autogluon.timeseries 1.0.1b20240304__py3-none-any.whl → 1.4.1b20251210__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (108) hide show
  1. autogluon/timeseries/configs/__init__.py +3 -2
  2. autogluon/timeseries/configs/hyperparameter_presets.py +62 -0
  3. autogluon/timeseries/configs/predictor_presets.py +84 -0
  4. autogluon/timeseries/dataset/ts_dataframe.py +339 -186
  5. autogluon/timeseries/learner.py +192 -60
  6. autogluon/timeseries/metrics/__init__.py +55 -11
  7. autogluon/timeseries/metrics/abstract.py +96 -25
  8. autogluon/timeseries/metrics/point.py +186 -39
  9. autogluon/timeseries/metrics/quantile.py +47 -20
  10. autogluon/timeseries/metrics/utils.py +6 -6
  11. autogluon/timeseries/models/__init__.py +13 -7
  12. autogluon/timeseries/models/abstract/__init__.py +2 -2
  13. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +533 -273
  14. autogluon/timeseries/models/abstract/model_trial.py +10 -10
  15. autogluon/timeseries/models/abstract/tunable.py +189 -0
  16. autogluon/timeseries/models/autogluon_tabular/__init__.py +2 -0
  17. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +369 -215
  18. autogluon/timeseries/models/autogluon_tabular/per_step.py +513 -0
  19. autogluon/timeseries/models/autogluon_tabular/transforms.py +67 -0
  20. autogluon/timeseries/models/autogluon_tabular/utils.py +3 -51
  21. autogluon/timeseries/models/chronos/__init__.py +4 -0
  22. autogluon/timeseries/models/chronos/chronos2.py +361 -0
  23. autogluon/timeseries/models/chronos/model.py +738 -0
  24. autogluon/timeseries/models/chronos/utils.py +369 -0
  25. autogluon/timeseries/models/ensemble/__init__.py +35 -2
  26. autogluon/timeseries/models/ensemble/{abstract_timeseries_ensemble.py → abstract.py} +50 -26
  27. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  28. autogluon/timeseries/models/ensemble/array_based/abstract.py +236 -0
  29. autogluon/timeseries/models/ensemble/array_based/models.py +73 -0
  30. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +12 -0
  31. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +88 -0
  32. autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +167 -0
  33. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +94 -0
  34. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +107 -0
  35. autogluon/timeseries/models/ensemble/ensemble_selection.py +167 -0
  36. autogluon/timeseries/models/ensemble/per_item_greedy.py +162 -0
  37. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  38. autogluon/timeseries/models/ensemble/weighted/abstract.py +40 -0
  39. autogluon/timeseries/models/ensemble/weighted/basic.py +78 -0
  40. autogluon/timeseries/models/ensemble/weighted/greedy.py +57 -0
  41. autogluon/timeseries/models/gluonts/__init__.py +3 -1
  42. autogluon/timeseries/models/gluonts/abstract.py +583 -0
  43. autogluon/timeseries/models/gluonts/dataset.py +109 -0
  44. autogluon/timeseries/models/gluonts/{torch/models.py → models.py} +185 -44
  45. autogluon/timeseries/models/local/__init__.py +1 -10
  46. autogluon/timeseries/models/local/abstract_local_model.py +150 -97
  47. autogluon/timeseries/models/local/naive.py +31 -23
  48. autogluon/timeseries/models/local/npts.py +6 -2
  49. autogluon/timeseries/models/local/statsforecast.py +99 -112
  50. autogluon/timeseries/models/multi_window/multi_window_model.py +99 -40
  51. autogluon/timeseries/models/registry.py +64 -0
  52. autogluon/timeseries/models/toto/__init__.py +3 -0
  53. autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
  54. autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
  55. autogluon/timeseries/models/toto/_internal/backbone/attention.py +196 -0
  56. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
  57. autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
  58. autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
  59. autogluon/timeseries/models/toto/_internal/backbone/rope.py +89 -0
  60. autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +342 -0
  61. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +305 -0
  62. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
  63. autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
  64. autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
  65. autogluon/timeseries/models/toto/dataloader.py +108 -0
