autogluon.timeseries 1.0.1b20240304__py3-none-any.whl → 1.4.1b20251210__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/configs/__init__.py +3 -2
- autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
- autogluon/timeseries/configs/predictor_presets.py +84 -0
- autogluon/timeseries/dataset/ts_dataframe.py +339 -186
- autogluon/timeseries/learner.py +192 -60
- autogluon/timeseries/metrics/__init__.py +55 -11
- autogluon/timeseries/metrics/abstract.py +96 -25
- autogluon/timeseries/metrics/point.py +186 -39
- autogluon/timeseries/metrics/quantile.py +47 -20
- autogluon/timeseries/metrics/utils.py +6 -6
- autogluon/timeseries/models/__init__.py +13 -7
- autogluon/timeseries/models/abstract/__init__.py +2 -2
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +533 -273
- autogluon/timeseries/models/abstract/model_trial.py +10 -10
- autogluon/timeseries/models/abstract/tunable.py +189 -0
- autogluon/timeseries/models/autogluon_tabular/__init__.py +2 -0
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +369 -215
- autogluon/timeseries/models/autogluon_tabular/per_step.py +513 -0
- autogluon/timeseries/models/autogluon_tabular/transforms.py +67 -0
- autogluon/timeseries/models/autogluon_tabular/utils.py +3 -51
- autogluon/timeseries/models/chronos/__init__.py +4 -0
- autogluon/timeseries/models/chronos/chronos2.py +361 -0
- autogluon/timeseries/models/chronos/model.py +738 -0
- autogluon/timeseries/models/chronos/utils.py +369 -0
- autogluon/timeseries/models/ensemble/__init__.py +35 -2
- autogluon/timeseries/models/ensemble/{abstract_timeseries_ensemble.py → abstract.py} +50 -26
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +236 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +73 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +167 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
- autogluon/timeseries/models/ensemble/ensemble_selection.py +167 -0
- autogluon/timeseries/models/ensemble/per_item_greedy.py +162 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +40 -0
- autogluon/timeseries/models/ensemble/weighted/basic.py +78 -0
- autogluon/timeseries/models/ensemble/weighted/greedy.py +57 -0
- autogluon/timeseries/models/gluonts/__init__.py +3 -1
- autogluon/timeseries/models/gluonts/abstract.py +583 -0
- autogluon/timeseries/models/gluonts/dataset.py +109 -0
- autogluon/timeseries/models/gluonts/{torch/models.py → models.py} +185 -44
- autogluon/timeseries/models/local/__init__.py +1 -10
- autogluon/timeseries/models/local/abstract_local_model.py +150 -97
- autogluon/timeseries/models/local/naive.py +31 -23
- autogluon/timeseries/models/local/npts.py +6 -2
- autogluon/timeseries/models/local/statsforecast.py +99 -112
- autogluon/timeseries/models/multi_window/multi_window_model.py +99 -40
- autogluon/timeseries/models/registry.py +64 -0
- autogluon/timeseries/models/toto/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
- autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +196 -0
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
- autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
- autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +89 -0
- autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +305 -0
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
- autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
- autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
- autogluon/timeseries/models/toto/dataloader.py +108 -0
- autogluon/timeseries/models/toto/hf_pretrained_model.py +118 -0
- autogluon/timeseries/models/toto/model.py +236 -0
- autogluon/timeseries/predictor.py +826 -305
- autogluon/timeseries/regressor.py +253 -0
- autogluon/timeseries/splitter.py +10 -31
- autogluon/timeseries/trainer/__init__.py +2 -3
- autogluon/timeseries/trainer/ensemble_composer.py +439 -0
- autogluon/timeseries/trainer/model_set_builder.py +256 -0
- autogluon/timeseries/trainer/prediction_cache.py +149 -0
- autogluon/timeseries/trainer/trainer.py +1298 -0
- autogluon/timeseries/trainer/utils.py +17 -0
- autogluon/timeseries/transforms/__init__.py +2 -0
- autogluon/timeseries/transforms/covariate_scaler.py +164 -0
- autogluon/timeseries/transforms/target_scaler.py +149 -0
- autogluon/timeseries/utils/constants.py +10 -0
- autogluon/timeseries/utils/datetime/base.py +38 -20
- autogluon/timeseries/utils/datetime/lags.py +18 -16
- autogluon/timeseries/utils/datetime/seasonality.py +14 -14
- autogluon/timeseries/utils/datetime/time_features.py +17 -14
- autogluon/timeseries/utils/features.py +317 -53
- autogluon/timeseries/utils/forecast.py +31 -17
- autogluon/timeseries/utils/timer.py +173 -0
- autogluon/timeseries/utils/warning_filters.py +44 -6
- autogluon/timeseries/version.py +2 -1
- autogluon.timeseries-1.4.1b20251210-py3.11-nspkg.pth +1 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/METADATA +71 -47
- autogluon_timeseries-1.4.1b20251210.dist-info/RECORD +103 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/WHEEL +1 -1
- autogluon/timeseries/configs/presets_configs.py +0 -11
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -170
- autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -550
- autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
- autogluon/timeseries/models/presets.py +0 -325
- autogluon/timeseries/trainer/abstract_trainer.py +0 -1144
- autogluon/timeseries/trainer/auto_trainer.py +0 -74
- autogluon.timeseries-1.0.1b20240304-py3.8-nspkg.pth +0 -1
- autogluon.timeseries-1.0.1b20240304.dist-info/RECORD +0 -58
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
import time
|
|
2
|
+
|
|
3
|
+
from typing_extensions import Self
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Timer:
|
|
7
|
+
"""A timer class that tracks a start time, and computes the time elapsed and
|
|
8
|
+
time remaining, used for handling ``time_limit`` parameters in AutoGluon.
