autogluon.timeseries 1.2.1b20250211__py3-none-any.whl → 1.2.1b20250213__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -131,7 +131,7 @@ class AbstractTimeSeriesModel(AbstractModel):
131
131
  def __repr__(self) -> str:
132
132
  return self.name
133
133
 
134
- def save(self, path: str | None = None, verbose=True) -> str:
134
+ def save(self, path: Optional[str] = None, verbose=True) -> str:
135
135
  # Save self._oof_predictions as a separate file, not model attribute
136
136
  if self._oof_predictions is not None:
137
137
  save_pkl.save(
@@ -51,15 +51,7 @@ class AbstractProbabilisticStatsForecastModel(AbstractStatsForecastModel):
51
51
  time_series: pd.Series,
52
52
  local_model_args: dict,
53
53
  ) -> pd.DataFrame:
54
- # Code does conversion between confidence levels and quantiles
55
- levels = []
56
- quantile_to_key = {}
57
- for q in self.quantile_levels:
58
- level = round(abs(q - 0.5) * 200, 1)
59
- suffix = "lo" if q < 0.5 else "hi"
60
- levels.append(level)
61
- quantile_to_key[str(q)] = f"{suffix}-{level}"
62
- levels = sorted(list(set(levels)))
54
+ levels, quantile_to_key = self._get_confidence_levels()
63
55
 
64
56
  forecast = self._get_local_model(local_model_args).forecast(
65
57
  h=self.prediction_length, y=time_series.values.ravel(), level=levels
@@ -69,6 +61,18 @@ class AbstractProbabilisticStatsForecastModel(AbstractStatsForecastModel):
69
61
  predictions[q] = forecast[key]
70
62
  return pd.DataFrame(predictions)
71
63
 
64
+ def _get_confidence_levels(self) -> tuple[list[float], dict[str, str]]:
65
+ """Get StatsForecast compatible levels from quantiles"""
66
+ levels = []
67
+ quantile_to_key = {}
68
+ for q in self.quantile_levels:
69
+ level = round(abs(q - 0.5) * 200, 1)
70
+ suffix = "lo" if q < 0.5 else "hi"
71
+ levels.append(level)
72
+ quantile_to_key[str(q)] = f"{suffix}-{level}"
73
+ levels = sorted(list(set(levels)))
74
+ return levels, quantile_to_key
75
+
72
76
 
73
77
  class AutoARIMAModel(AbstractProbabilisticStatsForecastModel):
74
78
  """Automatically tuned ARIMA model.
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250211"
3
+ __version__ = "1.2.1b20250213"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20250211
3
+ Version: 1.2.1b20250213
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250211
59
- Requires-Dist: autogluon.common==1.2.1b20250211
60
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250211
58
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250213
59
+ Requires-Dist: autogluon.common==1.2.1b20250213
60
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250213
61
61
  Provides-Extra: all
62
62
  Provides-Extra: chronos-onnx
63
63
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.2.1b20250211-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2.1b20250213-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=HTE8a_R_9U0z-KlxyoELm-64BXNRzFu3mIEbTab
6
6
  autogluon/timeseries/regressor.py,sha256=dIXttb0SOGS8IAwZOMANNDc796spN0LMysGUvuKgskU,9623
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=L9FT5qERcqlWTgH9IgE6QsO0aBNj2nivRKF2Oy4UJOk,57250
9
- autogluon/timeseries/version.py,sha256=Yxg6A266LJAF_-SqWiU5evmkHb9GvRXqM0ORyZus93M,91
9
+ autogluon/timeseries/version.py,sha256=-eMcoN37NqYnyDHzrKYBqqrt5oVGROjtYzQ6FocTpmU,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -19,7 +19,7 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
19
19
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
20
20
  autogluon/timeseries/models/presets.py,sha256=dEjdRgd1WhtjUK2LRkLnc05cBamz3mwzaX4PV58EzKg,12472
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=pUWU45mFl-mbNisf85jMlllz_Qfnq0m-DTUbtlRaBN4,35682
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=dWjimc3oyOkmYxL_fQ5lJ5F_oLKuYAhtDO17AUHdo7k,35685
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
25
25
  autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=H2UlpnJcIIEi_swYn9AJUPFGT4qwFSmzZ7yvC3I2pUU,33039
@@ -43,7 +43,7 @@ autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bH
43
43
  autogluon/timeseries/models/local/abstract_local_model.py,sha256=CYDvOXs7ZNzyz75gMOAKI1socB_qGep51FSPfzXMopA,11948
44
44
  autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
45
45
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
46
- autogluon/timeseries/models/local/statsforecast.py,sha256=Rp3pwjs0t8VXiUhxgVUKLme52Br3sbg675N0_O-SIU8,32441
46
+ autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
47
47
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
48
48
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=kVHAGNQC8ahEmAgnnLa38hcbxMFC_Tl1lHFJMos2G8w,11985
49
49
  autogluon/timeseries/transforms/__init__.py,sha256=Stym_998LZQgKPuFN4_w1AcJFh4_AeaQLXgXLzv53kY,299
@@ -58,11 +58,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
58
58
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
59
59
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
60
60
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
61
- autogluon.timeseries-1.2.1b20250211.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
62
- autogluon.timeseries-1.2.1b20250211.dist-info/METADATA,sha256=gEq5G9D-7nsGlaHRGXx7F2NuV-2lcmyrttWKwYHcQCw,12662
63
- autogluon.timeseries-1.2.1b20250211.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
64
- autogluon.timeseries-1.2.1b20250211.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
65
- autogluon.timeseries-1.2.1b20250211.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
66
- autogluon.timeseries-1.2.1b20250211.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
- autogluon.timeseries-1.2.1b20250211.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
68
- autogluon.timeseries-1.2.1b20250211.dist-info/RECORD,,
61
+ autogluon.timeseries-1.2.1b20250213.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
62
+ autogluon.timeseries-1.2.1b20250213.dist-info/METADATA,sha256=w8_RdZ8aKmdy6eP0ACEFKE6ahuJ0OrM8Wgg_BnVZdxE,12662
63
+ autogluon.timeseries-1.2.1b20250213.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
64
+ autogluon.timeseries-1.2.1b20250213.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
65
+ autogluon.timeseries-1.2.1b20250213.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
66
+ autogluon.timeseries-1.2.1b20250213.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
+ autogluon.timeseries-1.2.1b20250213.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
68
+ autogluon.timeseries-1.2.1b20250213.dist-info/RECORD,,