autogluon.timeseries 1.1.2b20241124__py3-none-any.whl → 1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/chronos/model.py +14 -2
- autogluon/timeseries/models/chronos/pipeline/chronos.py +6 -2
- autogluon/timeseries/predictor.py +11 -6
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/METADATA +6 -7
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/RECORD +13 -13
- /autogluon.timeseries-1.1.2b20241124-py3.8-nspkg.pth → /autogluon.timeseries-1.2-py3.8-nspkg.pth +0 -0
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/zip-safe +0 -0
@@ -133,10 +133,13 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
133
133
|
and may truncate the context further. For example, original Chronos models have a context length of 512, but
|
134
134
|
Chronos-Bolt models handle contexts up to 2048.
|
135
135
|
optimization_strategy : {None, "onnx", "openvino"}, default = None
|
136
|
-
Optimization strategy to use for inference on CPUs. If None, the model will use the default implementation.
|
136
|
+
[deprecated] Optimization strategy to use for inference on CPUs. If None, the model will use the default implementation.
|
137
137
|
If `onnx`, the model will be converted to ONNX and the inference will be performed using ONNX. If ``openvino``,
|
138
138
|
inference will be performed with the model compiled to OpenVINO. These optimizations are only available for
|
139
|
-
the original set of Chronos models, and not in Chronos-Bolt where they are not needed.
|
139
|
+
the original set of Chronos models, and not in Chronos-Bolt where they are not needed. You will need to
|
140
|
+
install the appropriate dependencies `optimum[onnxruntime]` or `optimum[openvino,nncf] optimum-intel[openvino,nncf]`
|
141
|
+
for optimizations to work. Note that support for optimization strategies is deprecated, and will be removed
|
142
|
+
in a future release. We recommend using Chronos-Bolt models for fast inference on the CPU.
|
140
143
|
torch_dtype : torch.dtype or {"auto", "bfloat16", "float32", "float64"}, default = "auto"
|
141
144
|
Torch data type for model weights, provided to ``from_pretrained`` method of Hugging Face AutoModels. If
|
142
145
|
original Chronos models are specified and the model size is ``small``, ``base``, or ``large``, the
|
@@ -202,6 +205,15 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
202
205
|
self.optimization_strategy: Optional[Literal["onnx", "openvino"]] = hyperparameters.get(
|
203
206
|
"optimization_strategy", None
|
204
207
|
)
|
208
|
+
if self.optimization_strategy is not None:
|
209
|
+
warnings.warn(
|
210
|
+
(
|
211
|
+
"optimization_strategy is deprecated and will be removed in a future release. "
|
212
|
+
"We recommend using Chronos-Bolt models for fast inference on the CPU."
|
213
|
+
),
|
214
|
+
category=FutureWarning,
|
215
|
+
stacklevel=3,
|
216
|
+
)
|
205
217
|
self.context_length = hyperparameters.get("context_length")
|
206
218
|
|
207
219
|
if self.context_length is not None and self.context_length > self.maximum_context_length:
|
@@ -556,7 +556,9 @@ class ChronosPipeline(BaseChronosPipeline):
|
|
556
556
|
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
557
557
|
except ImportError:
|
558
558
|
raise ImportError(
|
559
|
-
"Huggingface Optimum library must be installed with ONNX for using the `onnx` strategy"
|
559
|
+
"Huggingface Optimum library must be installed with ONNX for using the `onnx` strategy. "
|
560
|
+
"Please try running `pip install optimum[onnxruntime]` or use Chronos-Bolt models for "
|
561
|
+
"faster performance on the CPU."
|
560
562
|
)
|
561
563
|
|
562
564
|
assert kwargs.pop("device_map", "cpu") in ["cpu", "auto"], "ONNX mode only available on the CPU"
|
@@ -567,7 +569,9 @@ class ChronosPipeline(BaseChronosPipeline):
|
|
567
569
|
from optimum.intel import OVModelForSeq2SeqLM
|
568
570
|
except ImportError:
|
569
571
|
raise ImportError(
|
570
|
-
"Huggingface Optimum library must be installed with OpenVINO for using the `openvino` strategy"
|
572
|
+
"Huggingface Optimum library must be installed with OpenVINO for using the `openvino` strategy. "
|
573
|
+
"Please try running `pip install optimum-intel[openvino,nncf] optimum[openvino,nncf]` or use "
|
574
|
+
"Chronos-Bolt models for faster performance on the CPU."
