|
|
51
51
|
time_series: pd.Series,
|
52
52
|
local_model_args: dict,
|
53
53
|
) -> pd.DataFrame:
|
54
|
-
|
55
|
-
levels = []
|
56
|
-
quantile_to_key = {}
|
57
|
-
for q in self.quantile_levels:
|
58
|
-
level = round(abs(q - 0.5) * 200, 1)
|
59
|
-
suffix = "lo" if q < 0.5 else "hi"
|
60
|
-
levels.append(level)
|
61
|
-
quantile_to_key[str(q)] = f"{suffix}-{level}"
|
62
|
-
levels = sorted(list(set(levels)))
|
54
|
+
levels, quantile_to_key = self._get_confidence_levels()
|
63
55
|
|
64
56
|
forecast = self._get_local_model(local_model_args).forecast(
|
65
57
|
h=self.prediction_length, y=time_series.values.ravel(), level=levels
|
@@ -69,6 +61,18 @@ class AbstractProbabilisticStatsForecastModel(AbstractStatsForecastModel):
|
|
69
61
|
predictions[q] = forecast[key]
|
70
62
|
return pd.DataFrame(predictions)
|
71
63
|
|
64
|
+
def _get_confidence_levels(self) -> tuple[list[float], dict[str, str]]:
|
65
|
+
"""Get StatsForecast compatible levels from quantiles"""
|
66
|
+
levels = []
|
67
|
+
quantile_to_key = {}
|
68
|
+
for q in self.quantile_levels:
|
69
|
+
level = round(abs(q - 0.5) * 200, 1)
|
70
|
+
suffix = "lo" if q < 0.5 else "hi"
|
71
|
+
levels.append(level)
|
72
|
+
quantile_to_key[str(q)] = f"{suffix}-{level}"
|
73
|
+
levels = sorted(list(set(levels)))
|
74
|
+
return levels, quantile_to_key
|
75
|
+
|
72
76
|
|
73
77
|
class AutoARIMAModel(AbstractProbabilisticStatsForecastModel):
|
74
78
|
"""Automatically tuned ARIMA model.
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250213
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
59
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250213
|
59
|
+
Requires-Dist: autogluon.common==1.2.1b20250213
|
60
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250213
|
61
61
|
Provides-Extra: all
|
62
62
|
Provides-Extra: chronos-onnx
|
63
63
|
Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.2.
|
1
|
+
autogluon.timeseries-1.2.1b20250213-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=HTE8a_R_9U0z-KlxyoELm-64BXNRzFu3mIEbTab
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=dIXttb0SOGS8IAwZOMANNDc796spN0LMysGUvuKgskU,9623
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=L9FT5qERcqlWTgH9IgE6QsO0aBNj2nivRKF2Oy4UJOk,57250
|
9
|
-
autogluon/timeseries/version.py,sha256
|
9
|
+
autogluon/timeseries/version.py,sha256=-eMcoN37NqYnyDHzrKYBqqrt5oVGROjtYzQ6FocTpmU,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -19,7 +19,7 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
|
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
|
20
20
|
autogluon/timeseries/models/presets.py,sha256=dEjdRgd1WhtjUK2LRkLnc05cBamz3mwzaX4PV58EzKg,12472
|
21
21
|
autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
|
22
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
22
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=dWjimc3oyOkmYxL_fQ5lJ5F_oLKuYAhtDO17AUHdo7k,35685
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=H2UlpnJcIIEi_swYn9AJUPFGT4qwFSmzZ7yvC3I2pUU,33039
|
@@ -43,7 +43,7 @@ autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bH
|
|
43
43
|
autogluon/timeseries/models/local/abstract_local_model.py,sha256=CYDvOXs7ZNzyz75gMOAKI1socB_qGep51FSPfzXMopA,11948
|
44
44
|
autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
|
45
45
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
46
|
-
autogluon/timeseries/models/local/statsforecast.py,sha256=
|
46
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
|
47
47
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
48
48
|
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=kVHAGNQC8ahEmAgnnLa38hcbxMFC_Tl1lHFJMos2G8w,11985
|
49
49
|
autogluon/timeseries/transforms/__init__.py,sha256=Stym_998LZQgKPuFN4_w1AcJFh4_AeaQLXgXLzv53kY,299
|
@@ -58,11 +58,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
58
58
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
59
59
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
60
60
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
61
|
-
autogluon.timeseries-1.2.
|
62
|
-
autogluon.timeseries-1.2.
|
63
|
-
autogluon.timeseries-1.2.
|
64
|
-
autogluon.timeseries-1.2.
|
65
|
-
autogluon.timeseries-1.2.
|
66
|
-
autogluon.timeseries-1.2.
|
67
|
-
autogluon.timeseries-1.2.
|
68
|
-
autogluon.timeseries-1.2.
|
61
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
62
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/METADATA,sha256=w8_RdZ8aKmdy6eP0ACEFKE6ahuJ0OrM8Wgg_BnVZdxE,12662
|
63
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
64
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
65
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
66
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
67
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
68
|
+
autogluon.timeseries-1.2.1b20250213.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|