  66. autogluon/timeseries/models/toto/hf_pretrained_model.py +118 -0
  67. autogluon/timeseries/models/toto/model.py +236 -0
  68. autogluon/timeseries/predictor.py +826 -305
  69. autogluon/timeseries/regressor.py +253 -0
  70. autogluon/timeseries/splitter.py +10 -31
  71. autogluon/timeseries/trainer/__init__.py +2 -3
  72. autogluon/timeseries/trainer/ensemble_composer.py +439 -0
  73. autogluon/timeseries/trainer/model_set_builder.py +256 -0
  74. autogluon/timeseries/trainer/prediction_cache.py +149 -0
  75. autogluon/timeseries/trainer/trainer.py +1298 -0
  76. autogluon/timeseries/trainer/utils.py +17 -0
  77. autogluon/timeseries/transforms/__init__.py +2 -0
  78. autogluon/timeseries/transforms/covariate_scaler.py +164 -0
  79. autogluon/timeseries/transforms/target_scaler.py +149 -0
  80. autogluon/timeseries/utils/constants.py +10 -0
  81. autogluon/timeseries/utils/datetime/base.py +38 -20
  82. autogluon/timeseries/utils/datetime/lags.py +18 -16
  83. autogluon/timeseries/utils/datetime/seasonality.py +14 -14
  84. autogluon/timeseries/utils/datetime/time_features.py +17 -14
  85. autogluon/timeseries/utils/features.py +317 -53
  86. autogluon/timeseries/utils/forecast.py +31 -17
  87. autogluon/timeseries/utils/timer.py +173 -0
  88. autogluon/timeseries/utils/warning_filters.py +44 -6
  89. autogluon/timeseries/version.py +2 -1
  90. autogluon.timeseries-1.4.1b20251210-py3.11-nspkg.pth +1 -0
  91. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/METADATA +71 -47
  92. autogluon_timeseries-1.4.1b20251210.dist-info/RECORD +103 -0
  93. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/WHEEL +1 -1
  94. autogluon/timeseries/configs/presets_configs.py +0 -11
  95. autogluon/timeseries/evaluator.py +0 -6
  96. autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -170
  97. autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -550
  98. autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  99. autogluon/timeseries/models/presets.py +0 -325
  100. autogluon/timeseries/trainer/abstract_trainer.py +0 -1144
  101. autogluon/timeseries/trainer/auto_trainer.py +0 -74
  102. autogluon.timeseries-1.0.1b20240304-py3.8-nspkg.pth +0 -1
  103. autogluon.timeseries-1.0.1b20240304.dist-info/RECORD +0 -58
  104. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info/licenses}/LICENSE +0 -0
  105. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info/licenses}/NOTICE +0 -0
  106. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/namespace_packages.txt +0 -0
  107. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/top_level.txt +0 -0
  108. {autogluon.timeseries-1.0.1b20240304.dist-info → autogluon_timeseries-1.4.1b20251210.dist-info}/zip-safe +0 -0
@@ -0,0 +1,173 @@
1
+ import time
2
+
3
+ from typing_extensions import Self
4
+
5
+
6
+ class Timer:
7
+ """A timer class that tracks a start time, and computes the time elapsed and
8
+ time remaining, used for handling ``time_limit`` parameters in AutoGluon.
9
+
10
+ Parameters
11
+ ----------
12
+ time_limit
13
+ The time limit to set. If None, then ``time_remaining`` will return None, and
14
+ ``timed_out`` will return False.
15
+
16
+ Examples
17
+ --------
18
+ Basic usage with time limit:
19
+
20
+ >>> timer = Timer(time_limit=10.0).start()
21
+ >>> # Do some work...
22
+ >>> if timer.timed_out():
23
+ ... print("Time limit exceeded!")
24
+ >>> print(f"Time remaining: {timer.time_remaining():.2f}s")
25
+
26
+ Using as a stopwatch (no time limit):
27
+
28
+ >>> timer = Timer(time_limit=None).start()
29
+ >>> # Do some work...
30
+ >>> print(f"Elapsed time: {timer.time_elapsed():.2f}s")
31
+
32
+ Checking time in a loop:
33
+
34
+ >>> timer = Timer(time_limit=5.0).start()
35
+ >>> for i in range(100):
36
+ ... if timer.timed_out():
37
+ ... break
38
+ ... # Do work for iteration i
39
+ """
40
+
41
+ def __init__(
42
+ self,
43
+ time_limit: float | None,
44
+ ):
45
+ self.time_limit = time_limit
46
+
47
+ self.start_time = None
48
+
49
+ def start(self) -> Self:
50
+ """Start or reset the timer."""
51
+ self.start_time = time.monotonic()
52
+ return self
53
+
54
+ def time_elapsed(self) -> float:
55
+ """Total time elapsed since the timer was started. This method can also be used
56
+ when ``time_limit`` is set to None to count time forward (i.e., as opposed to
57
+ a countdown timer which other methods imply).
58