|
|
9
|
+
|
|
10
|
+
Parameters
|
|
11
|
+
----------
|
|
12
|
+
time_limit
|
|
13
|
+
The time limit to set. If None, then ``time_remaining`` will return None, and
|
|
14
|
+
``timed_out`` will return False.
|
|
15
|
+
|
|
16
|
+
Examples
|
|
17
|
+
--------
|
|
18
|
+
Basic usage with time limit:
|
|
19
|
+
|
|
20
|
+
>>> timer = Timer(time_limit=10.0).start()
|
|
21
|
+
>>> # Do some work...
|
|
22
|
+
>>> if timer.timed_out():
|
|
23
|
+
... print("Time limit exceeded!")
|
|
24
|
+
>>> print(f"Time remaining: {timer.time_remaining():.2f}s")
|
|
25
|
+
|
|
26
|
+
Using as a stopwatch (no time limit):
|
|
27
|
+
|
|
28
|
+
>>> timer = Timer(time_limit=None).start()
|
|
29
|
+
>>> # Do some work...
|
|
30
|
+
>>> print(f"Elapsed time: {timer.time_elapsed():.2f}s")
|
|
31
|
+
|
|
32
|
+
Checking time in a loop:
|
|
33
|
+
|
|
34
|
+
>>> timer = Timer(time_limit=5.0).start()
|
|
35
|
+
>>> for i in range(100):
|
|
36
|
+
... if timer.timed_out():
|
|
37
|
+
... break
|
|
38
|
+
... # Do work for iteration i
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
time_limit: float | None,
|
|
44
|
+
):
|
|
45
|
+
self.time_limit = time_limit
|
|
46
|
+
|
|
47
|
+
self.start_time = None
|
|
48
|
+
|
|
49
|
+
def start(self) -> Self:
|
|
50
|
+
"""Start or reset the timer."""
|
|
51
|
+
self.start_time = time.monotonic()
|
|
52
|
+
return self
|
|
53
|
+
|
|
54
|
+
def time_elapsed(self) -> float:
|
|
55
|
+
"""Total time elapsed since the timer was started. This method can also be used
|
|
56
|
+
when ``time_limit`` is set to None to count time forward (i.e., as opposed to
|
|
57
|
+
a countdown timer which other methods imply).
|
|
58
|
+
"""
|
|
59
|
+
if self.start_time is None:
|
|
60
|
+
raise RuntimeError("Timer has not been started")
|
|
61
|
+
return time.monotonic() - self.start_time
|
|
62
|
+
|
|
63
|
+
def time_remaining(self) -> float | None:
|
|
64
|
+
"""Total time remaining on the timer. If ``time_limit`` is None,
|
|
65
|
+
this method also returns None.
|
|
66
|
+
"""
|
|
67
|
+
if self.start_time is None:
|
|
68
|
+
raise RuntimeError("Timer has not been started")
|
|
69
|
+
if self.time_limit is None:
|
|
70
|
+
return None
|
|
71
|
+
return self.time_limit - (time.monotonic() - self.start_time)
|
|
72
|
+
|
|
73
|
+
def timed_out(self) -> bool:
|
|
74
|
+
"""Whether the timer has timed out. If ``time_limit`` is None, this method
|
|
75
|
+
always returns False.
|
|
76
|
+
"""
|
|
77
|
+
if self.start_time is None:
|
|
78
|
+
raise RuntimeError("Timer has not been started")
|
|
79
|
+
if self.time_limit is None:
|
|
80
|
+
return False
|
|
81
|
+
return self.time_elapsed() >= self.time_limit
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
class SplitTimer(Timer):
|
|
85
|
+
"""A timer that splits remaining time across multiple rounds.
|
|
86
|
+
|
|
87
|
+
Extends Timer to divide the total time limit across a specified number of rounds,
|
|
88
|
+
useful for allocating time budgets to sequential operations. At each call of
|
|
89
|
+
``next_round``, the timer re-distributes the remaining time evenly among
|
|
90
|
+
the remaining rounds.
|
|
91
|
+
|
|
92
|
+
Parameters
|
|
93
|
+
----------
|
|
94
|
+
time_limit
|
|
95
|
+
Total time limit to split across all rounds. If None, ``round_time_remaining``
|
|
96
|
+
returns None.
|
|
97
|
+
rounds
|
|
98
|
+
Number of rounds to split the time across. Default is 1.