|
571
575
|
)
|
572
576
|
with set_loggers_level(regex=r"^optimum.*", level=logging.ERROR):
|
573
577
|
inner_model = OVModelForSeq2SeqLM.from_pretrained(
|
@@ -447,9 +447,9 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
|
|
447
447
|
|
448
448
|
If ``train_data`` contains covariates or static features, they will be interpreted as follows:
|
449
449
|
|
450
|
-
|
451
|
-
|
452
|
-
|
450
|
+
* columns with ``int``, ``bool`` and ``float`` dtypes are interpreted as continuous (real-valued) features
|
451
|
+
* columns with ``object``, ``str`` and ``category`` dtypes are as interpreted as categorical features
|
452
|
+
* columns with other dtypes are ignored
|
453
453
|
|
454
454
|
To ensure that the column type is interpreted correctly, please convert it to one of the above dtypes.
|
455
455
|
For example, to ensure that column "store_id" with dtype ``int`` is interpreted as a category, change
|
@@ -501,13 +501,18 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
|
|
501
501
|
|
502
502
|
- ``"fast_training"``: fit simple statistical models (``ETS``, ``Theta``, ``Naive``, ``SeasonalNaive``) + fast tree-based models ``RecursiveTabular``
|
503
503
|
and ``DirectTabular``. These models are fast to train but may not be very accurate.
|
504
|
-
- ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer
|
504
|
+
- ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer`` + Chronos-Bolt (small). Default setting that produces good forecasts
|
505
505
|
with reasonable training time.
|
506
|
-
- ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``,
|
506
|
+
- ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``,
|
507
507
|
``DynamicOptimizedTheta``). Much more accurate than ``medium_quality``, but takes longer to train.
|
508
508
|
- ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
|
509
509
|
|
510
|
-
Available presets with the `Chronos <https://github.com/amazon-science/chronos-forecasting>`_ model:
|
510
|
+
Available presets with the new, faster `Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting>`_ model:
|
511
|
+
|
512
|
+
- ``"bolt_{model_size}"``: where model size is one of ``tiny,mini,small,base``. Uses the Chronos-Bolt pretrained model for zero-shot forecasting.
|
513
|
+
See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
|
514
|
+
|
515
|
+
Available presets with the original `Chronos <https://github.com/amazon-science/chronos-forecasting>`_ model:
|
511
516
|
|
512
517
|
- ``"chronos_{model_size}"``: where model size is one of ``tiny,mini,small,base,large``. Uses the Chronos pretrained model for zero-shot forecasting.
|
513
518
|
See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
|
autogluon/timeseries/version.py
CHANGED
{autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.2
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -10,7 +10,7 @@ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
12
12
|
Platform: UNKNOWN
|
13
|
-
Classifier: Development Status ::
|
13
|
+
Classifier: Development Status :: 5 - Production/Stable
|
14
14
|
Classifier: Intended Audience :: Education
|
15
15
|
Classifier: Intended Audience :: Developers
|
16
16
|
Classifier: Intended Audience :: Science/Research
|
@@ -42,7 +42,7 @@ Requires-Dist: torch<2.6,>=2.2
|
|
42
42
|
Requires-Dist: lightning<2.6,>=2.2
|
43
43
|
Requires-Dist: pytorch-lightning
|
44
44
|
Requires-Dist: transformers[sentencepiece]<5,>=4.38.0
|
45
|
-
Requires-Dist: accelerate<1.0,>=0.
|
45
|
+
Requires-Dist: accelerate<1.0,>=0.34.0
|
46
46
|
Requires-Dist: gluonts<0.17,>=0.15.0
|
47
47
|
Requires-Dist: networkx<4,>=3.0
|
48
48
|
Requires-Dist: statsforecast<1.8,>=1.7.0
|
@@ -53,11 +53,10 @@ Requires-Dist: fugue>=0.9.0
|
|
53
53
|
Requires-Dist: tqdm<5,>=4.38
|
54
54
|
Requires-Dist: orjson~=3.9
|
55
55
|
Requires-Dist: tensorboard<3,>=2.9
|
56
|
-
Requires-Dist: autogluon.core[raytune]==1.
