autogluon.timeseries 1.0.1b20240304__py3-none-any.whl → 1.4.1b20251210__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/configs/__init__.py +3 -2
- autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
- autogluon/timeseries/configs/predictor_presets.py +84 -0
- autogluon/timeseries/dataset/ts_dataframe.py +339 -186
- autogluon/timeseries/learner.py +192 -60
- autogluon/timeseries/metrics/__init__.py +55 -11
- autogluon/timeseries/metrics/abstract.py +96 -25
- autogluon/timeseries/metrics/point.py +186 -39
- autogluon/timeseries/metrics/quantile.py +47 -20
- autogluon/timeseries/metrics/utils.py +6 -6
- autogluon/timeseries/models/__init__.py +13 -7
- autogluon/timeseries/models/abstract/__init__.py +2 -2
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +533 -273
- autogluon/timeseries/models/abstract/model_trial.py +10 -10
- autogluon/timeseries/models/abstract/tunable.py +189 -0
- autogluon/timeseries/models/autogluon_tabular/__init__.py +2 -0
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +369 -215
- autogluon/timeseries/models/autogluon_tabular/per_step.py +513 -0
- autogluon/timeseries/models/autogluon_tabular/transforms.py +67 -0
- autogluon/timeseries/models/autogluon_tabular/utils.py +3 -51
- autogluon/timeseries/models/chronos/__init__.py +4 -0
- autogluon/timeseries/models/chronos/chronos2.py +361 -0
- autogluon/timeseries/models/chronos/model.py +738 -0
- autogluon/timeseries/models/chronos/utils.py +369 -0
- autogluon/timeseries/models/ensemble/__init__.py +35 -2
- autogluon/timeseries/models/ensemble/{abstract_timeseries_ensemble.py → abstract.py} +50 -26
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +236 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +73 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +167 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
- autogluon/timeseries/models/ensemble/ensemble_selection.py +167 -0
- autogluon/timeseries/models/ensemble/per_item_greedy.py +162 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +40 -0
- autogluon/timeseries/models/ensemble/weighted/basic.py +78 -0
- autogluon/timeseries/models/ensemble/weighted/greedy.py +57 -0
- autogluon/timeseries/models/gluonts/__init__.py +3 -1
- autogluon/timeseries/models/gluonts/abstract.py +583 -0
- autogluon/timeseries/models/gluonts/dataset.py +109 -0
- autogluon/timeseries/models/gluonts/{torch/models.py → models.py} +185 -44
- autogluon/timeseries/models/local/__init__.py +1 -10
- autogluon/timeseries/models/local/abstract_local_model.py +150 -97
- autogluon/timeseries/models/local/naive.py +31 -23
- autogluon/timeseries/models/local/npts.py +6 -2
- autogluon/timeseries/models/local/statsforecast.py +99 -112
- autogluon/timeseries/models/multi_window/multi_window_model.py +99 -40
- autogluon/timeseries/models/registry.py +64 -0
- autogluon/timeseries/models/toto/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
- autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +196 -0
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
- autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
- autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +89 -0
- autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +305 -0
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
- autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
- autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
- autogluon/timeseries/models/toto/dataloader.py +108 -0
- autogluon/timeseries/models/toto/hf_pretrained_model.py +118 -0
- autogluon/timeseries/models/toto/model.py +236 -0
- autogluon/timeseries/predictor.py +826 -305
- autogluon/timeseries/regressor.py +253 -0
- autogluon/timeseries/splitter.py +10 -31
- autogluon/timeseries/trainer/__init__.py +2 -3
- autogluon/timeseries/trainer/ensemble_composer.py +439 -0
- autogluon/timeseries/trainer/model_set_builder.py +256 -0
- autogluon/timeseries/trainer/prediction_cache.py +149 -0
- autogluon/timeseries/trainer/trainer.py +1298 -0