+ """
59
+ if self.start_time is None:
60
+ raise RuntimeError("Timer has not been started")
61
+ return time.monotonic() - self.start_time
62
+
63
+ def time_remaining(self) -> float | None:
64
+ """Total time remaining on the timer. If ``time_limit`` is None,
65
+ this method also returns None.
66
+ """
67
+ if self.start_time is None:
68
+ raise RuntimeError("Timer has not been started")
69
+ if self.time_limit is None:
70
+ return None
71
+ return self.time_limit - (time.monotonic() - self.start_time)
72
+
73
+ def timed_out(self) -> bool:
74
+ """Whether the timer has timed out. If ``time_limit`` is None, this method
75
+ always returns False.
76
+ """
77
+ if self.start_time is None:
78
+ raise RuntimeError("Timer has not been started")
79
+ if self.time_limit is None:
80
+ return False
81
+ return self.time_elapsed() >= self.time_limit
82
+
83
+
84
+ class SplitTimer(Timer):
85
+ """A timer that splits remaining time across multiple rounds.
86
+
87
+ Extends Timer to divide the total time limit across a specified number of rounds,
88
+ useful for allocating time budgets to sequential operations. At each call of
89
+ ``next_round``, the timer re-distributes the remaining time evenly among
90
+ the remaining rounds.
91
+
92
+ Parameters
93
+ ----------
94
+ time_limit
95
+ Total time limit to split across all rounds. If None, ``round_time_remaining``
96
+ returns None.
97
+ rounds
98
+ Number of rounds to split the time across. Default is 1.
99
+
100
+ Examples
101
+ --------
102
+ Split time across 3 rounds:
103
+
104
+ >>> timer = SplitTimer(time_limit=10.0, rounds=3).start()
105
+ >>> time_round_1 = timer.round_time_remaining() # Returns ~3.33
106
+ >>> # Do work for round 1
107
+ >>> timer.next_round()
108
+ >>> time_round_2 = timer.round_time_remaining() # Returns remaining time divided by 2
109
+ >>> # Do work for round 2
110
+ >>> timer.next_round()
111
+ >>> time_round_3 = timer.round_time_remaining() # Returns all remaining time
112
+ """
113
+
114
+ def __init__(
115
+ self,
116
+ time_limit: float | None,
117
+ rounds: int = 1,
118
+ ):
119
+ super().__init__(time_limit)
120
+ self.rounds = rounds
121
+
122
+ self.round_index: int
123
+ self.round_start_time: float
124
+
125
+ def start(self) -> Self:
126
+ """Reset and start the timer."""
127
+ super().start()
128
+ self.round_index = 0
129
+ self.round_start_time = time.monotonic()
130
+ return self
131
+
132
+ def round_time_remaining(self) -> float | None:
133
+ """Get the time budget for the current round.
134
+
135
+ Calculates the time allocation by dividing the remaining time equally among
136
+ the remaining rounds. This means if a previous round used less time than
137
+ allocated, subsequent rounds get more time, and vice versa.
138
+
139
+ Returns time budget for the current round in seconds. Returns None if
140
+ ``time_limit`` is None. Returns 0.0 if all rounds have been exhausted.
141
+ """
142
+ if self.time_limit is None:
143
+ return None
144
+ if self.start_time is None:
145
+ raise RuntimeError("Timer has not been started")
146
+
147
+ remaining_rounds = self.rounds - self.round_index
148
+ if remaining_rounds <= 0:
149
+ return 0.0
150
+
151
+ elapsed_time_at_round_start = self.round_start_time - self.start_time
152
+ remaining_time_at_round_start = self.time_limit - elapsed_time_at_round_start
153
+ round_time_budget = remaining_time_at_round_start / remaining_rounds
154
+
155
+ return round_time_budget - self.round_time_elapsed()
156
+
157
+ def round_time_elapsed(self) -> float:
158
+ """Total time elapsed since the start of this round."""
159
+ if self.start_time is None:
160
+ raise RuntimeError("Timer has not been started")
161
+ return time.monotonic() - self.round_start_time
162
+
163
+ def next_round(self) -> Self:
164
+ """Advance timer to the next round.
165
+
166
+ Increments the round counter, which affects the time allocation returned
167
+ by subsequent ``round_time_remaining`` calls.
168
+ """
169
+ if self.start_time is None:
170
+ raise RuntimeError("Timer has not been started")
171
+ self.round_index += 1
172
+ self.round_start_time = time.monotonic()
173
+ return self
@@ -3,19 +3,24 @@ import functools
3
3
  import io
4
4
  import logging
5
5
  import os
6
+ import re
6
7
  import sys
7
8
  import warnings
9
+ from collections import Counter
8
10
 