|
57
|
-
Requires-Dist: autogluon.common==1.
|
58
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.
|
56
|
+
Requires-Dist: autogluon.core[raytune]==1.2
|
57
|
+
Requires-Dist: autogluon.common==1.2
|
58
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2
|
59
59
|
Provides-Extra: all
|
60
|
-
Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "all"
|
61
60
|
Provides-Extra: chronos-onnx
|
62
61
|
Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
|
63
62
|
Provides-Extra: chronos-openvino
|
@@ -1,11 +1,11 @@
|
|
1
|
-
autogluon.timeseries-1.
|
1
|
+
autogluon.timeseries-1.2-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=mFnBC750C5PqgkkYNYni9oYQ5a6K8pXSsDLRDXuA7DI,14182
|
5
|
-
autogluon/timeseries/predictor.py,sha256=
|
5
|
+
autogluon/timeseries/predictor.py,sha256=W9RhTUS_WFMAR7BXiHIYblKHCvGlY8WRTfJJ2E0pBn0,85471
|
6
6
|
autogluon/timeseries/regressor.py,sha256=tqQ2zWImxpuEyaAM0DeCjOZ-xcWUYZbCXsqd471xXxQ,8351
|
7
7
|
autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
|
8
|
-
autogluon/timeseries/version.py,sha256=
|
8
|
+
autogluon/timeseries/version.py,sha256=OeRnWY70kLYV8NjtUUPZV97_wrZuueMLQ-kr_7xIq-M,79
|
9
9
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
10
10
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
11
11
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -25,10 +25,10 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=vfWXLdxYlbzjK
|
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XVoy8KpvoeX38lHHAXq4Be9LCxKjxZ36SOFeSAICRFM,2524
|
26
26
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
27
27
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
28
|
-
autogluon/timeseries/models/chronos/model.py,sha256=
|
28
|
+
autogluon/timeseries/models/chronos/model.py,sha256=jYnUdSWMrxdIWhysy-fEVd5w0Z06dQsIYdkh8alwgR0,30343
|
29
29
|
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
|
30
30
|
autogluon/timeseries/models/chronos/pipeline/base.py,sha256=HlWQTS5q7UMzwbA5Pmg_N01AxuGfTf2tP5xq2jgavqI,5549
|
31
|
-
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=
|
31
|
+
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=QmC0ZSHaF85dwAAzbg2elUX10iEhob6gp0Wctfsfq1k,22531
|
32
32
|
autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=2MJuik-YFgONZ3X2DciAph5So6ABys5ppQhBC81gLyk,20083
|
33
33
|
autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dENQLSN6dumLrTGQ6sbJMq45irdDFOoCarAnWpTbLjk,13134
|
34
34
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
|
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
60
60
|
autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
|
61
61
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
|
62
62
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
|
63
|
-
autogluon.timeseries-1.
|
64
|
-
autogluon.timeseries-1.
|
65
|
-
autogluon.timeseries-1.
|
66
|
-
autogluon.timeseries-1.
|
67
|
-
autogluon.timeseries-1.
|
68
|
-
autogluon.timeseries-1.
|
69
|
-
autogluon.timeseries-1.
|
70
|
-
autogluon.timeseries-1.
|
63
|
+
autogluon.timeseries-1.2.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
64
|
+
autogluon.timeseries-1.2.dist-info/METADATA,sha256=G_MApgfVdqFkx3SBXQ8iJ4keIZ4rFSw03Y9MG5mFcPs,12302
|
65
|
+
autogluon.timeseries-1.2.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
66
|
+
autogluon.timeseries-1.2.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
67
|
+
autogluon.timeseries-1.2.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.2.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.2.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
70
|
+
autogluon.timeseries-1.2.dist-info/RECORD,,
|
/autogluon.timeseries-1.1.2b20241124-py3.8-nspkg.pth → /autogluon.timeseries-1.2-py3.8-nspkg.pth
RENAMED
File without changes
|
{autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/LICENSE
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/top_level.txt
RENAMED
File without changes
|
{autogluon.timeseries-1.1.2b20241124.dist-info → autogluon.timeseries-1.2.dist-info}/zip-safe
RENAMED
File without changes
|