- autogluon/timeseries/trainer/utils.py +17 -0
- autogluon/timeseries/transforms/__init__.py +2 -0
- autogluon/timeseries/transforms/covariate_scaler.py +164 -0
- autogluon/timeseries/transforms/target_scaler.py +149 -0
- autogluon/timeseries/utils/constants.py +10 -0
- autogluon/timeseries/utils/datetime/base.py +38 -20
- autogluon/timeseries/utils/datetime/lags.py +18 -16
- autogluon/timeseries/utils/datetime/seasonality.py +14 -14
- autogluon/timeseries/utils/datetime/time_features.py +17 -14
- autogluon/timeseries/utils/features.py +317 -53
- autogluon/timeseries/utils/forecast.py +31 -17
- autogluon/timeseries/utils/timer.py +173 -0
- autogluon/timeseries/utils/warning_filters.py +44 -6
- autogluon/timeseries/version.py +2 -1
- autogluon.timeseries-1.4.1b20251210-py3.11-nspkg.pth +1 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/METADATA +71 -47
- autogluon_timeseries-1.4.1b20251210.dist-info/RECORD +103 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/WHEEL +1 -1
- autogluon/timeseries/configs/presets_configs.py +0 -11
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -170
- autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -550
- autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
- autogluon/timeseries/models/presets.py +0 -325
- autogluon/timeseries/trainer/abstract_trainer.py +0 -1144
- autogluon/timeseries/trainer/auto_trainer.py +0 -74
- autogluon.timeseries-1.0.1b20240304-py3.8-nspkg.pth +0 -1
- autogluon.timeseries-1.0.1b20240304.dist-info/RECORD +0 -58
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/zip-safe +0 -0
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
from typing import
|
|
1
|
+
from typing import Sequence
|
|
2
2
|
|
|
3
3
|
import numpy as np
|
|
4
4
|
import pandas as pd
|
|
5
5
|
|
|
6
|
-
from autogluon.timeseries.dataset
|
|
6
|
+
from autogluon.timeseries.dataset import TimeSeriesDataFrame
|
|
7
7
|
|
|
8
8
|
from .abstract import TimeSeriesScorer
|
|
9
|
-
from .utils import
|
|
9
|
+
from .utils import in_sample_abs_seasonal_error
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class WQL(TimeSeriesScorer):
|
|
@@ -25,6 +25,7 @@ class WQL(TimeSeriesScorer):
|
|
|
25
25
|
- scale-dependent (time series with large absolute value contribute more to the loss)
|
|
26
26
|
- equivalent to WAPE if ``quantile_levels = [0.5]``
|
|
27
27
|
|
|
28
|
+
If ``horizon_weight`` is provided, both the errors and the target time series in the denominator will be re-weighted.
|
|
28
29
|
|
|
29
30
|
References
|
|
30
31
|
----------
|
|
@@ -34,16 +35,25 @@ class WQL(TimeSeriesScorer):
|
|
|
34
35
|
needs_quantile = True
|
|
35
36
|
|
|
36
37
|
def compute_metric(
|
|
37
|
-
self,
|
|
38
|
+
self,
|
|
39
|
+
data_future: TimeSeriesDataFrame,
|
|
40
|
+
predictions: TimeSeriesDataFrame,
|
|
41
|
+
target: str = "target",
|
|
42
|
+
**kwargs,
|
|
38
43
|
) -> float:
|
|
39
44
|
y_true, q_pred, quantile_levels = self._get_quantile_forecast_score_inputs(data_future, predictions, target)
|
|
40
|
-
|
|
41
|
-
|
|
45
|
+
y_true = y_true.to_numpy()[:, None] # shape [N, 1]
|
|
46
|
+
q_pred = q_pred.to_numpy() # shape [N, len(quantile_levels)]
|
|
42
47
|
|
|
43
|
-
|
|
44
|
-
np.abs((
|
|
45
|
-
|
|
48
|
+
errors = (
|
|
49
|
+
np.abs((q_pred - y_true) * ((y_true <= q_pred) - quantile_levels))
|
|
50
|
+
.mean(axis=1)
|
|
51
|
+
.reshape([-1, self.prediction_length])
|
|
46
52
|
)
|
|
53
|
+
if self.horizon_weight is not None:
|
|
54
|
+
errors *= self.horizon_weight
|
|
55
|
+
y_true = y_true.reshape([-1, self.prediction_length]) * self.horizon_weight
|
|
56
|
+
return 2 * np.nansum(errors) / np.nansum(np.abs(y_true))
|
|
47
57
|
|
|
48
58
|
|
|
49
59
|
class SQL(TimeSeriesScorer):
|
|
@@ -51,13 +61,13 @@ class SQL(TimeSeriesScorer):
|
|
|
51
61
|
|
|
52
62
|
Also known as scaled pinball loss.
|
|
53
63
|
|
|
54
|
-
Normalizes the quantile loss for each time series by the
|
|
64
|
+
Normalizes the quantile loss for each time series by the historical seasonal error of this time series.