|
|
99
|
+
|
|
100
|
+
Examples
|
|
101
|
+
--------
|
|
102
|
+
Split time across 3 rounds:
|
|
103
|
+
|
|
104
|
+
>>> timer = SplitTimer(time_limit=10.0, rounds=3).start()
|
|
105
|
+
>>> time_round_1 = timer.round_time_remaining() # Returns ~3.33
|
|
106
|
+
>>> # Do work for round 1
|
|
107
|
+
>>> timer.next_round()
|
|
108
|
+
>>> time_round_2 = timer.round_time_remaining() # Returns remaining time divided by 2
|
|
109
|
+
>>> # Do work for round 2
|
|
110
|
+
>>> timer.next_round()
|
|
111
|
+
>>> time_round_3 = timer.round_time_remaining() # Returns all remaining time
|
|
112
|
+
"""
|
|
113
|
+
|
|
114
|
+
def __init__(
|
|
115
|
+
self,
|
|
116
|
+
time_limit: float | None,
|
|
117
|
+
rounds: int = 1,
|
|
118
|
+
):
|
|
119
|
+
super().__init__(time_limit)
|
|
120
|
+
self.rounds = rounds
|
|
121
|
+
|
|
122
|
+
self.round_index: int
|
|
123
|
+
self.round_start_time: float
|
|
124
|
+
|
|
125
|
+
def start(self) -> Self:
|
|
126
|
+
"""Reset and start the timer."""
|
|
127
|
+
super().start()
|
|
128
|
+
self.round_index = 0
|
|
129
|
+
self.round_start_time = time.monotonic()
|
|
130
|
+
return self
|
|
131
|
+
|
|
132
|
+
def round_time_remaining(self) -> float | None:
|
|
133
|
+
"""Get the time budget for the current round.
|
|
134
|
+
|
|
135
|
+
Calculates the time allocation by dividing the remaining time equally among
|
|
136
|
+
the remaining rounds. This means if a previous round used less time than
|
|
137
|
+
allocated, subsequent rounds get more time, and vice versa.
|
|
138
|
+
|
|
139
|
+
Returns time budget for the current round in seconds. Returns None if
|
|
140
|
+
``time_limit`` is None. Returns 0.0 if all rounds have been exhausted.
|
|
141
|
+
"""
|
|
142
|
+
if self.time_limit is None:
|
|
143
|
+
return None
|
|
144
|
+
if self.start_time is None:
|
|
145
|
+
raise RuntimeError("Timer has not been started")
|
|
146
|
+
|
|
147
|
+
remaining_rounds = self.rounds - self.round_index
|
|
148
|
+
if remaining_rounds <= 0:
|
|
149
|
+
return 0.0
|
|
150
|
+
|
|
151
|
+
elapsed_time_at_round_start = self.round_start_time - self.start_time
|
|
152
|
+
remaining_time_at_round_start = self.time_limit - elapsed_time_at_round_start
|
|
153
|
+
round_time_budget = remaining_time_at_round_start / remaining_rounds
|
|
154
|
+
|
|
155
|
+
return round_time_budget - self.round_time_elapsed()
|
|
156
|
+
|
|
157
|
+
def round_time_elapsed(self) -> float:
|
|
158
|
+
"""Total time elapsed since the start of this round."""
|
|
159
|
+
if self.start_time is None:
|
|
160
|
+
raise RuntimeError("Timer has not been started")
|
|
161
|
+
return time.monotonic() - self.round_start_time
|
|
162
|
+
|
|
163
|
+
def next_round(self) -> Self:
|
|
164
|
+
"""Advance timer to the next round.
|
|
165
|
+
|
|
166
|
+
Increments the round counter, which affects the time allocation returned
|
|
167
|
+
by subsequent ``round_time_remaining`` calls.