9
- from statsmodels.tools.sm_exceptions import ConvergenceWarning, ValueWarning
11
+ import pandas as pd
10
12
 
11
13
  __all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
12
14
 
13
15
 
14
16
  @contextlib.contextmanager
15
- def warning_filter():
17
+ def warning_filter(all_warnings: bool = False):
18
+ categories = [RuntimeWarning, UserWarning, FutureWarning, pd.errors.PerformanceWarning]
19
+ if all_warnings:
20
+ categories.append(Warning)
16
21
  with warnings.catch_warnings():
17
22
  env_py_warnings = os.environ.get("PYTHONWARNINGS", "")
18
- for warning_category in [RuntimeWarning, UserWarning, ConvergenceWarning, ValueWarning, FutureWarning]:
23
+ for warning_category in categories:
19
24
  warnings.simplefilter("ignore", category=warning_category)
20
25
  try:
21
26
  os.environ["PYTHONWARNINGS"] = "ignore"
@@ -25,14 +30,28 @@ def warning_filter():
25
30
 
26
31
 
27
32
  @contextlib.contextmanager
28
- def disable_root_logger():
33
+ def disable_root_logger(root_log_level=logging.ERROR):
29
34
  try:
30
- logging.getLogger().setLevel(logging.ERROR)
35
+ logging.getLogger().setLevel(root_log_level)
31
36
  yield
32
37
  finally:
33
38
  logging.getLogger().setLevel(logging.INFO)
34
39
 
35
40
 
41
+ @contextlib.contextmanager
42
+ def set_loggers_level(regex: str, level=logging.ERROR):
43
+ log_levels = {}
44
+ try:
45
+ for logger_name in logging.root.manager.loggerDict:
46
+ if re.match(regex, logger_name):
47
+ log_levels[logger_name] = logging.getLogger(logger_name).level
48
+ logging.getLogger(logger_name).setLevel(level)
49
+ yield
50
+ finally:
51
+ for logger_name, level in log_levels.items():
52
+ logging.getLogger(logger_name).setLevel(level)
53
+
54
+
36
55
  @contextlib.contextmanager
37
56
  def disable_tqdm():
38
57
  """monkey-patch tqdm to disable it within context"""
@@ -40,7 +59,7 @@ def disable_tqdm():
40
59
  from tqdm import tqdm
41
60
 
