autogluon.timeseries 1.1.2b20241124__py3-none-any.whl → 1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -133,10 +133,13 @@ class ChronosModel(AbstractTimeSeriesModel):
133
133
  and may truncate the context further. For example, original Chronos models have a context length of 512, but
134
134
  Chronos-Bolt models handle contexts up to 2048.
135
135
  optimization_strategy : {None, "onnx", "openvino"}, default = None
136
- Optimization strategy to use for inference on CPUs. If None, the model will use the default implementation.
136
+ [deprecated] Optimization strategy to use for inference on CPUs. If None, the model will use the default implementation.
137
137
  If `onnx`, the model will be converted to ONNX and the inference will be performed using ONNX. If ``openvino``,
138
138
  inference will be performed with the model compiled to OpenVINO. These optimizations are only available for
139
- the original set of Chronos models, and not in Chronos-Bolt where they are not needed.
139
+ the original set of Chronos models, and not in Chronos-Bolt where they are not needed. You will need to
140
+ install the appropriate dependencies `optimum[onnxruntime]` or `optimum[openvino,nncf] optimum-intel[openvino,nncf]`
141
+ for optimizations to work. Note that support for optimization strategies is deprecated, and will be removed
142
+ in a future release. We recommend using Chronos-Bolt models for fast inference on the CPU.
140
143
  torch_dtype : torch.dtype or {"auto", "bfloat16", "float32", "float64"}, default = "auto"
141
144
  Torch data type for model weights, provided to ``from_pretrained`` method of Hugging Face AutoModels. If
142
145
  original Chronos models are specified and the model size is ``small``, ``base``, or ``large``, the
@@ -202,6 +205,15 @@ class ChronosModel(AbstractTimeSeriesModel):
202
205
  self.optimization_strategy: Optional[Literal["onnx", "openvino"]] = hyperparameters.get(
203
206
  "optimization_strategy", None
204
207
  )
208
+ if self.optimization_strategy is not None:
209
+ warnings.warn(
210
+ (
211
+ "optimization_strategy is deprecated and will be removed in a future release. "
212
+ "We recommend using Chronos-Bolt models for fast inference on the CPU."
213
+ ),
214
+ category=FutureWarning,
215
+ stacklevel=3,
216
+ )
205
217
  self.context_length = hyperparameters.get("context_length")
206
218
 
207
219
  if self.context_length is not None and self.context_length > self.maximum_context_length:
@@ -556,7 +556,9 @@ class ChronosPipeline(BaseChronosPipeline):
556
556
  from optimum.onnxruntime import ORTModelForSeq2SeqLM
557
557
  except ImportError:
558
558
  raise ImportError(
559
- "Huggingface Optimum library must be installed with ONNX for using the `onnx` strategy"
559
+ "Huggingface Optimum library must be installed with ONNX for using the `onnx` strategy. "
560
+ "Please try running `pip install optimum[onnxruntime]` or use Chronos-Bolt models for "
561
+ "faster performance on the CPU."
560
562
  )
561
563
 
562
564
  assert kwargs.pop("device_map", "cpu") in ["cpu", "auto"], "ONNX mode only available on the CPU"
@@ -567,7 +569,9 @@ class ChronosPipeline(BaseChronosPipeline):
567
569
  from optimum.intel import OVModelForSeq2SeqLM
568
570
  except ImportError:
569
571
  raise ImportError(
570
- "Huggingface Optimum library must be installed with OpenVINO for using the `openvino` strategy"
572
+ "Huggingface Optimum library must be installed with OpenVINO for using the `openvino` strategy. "
573
+ "Please try running `pip install optimum-intel[openvino,nncf] optimum[openvino,nncf]` or use "
574
+ "Chronos-Bolt models for faster performance on the CPU."
571
575
  )
572
576
  with set_loggers_level(regex=r"^optimum.*", level=logging.ERROR):
573
577
  inner_model = OVModelForSeq2SeqLM.from_pretrained(
@@ -447,9 +447,9 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
447
447
 
448
448
  If ``train_data`` contains covariates or static features, they will be interpreted as follows:
449
449
 
450
- * columns with ``int``, ``bool`` and ``float`` dtypes are interpreted as continuous (real-valued) features
451
- * columns with ``object``, ``str`` and ``category`` dtypes are as interpreted as categorical features
452
- * columns with other dtypes are ignored
450
+ * columns with ``int``, ``bool`` and ``float`` dtypes are interpreted as continuous (real-valued) features
451
+ * columns with ``object``, ``str`` and ``category`` dtypes are as interpreted as categorical features
452
+ * columns with other dtypes are ignored
453
453
 
454
454
  To ensure that the column type is interpreted correctly, please convert it to one of the above dtypes.
455
455
  For example, to ensure that column "store_id" with dtype ``int`` is interpreted as a category, change
@@ -501,13 +501,18 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
501
501
 
502
502
  - ``"fast_training"``: fit simple statistical models (``ETS``, ``Theta``, ``Naive``, ``SeasonalNaive``) + fast tree-based models ``RecursiveTabular``
503
503
  and ``DirectTabular``. These models are fast to train but may not be very accurate.
504
- - ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer``. Default setting that produces good forecasts
504
+ - ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer`` + Chronos-Bolt (small). Default setting that produces good forecasts
505
505
  with reasonable training time.
506
- - ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``, ``AutoARIMA``, ``Croston``,
506
+ - ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``,
507
507
  ``DynamicOptimizedTheta``). Much more accurate than ``medium_quality``, but takes longer to train.
508
508
  - ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
509
509
 