|
|
168
|
+
"""
|
|
169
|
+
if self.start_time is None:
|
|
170
|
+
raise RuntimeError("Timer has not been started")
|
|
171
|
+
self.round_index += 1
|
|
172
|
+
self.round_start_time = time.monotonic()
|
|
173
|
+
return self
|
|
@@ -3,19 +3,24 @@ import functools
|
|
|
3
3
|
import io
|
|
4
4
|
import logging
|
|
5
5
|
import os
|
|
6
|
+
import re
|
|
6
7
|
import sys
|
|
7
8
|
import warnings
|
|
9
|
+
from collections import Counter
|
|
8
10
|
|
|
9
|
-
|
|
11
|
+
import pandas as pd
|
|
10
12
|
|
|
11
13
|
__all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
|
|
12
14
|
|
|
13
15
|
|
|
14
16
|
@contextlib.contextmanager
|
|
15
|
-
def warning_filter():
|
|
17
|
+
def warning_filter(all_warnings: bool = False):
|
|
18
|
+
categories = [RuntimeWarning, UserWarning, FutureWarning, pd.errors.PerformanceWarning]
|
|
19
|
+
if all_warnings:
|
|
20
|
+
categories.append(Warning)
|
|
16
21
|
with warnings.catch_warnings():
|
|
17
22
|
env_py_warnings = os.environ.get("PYTHONWARNINGS", "")
|
|
18
|
-
for warning_category in
|
|
23
|
+
for warning_category in categories:
|
|
19
24
|
warnings.simplefilter("ignore", category=warning_category)
|
|
20
25
|
try:
|
|
21
26
|
os.environ["PYTHONWARNINGS"] = "ignore"
|
|
@@ -25,14 +30,28 @@ def warning_filter():
|
|
|
25
30
|
|
|
26
31
|
|
|
27
32
|
@contextlib.contextmanager
|
|
28
|
-
def disable_root_logger():
|
|
33
|
+
def disable_root_logger(root_log_level=logging.ERROR):
|
|
29
34
|
try:
|
|
30
|
-
logging.getLogger().setLevel(
|
|
35
|
+
logging.getLogger().setLevel(root_log_level)
|
|
31
36
|
yield
|
|
32
37
|
finally:
|
|
33
38
|
logging.getLogger().setLevel(logging.INFO)
|
|
34
39
|
|
|
35
40
|
|
|
41
|
+
@contextlib.contextmanager
|
|
42
|
+
def set_loggers_level(regex: str, level=logging.ERROR):
|
|
43
|
+
log_levels = {}
|
|
44
|
+
try:
|
|
45
|
+
for logger_name in logging.root.manager.loggerDict:
|
|
46
|
+
if re.match(regex, logger_name):
|
|
47
|
+
log_levels[logger_name] = logging.getLogger(logger_name).level
|
|
48
|
+
logging.getLogger(logger_name).setLevel(level)
|
|
49
|
+
yield
|
|
50
|
+
finally:
|
|
51
|
+
for logger_name, level in log_levels.items():
|
|
52
|
+
logging.getLogger(logger_name).setLevel(level)
|
|
53
|
+
|
|
54
|
+
|
|
36
55
|
@contextlib.contextmanager
|
|
37
56
|
def disable_tqdm():
|
|
38
57
|
"""monkey-patch tqdm to disable it within context"""
|
|
@@ -40,7 +59,7 @@ def disable_tqdm():
|
|
|
40
59
|
from tqdm import tqdm
|
|
41
60
|
|
|
42
61
|
_init = tqdm.__init__
|
|
43
|
-
tqdm.__init__ = functools.partialmethod(tqdm.__init__, disable=True)
|
|
62
|
+
tqdm.__init__ = functools.partialmethod(tqdm.__init__, disable=True) # type: ignore
|
|
44
63
|
yield
|
|
45
64
|
except ImportError:
|
|
46
65
|
yield
|
|
@@ -54,3 +73,22 @@ def disable_stdout():
|
|
|
54
73
|
sys.stdout = io.StringIO()
|
|
55
74
|
yield
|
|
56
75
|
sys.stdout = save_stdout
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class DuplicateLogFilter:
|
|
79
|
+
def __init__(self, max_count: int = 1):
|
|
80
|
+
self.messages: Counter[str] = Counter()
|
|
81
|
+
self.max_count = max_count
|
|
82
|
+
|
|
83
|
+
def filter(self, record):
|
|
84
|
+
count = self.messages[record.msg]
|
|
85
|
+
self.messages[record.msg] += 1
|
|
86
|
+
return count < self.max_count
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
@contextlib.contextmanager
|
|
90
|
+
def disable_duplicate_logs(logger, max_count: int = 1):
|
|
91
|
+
log_filter = DuplicateLogFilter(max_count=max_count)
|
|
92
|
+
logger.addFilter(log_filter)
|
|
93
|
+
yield
|
|
94
|
+
logger.removeFilter(log_filter)
|
autogluon/timeseries/version.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
import sys, types, os;p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = __import__('importlib.util');__import__('importlib.machinery');m = sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
|
|
@@ -1,7 +1,7 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.