42
61
  _init = tqdm.__init__
43
- tqdm.__init__ = functools.partialmethod(tqdm.__init__, disable=True)
62
+ tqdm.__init__ = functools.partialmethod(tqdm.__init__, disable=True) # type: ignore
44
63
  yield
45
64
  except ImportError:
46
65
  yield
@@ -54,3 +73,22 @@ def disable_stdout():
54
73
  sys.stdout = io.StringIO()
55
74
  yield
56
75
  sys.stdout = save_stdout
76
+
77
+
78
+ class DuplicateLogFilter:
79
+ def __init__(self, max_count: int = 1):
80
+ self.messages: Counter[str] = Counter()
81
+ self.max_count = max_count
82
+
83
+ def filter(self, record):
84
+ count = self.messages[record.msg]
85
+ self.messages[record.msg] += 1
86
+ return count < self.max_count
87
+
88
+
89
+ @contextlib.contextmanager
90
+ def disable_duplicate_logs(logger, max_count: int = 1):
91
+ log_filter = DuplicateLogFilter(max_count=max_count)
92
+ logger.addFilter(log_filter)
93
+ yield
94
+ logger.removeFilter(log_filter)
@@ -1,3 +1,4 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.0.1b20240304'
2
+
3
+ __version__ = "1.4.1b20251210"
3
4
  __lite__ = False
@@ -0,0 +1 @@
1
+ import sys, types, os;p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = __import__('importlib.util');__import__('importlib.machinery');m = sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
@@ -1,7 +1,7 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.1b20240304
4
- Summary: AutoML for Image, Text, and Tabular Data
3
+ Version: 1.4.1b20251210
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
7
7
  License: Apache-2.0
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -24,69 +23,92 @@ Classifier: Operating System :: Microsoft :: Windows
24
23
  Classifier: Operating System :: POSIX
25
24
  Classifier: Operating System :: Unix
26
25
  Classifier: Programming Language :: Python :: 3
27
- Classifier: Programming Language :: Python :: 3.8
28
- Classifier: Programming Language :: Python :: 3.9
29
26
  Classifier: Programming Language :: Python :: 3.10
30
27
  Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
31
30
  Classifier: Topic :: Software Development
32
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
- Requires-Python: >=3.8, <3.12
34
+ Requires-Python: >=3.10, <3.14
36
35
  Description-Content-Type: text/markdown
37
- Requires-Dist: joblib <2,>=1.1
38
- Requires-Dist: numpy <1.29,>=1.21
39
- Requires-Dist: scipy <1.13,>=1.5.4
40
- Requires-Dist: pandas <2.2.0,>=2.0.0
41
- Requires-Dist: torch <2.1,>=2.0
42
- Requires-Dist: lightning <2.1,>=2.0.0
43
- Requires-Dist: pytorch-lightning <2.1,>=2.0.0
44
- Requires-Dist: statsmodels <0.15,>=0.13.0
45
- Requires-Dist: gluonts <0.15,>=0.14.0
46
- Requires-Dist: networkx <4,>=3.0
47
- Requires-Dist: statsforecast <1.5,>=1.4.0
48
- Requires-Dist: mlforecast <0.10.1,>=0.10.0
49
- Requires-Dist: utilsforecast <0.0.11,>=0.0.10
50
- Requires-Dist: tqdm <5,>=4.38
51
- Requires-Dist: orjson ~=3.9
52
- Requires-Dist: tensorboard <3,>=2.9
53
- Requires-Dist: autogluon.core[raytune] ==1.0.1b20240304
54
- Requires-Dist: autogluon.common ==1.0.1b20240304
55
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.1b20240304
56
- Provides-Extra: all
36
+ License-File: LICENSE
37
+ License-File: NOTICE
38
+ Requires-Dist: joblib<1.7,>=1.2
39
+ Requires-Dist: numpy<2.4.0,>=1.25.0
40
+ Requires-Dist: scipy<1.17,>=1.5.4
41
+ Requires-Dist: pandas<2.4.0,>=2.0.0
42
+ Requires-Dist: torch<2.10,>=2.6
43
+ Requires-Dist: lightning<2.6,>=2.5.1
44
+ Requires-Dist: transformers[sentencepiece]<4.58,>=4.51.0
45
+ Requires-Dist: accelerate<2.0,>=0.34.0
46
+ Requires-Dist: gluonts<0.17,>=0.15.0
47
+ Requires-Dist: networkx<4,>=3.0
48
+ Requires-Dist: statsforecast<2.0.2,>=1.7.0
49
+ Requires-Dist: mlforecast<0.15.0,>=0.14.0
50
+ Requires-Dist: utilsforecast<0.2.12,>=0.2.3
51
+ Requires-Dist: coreforecast<0.0.17,>=0.0.12
52
+ Requires-Dist: fugue>=0.9.0
53
+ Requires-Dist: tqdm<5,>=4.38
54
+ Requires-Dist: orjson~=3.9
55
+ Requires-Dist: einops<1,>=0.7
56
+ Requires-Dist: chronos-forecasting<2.4,>=2.2.0
57
+ Requires-Dist: peft<0.18,>=0.13.0
58
+ Requires-Dist: tensorboard<3,>=2.9
59
+ Requires-Dist: autogluon.core==1.4.1b20251210
60
+ Requires-Dist: autogluon.common==1.4.1b20251210
61
+ Requires-Dist: autogluon.features==1.4.1b20251210
62
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251210
57
63
  Provides-Extra: tests
58
- Requires-Dist: pytest ; extra == 'tests'
59
- Requires-Dist: ruff >=0.0.285 ; extra == 'tests'
60
- Requires-Dist: flaky <4,>=3.7 ; extra == 'tests'
61
- Requires-Dist: pytest-timeout <3,>=2.1 ; extra == 'tests'
62
- Requires-Dist: isort >=5.10 ; extra == 'tests'
63
- Requires-Dist: black ~=23.0 ; extra == 'tests'
64
+ Requires-Dist: pytest; extra == "tests"
65
+ Requires-Dist: ruff>=0.0.285; extra == "tests"
66
+ Requires-Dist: flaky<4,>=3.7; extra == "tests"
67
+ Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
68
+ Provides-Extra: ray
69
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251210; extra == "ray"
70
+ Provides-Extra: all
71
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251210; extra == "all"
72
+ Dynamic: author
73
+ Dynamic: classifier
74
+ Dynamic: description
75
+ Dynamic: description-content-type
76
+ Dynamic: home-page
77
+ Dynamic: license
78
+ Dynamic: license-file
79
+ Dynamic: project-url
80
+ Dynamic: provides-extra
81
+ Dynamic: requires-dist
82
+ Dynamic: requires-python
83
+ Dynamic: summary
64
84
 