|
|
55
65
|
|
|
56
66
|
.. math::
|
|
57
67
|
|
|
58
68
|
\operatorname{SQL} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \frac{1}{a_i} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t})
|
|
59
69
|
|
|
60
|
-
where :math:`a_i` is the
|
|
70
|
+
where :math:`a_i` is the historical absolute seasonal error defined as
|
|
61
71
|
|
|
62
72
|
.. math::
|
|
63
73
|
|
|
@@ -79,13 +89,21 @@ class SQL(TimeSeriesScorer):
|
|
|
79
89
|
|
|
80
90
|
needs_quantile = True
|
|
81
91
|
|
|
82
|
-
def __init__(
|
|
83
|
-
self
|
|
92
|
+
def __init__(
|
|
93
|
+
self,
|
|
94
|
+
prediction_length: int = 1,
|
|
95
|
+
seasonal_period: int | None = None,
|
|
96
|
+
horizon_weight: Sequence[float] | None = None,
|
|
97
|
+
):
|
|
98
|
+
super().__init__(
|
|
99
|
+
prediction_length=prediction_length, seasonal_period=seasonal_period, horizon_weight=horizon_weight
|
|
100
|
+
)
|
|
101
|
+
self._past_abs_seasonal_error: pd.Series | None = None
|
|
84
102
|
|
|
85
103
|
def save_past_metrics(
|
|
86
104
|
self, data_past: TimeSeriesDataFrame, target: str = "target", seasonal_period: int = 1, **kwargs
|
|
87
105
|
) -> None:
|
|
88
|
-
self._past_abs_seasonal_error =
|
|
106
|
+
self._past_abs_seasonal_error = in_sample_abs_seasonal_error(
|
|
89
107
|
y_past=data_past[target], seasonal_period=seasonal_period
|
|
90
108
|
)
|
|
91
109
|
|
|
@@ -93,15 +111,24 @@ class SQL(TimeSeriesScorer):
|
|
|
93
111
|
self._past_abs_seasonal_error = None
|
|
94
112
|
|
|
95
113
|
def compute_metric(
|
|
96
|
-
self,
|
|
114
|
+
self,
|
|
115
|
+
data_future: TimeSeriesDataFrame,
|
|
116
|
+
predictions: TimeSeriesDataFrame,
|
|
117
|
+
target: str = "target",
|
|
118
|
+
**kwargs,
|
|
97
119
|
) -> float:
|
|
98
120
|
if self._past_abs_seasonal_error is None:
|
|
99
121
|
raise AssertionError("Call `save_past_metrics` before `compute_metric`")
|
|
100
122
|
|
|
101
123
|
y_true, q_pred, quantile_levels = self._get_quantile_forecast_score_inputs(data_future, predictions, target)
|
|
102
|
-
|
|
124
|
+
q_pred = q_pred.to_numpy()
|
|
125
|
+
y_true = y_true.to_numpy()[:, None] # shape [N, 1]
|
|
103
126
|
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
127
|
+
errors = (
|
|
128
|
+
np.abs((q_pred - y_true) * ((y_true <= q_pred) - quantile_levels))
|
|
129
|
+
.mean(axis=1)
|
|
130
|
+
.reshape([-1, self.prediction_length])
|
|
131
|
+
)
|
|
132
|
+
if self.horizon_weight is not None:
|
|
133
|
+
errors *= self.horizon_weight
|
|
134
|
+
return 2 * self._safemean(errors / self._past_abs_seasonal_error.to_numpy()[:, None])
|
|
@@ -1,18 +1,18 @@
|
|
|
1
1
|
import pandas as pd
|
|
2
2
|
|
|
3
|
-
from autogluon.timeseries.dataset
|
|
3
|
+
from autogluon.timeseries.dataset import TimeSeriesDataFrame
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
def _get_seasonal_diffs(*, y_past: pd.Series, seasonal_period: int = 1) -> pd.Series:
|
|
7
|
-
return y_past.groupby(level=ITEMID, sort=False).diff(seasonal_period).abs()
|
|
7
|
+
return y_past.groupby(level=TimeSeriesDataFrame.ITEMID, sort=False).diff(seasonal_period).abs()
|
|
8
8
|
|
|
9
9
|
|
|
10
|
-
def
|
|
10
|
+
def in_sample_abs_seasonal_error(*, y_past: pd.Series, seasonal_period: int = 1) -> pd.Series:
|
|
11
11
|
"""Compute seasonal naive forecast error (predict value from seasonal_period steps ago) for each time series."""