|
|
4
|
-
Summary:
|
|
3
|
+
Version: 1.4.1b20251210
|
|
4
|
+
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
7
7
|
License: Apache-2.0
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -24,69 +23,92 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
24
23
|
Classifier: Operating System :: POSIX
|
|
25
24
|
Classifier: Operating System :: Unix
|
|
26
25
|
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
28
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
29
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
30
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
28
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
Requires-Dist:
|
|
40
|
-
Requires-Dist:
|
|
41
|
-
Requires-Dist:
|
|
42
|
-
Requires-Dist:
|
|
43
|
-
Requires-Dist:
|
|
44
|
-
Requires-Dist:
|
|
45
|
-
Requires-Dist:
|
|
46
|
-
Requires-Dist:
|
|
47
|
-
Requires-Dist:
|
|
48
|
-
Requires-Dist:
|
|
49
|
-
Requires-Dist:
|
|
50
|
-
Requires-Dist:
|
|
51
|
-
Requires-Dist:
|
|
52
|
-
Requires-Dist:
|
|
53
|
-
Requires-Dist:
|
|
54
|
-
Requires-Dist:
|
|
55
|
-
Requires-Dist:
|
|
56
|
-
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
38
|
+
Requires-Dist: joblib<1.7,>=1.2
|
|
39
|
+
Requires-Dist: numpy<2.4.0,>=1.25.0
|
|
40
|
+
Requires-Dist: scipy<1.17,>=1.5.4
|
|
41
|
+
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
42
|
+
Requires-Dist: torch<2.10,>=2.6
|
|
43
|
+
Requires-Dist: lightning<2.6,>=2.5.1
|
|
44
|
+
Requires-Dist: transformers[sentencepiece]<4.58,>=4.51.0
|
|
45
|
+
Requires-Dist: accelerate<2.0,>=0.34.0
|
|
46
|
+
Requires-Dist: gluonts<0.17,>=0.15.0
|
|
47
|
+
Requires-Dist: networkx<4,>=3.0
|
|
48
|
+
Requires-Dist: statsforecast<2.0.2,>=1.7.0
|
|
49
|
+
Requires-Dist: mlforecast<0.15.0,>=0.14.0
|
|
50
|
+
Requires-Dist: utilsforecast<0.2.12,>=0.2.3
|
|
51
|
+
Requires-Dist: coreforecast<0.0.17,>=0.0.12
|
|
52
|
+
Requires-Dist: fugue>=0.9.0
|
|
53
|
+
Requires-Dist: tqdm<5,>=4.38
|
|
54
|
+
Requires-Dist: orjson~=3.9
|
|
55
|
+
Requires-Dist: einops<1,>=0.7
|
|
56
|
+
Requires-Dist: chronos-forecasting<2.4,>=2.2.0
|
|
57
|
+
Requires-Dist: peft<0.18,>=0.13.0
|
|
58
|
+
Requires-Dist: tensorboard<3,>=2.9
|
|
59
|
+
Requires-Dist: autogluon.core==1.4.1b20251210
|
|
60
|
+
Requires-Dist: autogluon.common==1.4.1b20251210
|
|
61
|
+
Requires-Dist: autogluon.features==1.4.1b20251210
|
|
62
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251210
|
|
57
63
|
Provides-Extra: tests
|
|
58
|
-
Requires-Dist: pytest
|
|
59
|
-
Requires-Dist: ruff
|
|
60
|
-
Requires-Dist: flaky
|
|
61
|
-
Requires-Dist: pytest-timeout
|
|
62
|
-
|
|
63
|
-
Requires-Dist:
|
|
64
|
+
Requires-Dist: pytest; extra == "tests"
|
|
65
|
+
Requires-Dist: ruff>=0.0.285; extra == "tests"
|
|
66
|
+
Requires-Dist: flaky<4,>=3.7; extra == "tests"
|
|
67
|
+
Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
|
|
68
|
+
Provides-Extra: ray
|
|
69
|
+
Requires-Dist: autogluon.core[raytune]==1.4.1b20251210; extra == "ray"
|
|
70
|
+
Provides-Extra: all
|
|
71
|
+
Requires-Dist: autogluon.core[raytune]==1.4.1b20251210; extra == "all"
|
|
72
|
+
Dynamic: author
|
|
73
|
+
Dynamic: classifier
|
|
74
|
+
Dynamic: description
|
|
75
|
+
Dynamic: description-content-type
|
|
76
|
+
Dynamic: home-page
|
|
77
|
+
Dynamic: license
|
|
78
|
+
Dynamic: license-file
|
|
79
|
+
Dynamic: project-url
|
|
80
|
+
Dynamic: provides-extra
|
|
81
|
+
Dynamic: requires-dist
|
|
82
|
+
Dynamic: requires-python
|
|
83
|
+
Dynamic: summary
|
|
64
84
|
|
|
65
85
|
|
|
66
86
|
|
|
67
87
|
<div align="center">
|
|
68
88
|
<img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
|
|
69
89
|
|
|
70
|
-
##
|
|
90
|
+
## Fast and Accurate ML in 3 Lines of Code
|
|
71
91
|
|
|
72
92
|
[](https://github.com/autogluon/autogluon/releases)
|
|
73
93
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
74
|
-
[](https://pypi.org/project/autogluon/)
|
|
75
95
|
[](https://pepy.tech/project/autogluon)
|
|
76
96
|
[](./LICENSE)
|
|
77
|
-
[](https://discord.gg/wjUmjqAc2N)
|
|
78
98
|
[](https://twitter.com/autogluon)
|
|
79
99
|
[](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
|
|
80
100
|
[](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
|
|
81
101
|
|
|
82
|
-
[
|
|
102
|
+
[Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
|
|
83
103
|
|
|
84
|
-
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
|
85
104
|
</div>
|
|
86
105
|
|
|
106
|
+
AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
|
107
|
+
|
|
108
|
+
|
|
87
109
|
## 💾 Installation
|
|
88
110
|
|
|
89
|
-
AutoGluon is supported on Python 3.