65
85
 
66
86
 
67
87
  <div align="center">
68
88
  <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
69
89
 
70
- ## AutoML for Image, Text, Time Series, and Tabular Data
90
+ ## Fast and Accurate ML in 3 Lines of Code
71
91
 
72
92
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
73
93
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
74
- [![Python Versions](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://pypi.org/project/autogluon/)
94
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
75
95
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
76
96
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
77
- [![Discord](https://img.shields.io/discord/1043248669505368144?logo=discord&style=flat)](https://discord.gg/wjUmjqAc2N)
97
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
78
98
  [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
79
99
  [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
80
100
  [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
81
101
 
82
- [Install Instructions](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
102
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
83
103
 
84
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
85
104
  </div>
86
105
 
106
+ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
107
+
108
+
87
109
  ## 💾 Installation
88
110
 
89
- AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.
111
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
90
112
 
91
113
  You can install AutoGluon with:
92
114
 
@@ -102,15 +124,15 @@ Build accurate end-to-end ML models in just 3 lines of code!
102
124
 
103
125
  ```python
104
126
  from autogluon.tabular import TabularPredictor
105
- predictor = TabularPredictor(label="class").fit("train.csv")
127
+ predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
106
128
  predictions = predictor.predict("test.csv")
107
129
  ```
108
130
 
109
131
  | AutoGluon Task | Quickstart | API |
110
132
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
111
133
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
112
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
113
134
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
135
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
114
136
 
115
137
  ## :mag: Resources
116
138
 
@@ -120,10 +142,11 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
120
142
 
121
143
  | Title | Format | Location | Date |
122
144
  |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
123
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML Conf 2023](https://2023.automl.cc/) | 2023/09/12 |
145
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
146
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
124
147
  | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
125
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
126
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
148
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
149
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
127
150
  | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
128
151
 
129
152
  ### Scientific Publications
@@ -132,7 +155,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
132
155
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
133
156
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
134
157
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
135
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
158
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
159
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
160
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
161
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
136
162
 
137
163
  ### Articles
138
164
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -158,5 +184,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
158
184
  ## :classical_building: License
159
185
 