|
|
12
12
|
seasonal_diffs = _get_seasonal_diffs(y_past=y_past, seasonal_period=seasonal_period)
|
|
13
|
-
return seasonal_diffs.groupby(level=ITEMID, sort=False).mean().fillna(1.0)
|
|
13
|
+
return seasonal_diffs.groupby(level=TimeSeriesDataFrame.ITEMID, sort=False).mean().fillna(1.0)
|
|
14
14
|
|
|
15
15
|
|
|
16
|
-
def
|
|
16
|
+
def in_sample_squared_seasonal_error(*, y_past: pd.Series, seasonal_period: int = 1) -> pd.Series:
|
|
17
17
|
seasonal_diffs = _get_seasonal_diffs(y_past=y_past, seasonal_period=seasonal_period)
|
|
18
|
-
return seasonal_diffs.pow(2.0).groupby(level=ITEMID, sort=False).mean().fillna(1.0)
|
|
18
|
+
return seasonal_diffs.pow(2.0).groupby(level=TimeSeriesDataFrame.ITEMID, sort=False).mean().fillna(1.0)
|
|
@@ -1,10 +1,12 @@
|
|
|
1
|
-
from .autogluon_tabular import DirectTabularModel, RecursiveTabularModel
|
|
1
|
+
from .autogluon_tabular import DirectTabularModel, PerStepTabularModel, RecursiveTabularModel
|
|
2
|
+
from .chronos import Chronos2Model, ChronosModel
|
|
2
3
|
from .gluonts import (
|
|
3
4
|
DeepARModel,
|
|
4
5
|
DLinearModel,
|
|
5
6
|
PatchTSTModel,
|
|
6
7
|
SimpleFeedForwardModel,
|
|
7
8
|
TemporalFusionTransformerModel,
|
|
9
|
+
TiDEModel,
|
|
8
10
|
WaveNetModel,
|
|
9
11
|
)
|
|
10
12
|
from .local import (
|
|
@@ -14,9 +16,7 @@ from .local import (
|
|
|
14
16
|
AutoCESModel,
|
|
15
17
|
AutoETSModel,
|
|
16
18
|
AverageModel,
|
|
17
|
-
|
|
18
|
-
CrostonOptimizedModel,
|
|
19
|
-
CrostonSBAModel,
|
|
19
|
+
CrostonModel,
|
|
20
20
|
DynamicOptimizedThetaModel,
|
|
21
21
|
ETSModel,
|
|
22
22
|
IMAPAModel,
|
|
@@ -27,6 +27,8 @@ from .local import (
|
|
|
27
27
|
ThetaModel,
|
|
28
28
|
ZeroModel,
|
|
29
29
|
)
|
|
30
|
+
from .registry import ModelRegistry
|
|
31
|
+
from .toto import TotoModel
|
|
30
32
|
|
|
31
33
|
__all__ = [
|
|
32
34
|
"ADIDAModel",
|
|
@@ -35,24 +37,28 @@ __all__ = [
|
|
|
35
37
|
"AutoCESModel",
|
|
36
38
|
"AutoETSModel",
|
|
37
39
|
"AverageModel",
|
|
38
|
-
"
|
|
39
|
-
"CrostonSBAModel",
|
|
40
|
-
"CrostonOptimizedModel",
|
|
40
|
+
"CrostonModel",
|
|
41
41
|
"DLinearModel",
|
|
42
42
|
"DeepARModel",
|
|
43
43
|
"DirectTabularModel",
|
|
44
44
|
"DynamicOptimizedThetaModel",
|
|
45
45
|
"ETSModel",
|
|
46
46
|
"IMAPAModel",
|
|
47
|
+
"ChronosModel",
|
|
48
|
+
"Chronos2Model",
|
|
49
|
+
"ModelRegistry",
|
|
47
50
|
"NPTSModel",
|
|
48
51
|
"NaiveModel",
|
|
49
52
|
"PatchTSTModel",
|
|
53
|
+
"PerStepTabularModel",
|
|
50
54
|
"RecursiveTabularModel",
|
|
51
55
|
"SeasonalAverageModel",
|
|
52
56
|
"SeasonalNaiveModel",
|
|
53
57
|
"SimpleFeedForwardModel",
|
|
54
58
|
"TemporalFusionTransformerModel",
|
|
55
59
|
"ThetaModel",
|
|
60
|
+
"TiDEModel",
|
|
61
|
+
"TotoModel",
|
|
56
62
|
"WaveNetModel",
|
|
57
63
|
"ZeroModel",
|
|
58
64
|
]
|
|
@@ -1,3 +1,3 @@
|
|
|
1
|
-
from .abstract_timeseries_model import AbstractTimeSeriesModel
|
|
1
|
+
from .abstract_timeseries_model import AbstractTimeSeriesModel, TimeSeriesModelBase
|
|
2
2
|
|
|
3
|
-
__all__ = ["AbstractTimeSeriesModel"]
|
|
3
|
+
__all__ = ["AbstractTimeSeriesModel", "TimeSeriesModelBase"]
|