|
|
111
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
90
112
|
|
|
91
113
|
You can install AutoGluon with:
|
|
92
114
|
|
|
@@ -102,15 +124,15 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
|
102
124
|
|
|
103
125
|
```python
|
|
104
126
|
from autogluon.tabular import TabularPredictor
|
|
105
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
|
127
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
|
106
128
|
predictions = predictor.predict("test.csv")
|
|
107
129
|
```
|
|
108
130
|
|
|
109
131
|
| AutoGluon Task | Quickstart | API |
|
|
110
132
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
111
133
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
112
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
113
134
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
135
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
114
136
|
|
|
115
137
|
## :mag: Resources
|
|
116
138
|
|
|
@@ -120,10 +142,11 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
120
142
|
|
|
121
143
|
| Title | Format | Location | Date |
|
|
122
144
|
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
|
|
123
|
-
| :tv: [AutoGluon
|
|
145
|
+
| :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
|
|
146
|
+
| :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
|
|
124
147
|
| :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
|
|
125
|
-
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
|
126
|
-
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
|
148
|
+
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
|
149
|
+
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
|
127
150
|
| :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
|
|
128
151
|
|
|
129
152
|
### Scientific Publications
|
|
@@ -132,7 +155,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
132
155
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
133
156
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
134
157
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
135
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
158
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
159
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
160
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
161
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
136
162
|
|
|
137
163
|
### Articles
|
|
138
164
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -158,5 +184,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
158
184
|
## :classical_building: License
|
|
159
185
|
|
|
160
186
|
This library is licensed under the Apache 2.0 License.
|
|
161
|
-
|
|
162
|
-
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
autogluon.timeseries-1.4.1b20251210-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
|
|
2
|
+
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
|
+
autogluon/timeseries/learner.py,sha256=cIeXAfUz2LcDA6wJqAstTM5I2kcLY_I-v2BuCnggDMY,14811
|
|
4
|
+
autogluon/timeseries/predictor.py,sha256=h26PWb1C8IiCZZO7a1sPpIHk4_zVktepvMyCfS7hBmQ,96399
|
|
5
|
+
autogluon/timeseries/regressor.py,sha256=HDdqi7MYRheW3uZy5c50sqVDAHap0ooyQBdOvKEKkWM,11718
|
|
6
|
+
autogluon/timeseries/splitter.py,sha256=2rypDxDKkqOC2v5nPJ6m0cmHQTZ9D6qUFrQV1HC9lz4,2329
|
|
7
|
+
autogluon/timeseries/version.py,sha256=sZ57XJnx_wDNZ0NWdWftjz6BJz3JqxIXSXuf_wQhIzU,91
|
|
8
|
+
autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
|
|
9
|
+
autogluon/timeseries/configs/hyperparameter_presets.py,sha256=uxL5H9k9kiDcXl16bWZ57Y1HUwwwmfSaQEpUrS-J4yU,2018
|
|
10
|
+
autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
|
|
11
|
+
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
12
|
+
autogluon/timeseries/dataset/ts_dataframe.py,sha256=IOIkwV_VPV3JvilNt98gZ77gMHIpk-Ug-trDvqSk_Jg,52228
|
|
13
|
+
autogluon/timeseries/metrics/__init__.py,sha256=iFGLMOtDJ470dbmmx1BsdUKBx4RwI6ZQGFat3Z-wpzI,3567
|
|
14
|
+
autogluon/timeseries/metrics/abstract.py,sha256=_A0Ex1Ay91TPDStZ8DBiBMkIyLUusdARbuDiylHJ0yQ,11499
|
|
15
|
+
autogluon/timeseries/metrics/point.py,sha256=K1Fn0_-Ycxz1hYHd-u1X7q9X-Jt7Dp9bNvUHV6RRg7A,18274
|
|
16
|
+
autogluon/timeseries/metrics/quantile.py,sha256=f8SMVt9rV0sY9lk8B1Bjxx219IjajuJjhOSD95p_z24,4602
|
|
17
|
+
autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
|
|
18
|
+
autogluon/timeseries/models/__init__.py,sha256=zPdwxiveOTGU9658tDPMFXbflZ5fzd_AJdbCacbfZ0s,1375
|
|
19
|
+
autogluon/timeseries/models/registry.py,sha256=dkuyKG5UK2xiGtXcsuyRDXrI-YC84zkPre8Z3wt9T_A,2115
|
|
20
|