510
- Available presets with the `Chronos <https://github.com/amazon-science/chronos-forecasting>`_ model:
510
+ Available presets with the new, faster `Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting>`_ model:
511
+
512
+ - ``"bolt_{model_size}"``: where model size is one of ``tiny,mini,small,base``. Uses the Chronos-Bolt pretrained model for zero-shot forecasting.
513
+ See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
514
+
515
+ Available presets with the original `Chronos <https://github.com/amazon-science/chronos-forecasting>`_ model:
511
516
 
512
517
  - ``"chronos_{model_size}"``: where model size is one of ``tiny,mini,small,base,large``. Uses the Chronos pretrained model for zero-shot forecasting.
513
518
  See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241124'
2
+ __version__ = '1.2'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241124
3
+ Version: 1.2
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -10,7 +10,7 @@ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
12
  Platform: UNKNOWN
13
- Classifier: Development Status :: 4 - Beta
13
+ Classifier: Development Status :: 5 - Production/Stable
14
14
  Classifier: Intended Audience :: Education
15
15
  Classifier: Intended Audience :: Developers
16
16
  Classifier: Intended Audience :: Science/Research
@@ -42,7 +42,7 @@ Requires-Dist: torch<2.6,>=2.2
42
42
  Requires-Dist: lightning<2.6,>=2.2
43
43
  Requires-Dist: pytorch-lightning
44
44
  Requires-Dist: transformers[sentencepiece]<5,>=4.38.0
45
- Requires-Dist: accelerate<1.0,>=0.32.0
45
+ Requires-Dist: accelerate<1.0,>=0.34.0
46
46
  Requires-Dist: gluonts<0.17,>=0.15.0
47
47
  Requires-Dist: networkx<4,>=3.0
48
48
  Requires-Dist: statsforecast<1.8,>=1.7.0
@@ -53,11 +53,10 @@ Requires-Dist: fugue>=0.9.0
53
53
  Requires-Dist: tqdm<5,>=4.38
54
54
  Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: tensorboard<3,>=2.9
56
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241124
57
- Requires-Dist: autogluon.common==1.1.2b20241124
58
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241124
56
+ Requires-Dist: autogluon.core[raytune]==1.2
57
+ Requires-Dist: autogluon.common==1.2
58
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2
59
59
  Provides-Extra: all
60
- Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "all"
61
60
  Provides-Extra: chronos-onnx
62
61
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
63
62
  Provides-Extra: chronos-openvino
@@ -1,11 +1,11 @@
1
- autogluon.timeseries-1.1.2b20241124-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=mFnBC750C5PqgkkYNYni9oYQ5a6K8pXSsDLRDXuA7DI,14182
5
- autogluon/timeseries/predictor.py,sha256=EsJAkzlEkCFxYO55BTfjlaJPNwQwnS6yyj5nXjMr3XQ,85003
5
+ autogluon/timeseries/predictor.py,sha256=W9RhTUS_WFMAR7BXiHIYblKHCvGlY8WRTfJJ2E0pBn0,85471
6
6
  autogluon/timeseries/regressor.py,sha256=tqQ2zWImxpuEyaAM0DeCjOZ-xcWUYZbCXsqd471xXxQ,8351
7
7
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
8
- autogluon/timeseries/version.py,sha256=a-gYeszw4OmNwMxFD5nO4ov38d4ZpGM3fypUKRVe5gU,90
8
+ autogluon/timeseries/version.py,sha256=OeRnWY70kLYV8NjtUUPZV97_wrZuueMLQ-kr_7xIq-M,79
9
9
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
10
10
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
11
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -25,10 +25,10 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=vfWXLdxYlbzjK
25
25
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XVoy8KpvoeX38lHHAXq4Be9LCxKjxZ36SOFeSAICRFM,2524
26
26
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
27
27
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
28
- autogluon/timeseries/models/chronos/model.py,sha256=UEw_TGeHmS-_mhGSQevwRJC0TqlNBlmGCWJaiMyhwNU,29582
28
+ autogluon/timeseries/models/chronos/model.py,sha256=jYnUdSWMrxdIWhysy-fEVd5w0Z06dQsIYdkh8alwgR0,30343
29
29
  autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
30
30
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=HlWQTS5q7UMzwbA5Pmg_N01AxuGfTf2tP5xq2jgavqI,5549
31
- autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=doAaWbrfNilkP9ORtjDnL-1S5ge4sOKhzGN-mgsY2bM,22158
31
+ autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=QmC0ZSHaF85dwAAzbg2elUX10iEhob6gp0Wctfsfq1k,22531
32
32
  autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=2MJuik-YFgONZ3X2DciAph5So6ABys5ppQhBC81gLyk,20083
33
33
  autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dENQLSN6dumLrTGQ6sbJMq45irdDFOoCarAnWpTbLjk,13134
34
34
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
63
- autogluon.timeseries-1.1.2b20241124.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.1.2b20241124.dist-info/METADATA,sha256=OPAnALM7bzJMgzrzMuuopXtdGb5CGUGZwtF-UqAhgh8,12397
65
- autogluon.timeseries-1.1.2b20241124.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.1.2b20241124.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
- autogluon.timeseries-1.1.2b20241124.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.1.2b20241124.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.1.2b20241124.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.1.2b20241124.dist-info/RECORD,,
63
+ autogluon.timeseries-1.2.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.2.dist-info/METADATA,sha256=G_MApgfVdqFkx3SBXQ8iJ4keIZ4rFSw03Y9MG5mFcPs,12302
65
+ autogluon.timeseries-1.2.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.2.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.2.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.2.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.2.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.2.dist-info/RECORD,,