+
autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
|
|
21
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=7j_ULO_d7SUUprHqnMjF_4pz8rDXODyyFeboJaQohAw,32489
|
|
22
|
+
autogluon/timeseries/models/abstract/model_trial.py,sha256=xKD6Nw8hIqAq4HxNVcGUhr9BuEqzFn7FX0TenvZHU0Q,3753
|
|
23
|
+
autogluon/timeseries/models/abstract/tunable.py,sha256=thl_wJjB9ao1T5NNF1RVH5k3yFqmao0irX-eUNqDs8k,7111
|
|
24
|
+
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
|
25
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=FJlYqMZJaltTlh54LMrDOgICgGanIymBI2F4OevVQ6A,36690
|
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=kc0OIveCUfMbl1yGANW42EaRFZZNmlr1AJdcG-nqihA,23360
|
|
27
|
+
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=AkXEInK4GocApU5GylECH01qgz5cLLLqC9apuN0eUbQ,2873
|
|
28
|
+
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
|
29
|
+
autogluon/timeseries/models/chronos/__init__.py,sha256=dIoAImmZc0dTlut4CZkJxcg1bpuHKZkS8x8Y6fBoUAY,113
|
|
30
|
+
autogluon/timeseries/models/chronos/chronos2.py,sha256=86pWzlExDMp6FGD0ob1Tui2cJQBgeYljGTRUqIRzBNM,15177
|
|
31
|
+
autogluon/timeseries/models/chronos/model.py,sha256=49QF2aM-piPLWd2oD1_0qaWTCUaInCxx_8aHBh8Q-wY,33675
|
|
32
|
+
autogluon/timeseries/models/chronos/utils.py,sha256=t80Cz3EdEOzI2youjVSNYrz1_Xhi-BiaiLsodI5fYtM,14446
|
|
33
|
+
autogluon/timeseries/models/ensemble/__init__.py,sha256=X9xfuIXOelb72o3hyfjiltZVbxu_xMV8VbnEjEtLFVY,1314
|
|
34
|
+
autogluon/timeseries/models/ensemble/abstract.py,sha256=62xWvt-qWob_jBUQwYOqzpGfiYvl2tfrZ69czjtqNpI,4224
|
|
35
|
+
autogluon/timeseries/models/ensemble/ensemble_selection.py,sha256=hepycVJTtbibzTKq5Sk04L_vUuYlLFItkSybaCc_Jv8,6366
|
|
36
|
+
autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=UYYocrWZR5m5raqzT4uOpOVGtWp6AmqgEGROdkPHHYo,7141
|
|
37
|
+
autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=u4vGTH9gP6oATYKkxnvoiDZvc5rqfnfgrODHxIvHP7U,207
|
|
38
|
+
autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=Sllj5cj6yUg4-a2-A_V3GHyq3GO1EcsQt0cIG54WfJg,9813
|
|
39
|
+
autogluon/timeseries/models/ensemble/array_based/models.py,sha256=SoLZGrU-aekwWY929jGYvAY9lrq9UrayNqMMHoI0r4c,2543
|
|
40
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=OJPZZzowllw7Ks0aXF8Hye1_1Ql8XhRfdtv3e3A_4AE,424
|
|
41
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=7wiyQz42P32BusynOR1wPAFzBE5wO93czUBwl7NxGKg,2769
|
|
42
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py,sha256=7qO0RycYc_3UhArrhuhi1OLBikLQTnhAWxxDXi60oxM,6457
|
|
43
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=GIa2CtP3bl7uN3i4t54WPod4JxIhA9nKIyr7tx9B08E,3763
|
|
44
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=prH6vSmRu4UBUjIdAHnLF0aH8oxHUA8ciaNP9ou9uyA,4056
|
|
45
|
+
autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
|
|
46
|
+
autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=xsp5Jg1U_YWfNdyKI3TTSXnVnzwdZkPwXJZvnqWVdcg,1512
|
|
47
|
+
autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=V_pOqpP9huA-ktIhO1lGfMy6H6NwKz8Kcl8xo4RafpI,3041
|
|
48
|
+
autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=sWFctJeuFcSfhxbfOCxoOXXg0fs8qt1d8LA1JUiXBM4,2231
|
|
49
|
+
autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
|
|
50
|
+
autogluon/timeseries/models/gluonts/abstract.py,sha256=Ggz-MGBDDkWytaB26MMTnPqe7aflVlia1u12xvr3CyM,27677
|
|
51
|
+
autogluon/timeseries/models/gluonts/dataset.py,sha256=ApR-r4o0OV4jQ2hYUppJ4yjvWX02JoHod5O4acEKiHw,5074
|
|
52
|
+
autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
|
|
53
|
+
autogluon/timeseries/models/local/__init__.py,sha256=TiKY7M6Foy8vtshfZiStEH58_XG62w4oF1TQYAQ1B0s,344
|
|
54
|
+
autogluon/timeseries/models/local/abstract_local_model.py,sha256=7pbyE4vhXgoCEcHAhxpxBVCOEG-LSrBptGwjLXd-s8o,11335
|
|
55
|
+
autogluon/timeseries/models/local/naive.py,sha256=w0XuMcgcTvTUEi2iXcd6BGvyHKB-kpqbv9c9iK4pMOA,7490
|
|
56
|
+
autogluon/timeseries/models/local/npts.py,sha256=G0haMQTSW7DnWGfWUwc-si2P5Azup5u45r3uZHS8IRo,4200
|
|
57
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=gt9evIxlymisBlBZU7aRFtZQ3mgyX7a0xtmvFyKRXK4,33275
|
|
58
|
+
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
|
59
|
+
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=bv8_ux-7JXPwhbFXeBN893xQo6echCCMwqH4aEMK250,12937
|
|
60
|
+
autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
|
|
61
|
+
autogluon/timeseries/models/toto/dataloader.py,sha256=wUrK3mcSEhaWmxpv3rAqmp1ZbLnXbEP4F77hAT2-VXg,3566
|
|
62
|
+
autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=6xr3sO3PsCknA3POy7bInjmchEeqr_evSKeIyhMb4zw,4749
|
|
63
|
+
autogluon/timeseries/models/toto/model.py,sha256=f3l36lOb12pNzQSfJ75_FydHkqqfcjk2wrG4hM5ajpE,8889
|
|
64
|
+
autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
|
|
65
|
+
autogluon/timeseries/models/toto/_internal/dataset.py,sha256=jpKX3LV4FkcGGgUPTzpwdR_7UZEFMfwXIQQZVkQ_I6E,6090
|
|
66
|
+
autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=HhRQwqC6Y_Gr93fT-EpilWFjjxY5zR9GsNPN2JPztN4,18479
|
|
67
|
+
autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
|
|
68
|
+
autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=ez7N8ygH4Q1gU88EuoSeF1675JcoAAxocvyF4i0JuGI,9347
|
|
69
|
+
autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=Vy2AHnbRrc68ax41KPf0IP3RkXA7GtTgzIXr6lSAp-w,10079
|
|
70
|
+
autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
|
|
71
|
+
autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
|
|
72
|
+
autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=UohCHvsOP2Q2g6IXDWXQsYpBZ0JDZ0JjtFq0ZnRCF6g,3389
|
|
73
|
+
autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py,sha256=TsdcUpQUQes4dtrWb6citENGrXK8hE3M8DyZ2kslEyE,11488
|
|
74
|
+
autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=NQno9Ycm2wf4tZJneoOtbbyZ-ez0Z5R37XJng9rPn_4,13694
|
|
75
|
+
autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=K7S-fPZZOl65luFMpPQ3LC2QuNN4SunTLDTxp-bZWUc,12364
|
|
76
|
+
autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
|
|
77
|
+
autogluon/timeseries/trainer/ensemble_composer.py,sha256=2Qn1EYCGKBtVBl1nerfWtT27MM9NYyvfmaeeL8pD1FY,19248
|
|
78
|
+
autogluon/timeseries/trainer/model_set_builder.py,sha256=kROApbu10_ro-GVYlnx3oTKZj2TcNswWbOFB1QyBCOc,10737
|
|
79
|
+
autogluon/timeseries/trainer/prediction_cache.py,sha256=KKs22UUGrVfQN_81IgzL7Bfc8tjWk3k6YW3uHURaSs0,5496
|
|
80
|
+
autogluon/timeseries/trainer/trainer.py,sha256=tlUEhcl3bzHid9Ya1Qod9gtm8M4bZWkFKoYAs08TP1o,56307
|
|
81
|
+
autogluon/timeseries/trainer/utils.py,sha256=7N4vRP6GFUlRAahxQ9PqppdIMFqMz3wpZ5u-_onR24M,588
|
|
82
|
+
autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
|
|
83
|
+
autogluon/timeseries/transforms/covariate_scaler.py,sha256=CpTtokiE1uEg_RJa4kEUUuBwXZpPL11OC2fgCkRpGlQ,6986
|
|
84
|
+
autogluon/timeseries/transforms/target_scaler.py,sha256=sAOohPBaStZx_V8aaaQacDbfEqqWRjYUtDLxdhkRKww,6092
|
|
85
|
+
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
86
|
+
autogluon/timeseries/utils/constants.py,sha256=qjFWoouIQ5nJfx9Fmm4svN191ultb4XWW4NQSHeiGW4,542
|
|
87
|
+
autogluon/timeseries/utils/features.py,sha256=3dv_FkTqf01xUoes2kfKM-fMTVIb84jKiAq6NHFghC0,22677
|
|
88
|
+
autogluon/timeseries/utils/forecast.py,sha256=-w94i4DZaervXAZ_c1M7I4iLrPnVax8yC6pgv46bEjc,2228
|
|
89
|
+
autogluon/timeseries/utils/timer.py,sha256=qDROHYG_Z8fulMpyZMrRhfQoTneazTzYhur4qjqqydA,5799
|
|
90
|
+
autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
|
|
91
|
+
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
|
92
|
+
autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
|
|
93
|
+
autogluon/timeseries/utils/datetime/lags.py,sha256=dijskkPDJXhXbRHGQZPhUFuEom3typKbOeET7cxkHGY,5965
|
|
94
|
+
autogluon/timeseries/utils/datetime/seasonality.py,sha256=-w3bULdkIZKP-JrO1ahHLyNCanLhejocHlasZShuwA0,802
|
|
95
|
+
autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
|
|
96
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
97
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
98
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/METADATA,sha256=pqn6x9nopW95MEiiivuyZy8-Op_U5iOpJFxM014sCzg,13425
|
|
99
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
100
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
101
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
102
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
103
|
+
autogluon_timeseries-1.4.1b20251210.dist-info/RECORD,,
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
"""Preset configurations for autogluon.timeseries Predictors"""
|
|
2
|
-
|
|
3
|
-
# TODO: change default HPO settings when other HPO strategies (e.g., Ray tune) are available
|
|
4
|
-
# TODO: add refit_full arguments once refitting is available
|
|
5
|
-
|
|
6
|
-
TIMESERIES_PRESETS_CONFIGS = dict(
|
|
7
|
-
best_quality={"hyperparameters": "default", "num_val_windows": 2},
|
|
8
|
-
high_quality={"hyperparameters": "default"},
|
|
9
|
-
medium_quality={"hyperparameters": "light"},
|
|
10
|
-
fast_training={"hyperparameters": "very_light"},
|
|
11
|
-
)
|