160
186
  This library is licensed under the Apache 2.0 License.
161
-
162
-
@@ -0,0 +1,103 @@
1
+ autogluon.timeseries-1.4.1b20251210-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
+ autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
+ autogluon/timeseries/learner.py,sha256=cIeXAfUz2LcDA6wJqAstTM5I2kcLY_I-v2BuCnggDMY,14811
4
+ autogluon/timeseries/predictor.py,sha256=h26PWb1C8IiCZZO7a1sPpIHk4_zVktepvMyCfS7hBmQ,96399
5
+ autogluon/timeseries/regressor.py,sha256=HDdqi7MYRheW3uZy5c50sqVDAHap0ooyQBdOvKEKkWM,11718
6
+ autogluon/timeseries/splitter.py,sha256=2rypDxDKkqOC2v5nPJ6m0cmHQTZ9D6qUFrQV1HC9lz4,2329
7
+ autogluon/timeseries/version.py,sha256=sZ57XJnx_wDNZ0NWdWftjz6BJz3JqxIXSXuf_wQhIzU,91
8
+ autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
9
+ autogluon/timeseries/configs/hyperparameter_presets.py,sha256=uxL5H9k9kiDcXl16bWZ57Y1HUwwwmfSaQEpUrS-J4yU,2018
10
+ autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
11
+ autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=IOIkwV_VPV3JvilNt98gZ77gMHIpk-Ug-trDvqSk_Jg,52228
13
+ autogluon/timeseries/metrics/__init__.py,sha256=iFGLMOtDJ470dbmmx1BsdUKBx4RwI6ZQGFat3Z-wpzI,3567
14
+ autogluon/timeseries/metrics/abstract.py,sha256=_A0Ex1Ay91TPDStZ8DBiBMkIyLUusdARbuDiylHJ0yQ,11499
15
+ autogluon/timeseries/metrics/point.py,sha256=K1Fn0_-Ycxz1hYHd-u1X7q9X-Jt7Dp9bNvUHV6RRg7A,18274
16
+ autogluon/timeseries/metrics/quantile.py,sha256=f8SMVt9rV0sY9lk8B1Bjxx219IjajuJjhOSD95p_z24,4602
17
+ autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
18
+ autogluon/timeseries/models/__init__.py,sha256=zPdwxiveOTGU9658tDPMFXbflZ5fzd_AJdbCacbfZ0s,1375
19
+ autogluon/timeseries/models/registry.py,sha256=dkuyKG5UK2xiGtXcsuyRDXrI-YC84zkPre8Z3wt9T_A,2115
20
+ autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
21
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=7j_ULO_d7SUUprHqnMjF_4pz8rDXODyyFeboJaQohAw,32489
22
+ autogluon/timeseries/models/abstract/model_trial.py,sha256=xKD6Nw8hIqAq4HxNVcGUhr9BuEqzFn7FX0TenvZHU0Q,3753
23
+ autogluon/timeseries/models/abstract/tunable.py,sha256=thl_wJjB9ao1T5NNF1RVH5k3yFqmao0irX-eUNqDs8k,7111
24
+ autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
25
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=FJlYqMZJaltTlh54LMrDOgICgGanIymBI2F4OevVQ6A,36690
26
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=kc0OIveCUfMbl1yGANW42EaRFZZNmlr1AJdcG-nqihA,23360
27
+ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=AkXEInK4GocApU5GylECH01qgz5cLLLqC9apuN0eUbQ,2873
28
+ autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
+ autogluon/timeseries/models/chronos/__init__.py,sha256=dIoAImmZc0dTlut4CZkJxcg1bpuHKZkS8x8Y6fBoUAY,113
30
+ autogluon/timeseries/models/chronos/chronos2.py,sha256=86pWzlExDMp6FGD0ob1Tui2cJQBgeYljGTRUqIRzBNM,15177
31
+ autogluon/timeseries/models/chronos/model.py,sha256=49QF2aM-piPLWd2oD1_0qaWTCUaInCxx_8aHBh8Q-wY,33675
32
+ autogluon/timeseries/models/chronos/utils.py,sha256=t80Cz3EdEOzI2youjVSNYrz1_Xhi-BiaiLsodI5fYtM,14446
33
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=X9xfuIXOelb72o3hyfjiltZVbxu_xMV8VbnEjEtLFVY,1314
34
+ autogluon/timeseries/models/ensemble/abstract.py,sha256=62xWvt-qWob_jBUQwYOqzpGfiYvl2tfrZ69czjtqNpI,4224
35
+ autogluon/timeseries/models/ensemble/ensemble_selection.py,sha256=hepycVJTtbibzTKq5Sk04L_vUuYlLFItkSybaCc_Jv8,6366
36
+ autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=UYYocrWZR5m5raqzT4uOpOVGtWp6AmqgEGROdkPHHYo,7141
37
+ autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=u4vGTH9gP6oATYKkxnvoiDZvc5rqfnfgrODHxIvHP7U,207
38
+ autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=Sllj5cj6yUg4-a2-A_V3GHyq3GO1EcsQt0cIG54WfJg,9813
39
+ autogluon/timeseries/models/ensemble/array_based/models.py,sha256=SoLZGrU-aekwWY929jGYvAY9lrq9UrayNqMMHoI0r4c,2543
40
+ autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=OJPZZzowllw7Ks0aXF8Hye1_1Ql8XhRfdtv3e3A_4AE,424
41
+ autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=7wiyQz42P32BusynOR1wPAFzBE5wO93czUBwl7NxGKg,2769
42
+ autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py,sha256=7qO0RycYc_3UhArrhuhi1OLBikLQTnhAWxxDXi60oxM,6457
43
+ autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=GIa2CtP3bl7uN3i4t54WPod4JxIhA9nKIyr7tx9B08E,3763
44
+ autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=prH6vSmRu4UBUjIdAHnLF0aH8oxHUA8ciaNP9ou9uyA,4056
45
+ autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
46
+ autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=xsp5Jg1U_YWfNdyKI3TTSXnVnzwdZkPwXJZvnqWVdcg,1512
47
+ autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=V_pOqpP9huA-ktIhO1lGfMy6H6NwKz8Kcl8xo4RafpI,3041
48
+ autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=sWFctJeuFcSfhxbfOCxoOXXg0fs8qt1d8LA1JUiXBM4,2231
49
+ autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
50
+ autogluon/timeseries/models/gluonts/abstract.py,sha256=Ggz-MGBDDkWytaB26MMTnPqe7aflVlia1u12xvr3CyM,27677
51
+ autogluon/timeseries/models/gluonts/dataset.py,sha256=ApR-r4o0OV4jQ2hYUppJ4yjvWX02JoHod5O4acEKiHw,5074
52
+ autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
53
+ autogluon/timeseries/models/local/__init__.py,sha256=TiKY7M6Foy8vtshfZiStEH58_XG62w4oF1TQYAQ1B0s,344
54
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=7pbyE4vhXgoCEcHAhxpxBVCOEG-LSrBptGwjLXd-s8o,11335
55
+ autogluon/timeseries/models/local/naive.py,sha256=w0XuMcgcTvTUEi2iXcd6BGvyHKB-kpqbv9c9iK4pMOA,7490
56
+ autogluon/timeseries/models/local/npts.py,sha256=G0haMQTSW7DnWGfWUwc-si2P5Azup5u45r3uZHS8IRo,4200
57
+ autogluon/timeseries/models/local/statsforecast.py,sha256=gt9evIxlymisBlBZU7aRFtZQ3mgyX7a0xtmvFyKRXK4,33275
58
+ autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
59
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=bv8_ux-7JXPwhbFXeBN893xQo6echCCMwqH4aEMK250,12937
60
+ autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
61
+ autogluon/timeseries/models/toto/dataloader.py,sha256=wUrK3mcSEhaWmxpv3rAqmp1ZbLnXbEP4F77hAT2-VXg,3566
62
+ autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=6xr3sO3PsCknA3POy7bInjmchEeqr_evSKeIyhMb4zw,4749
63
+ autogluon/timeseries/models/toto/model.py,sha256=f3l36lOb12pNzQSfJ75_FydHkqqfcjk2wrG4hM5ajpE,8889
64
+ autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
65
+ autogluon/timeseries/models/toto/_internal/dataset.py,sha256=jpKX3LV4FkcGGgUPTzpwdR_7UZEFMfwXIQQZVkQ_I6E,6090
66
+ autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=HhRQwqC6Y_Gr93fT-EpilWFjjxY5zR9GsNPN2JPztN4,18479
67
+ autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
68
+ autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=ez7N8ygH4Q1gU88EuoSeF1675JcoAAxocvyF4i0JuGI,9347
69
+ autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=Vy2AHnbRrc68ax41KPf0IP3RkXA7GtTgzIXr6lSAp-w,10079
70
+ autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
71
+ autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
72
+ autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=UohCHvsOP2Q2g6IXDWXQsYpBZ0JDZ0JjtFq0ZnRCF6g,3389
73
+ autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py,sha256=TsdcUpQUQes4dtrWb6citENGrXK8hE3M8DyZ2kslEyE,11488
74
+ autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=NQno9Ycm2wf4tZJneoOtbbyZ-ez0Z5R37XJng9rPn_4,13694
75
+ autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=K7S-fPZZOl65luFMpPQ3LC2QuNN4SunTLDTxp-bZWUc,12364
76
+ autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
77
+ autogluon/timeseries/trainer/ensemble_composer.py,sha256=2Qn1EYCGKBtVBl1nerfWtT27MM9NYyvfmaeeL8pD1FY,19248
78
+ autogluon/timeseries/trainer/model_set_builder.py,sha256=kROApbu10_ro-GVYlnx3oTKZj2TcNswWbOFB1QyBCOc,10737
79
+ autogluon/timeseries/trainer/prediction_cache.py,sha256=KKs22UUGrVfQN_81IgzL7Bfc8tjWk3k6YW3uHURaSs0,5496
80
+ autogluon/timeseries/trainer/trainer.py,sha256=tlUEhcl3bzHid9Ya1Qod9gtm8M4bZWkFKoYAs08TP1o,56307
81
+ autogluon/timeseries/trainer/utils.py,sha256=7N4vRP6GFUlRAahxQ9PqppdIMFqMz3wpZ5u-_onR24M,588
82
+ autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
83
+ autogluon/timeseries/transforms/covariate_scaler.py,sha256=CpTtokiE1uEg_RJa4kEUUuBwXZpPL11OC2fgCkRpGlQ,6986
84
+ autogluon/timeseries/transforms/target_scaler.py,sha256=sAOohPBaStZx_V8aaaQacDbfEqqWRjYUtDLxdhkRKww,6092
85
+ autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
86
+ autogluon/timeseries/utils/constants.py,sha256=qjFWoouIQ5nJfx9Fmm4svN191ultb4XWW4NQSHeiGW4,542
87
+ autogluon/timeseries/utils/features.py,sha256=3dv_FkTqf01xUoes2kfKM-fMTVIb84jKiAq6NHFghC0,22677
88
+ autogluon/timeseries/utils/forecast.py,sha256=-w94i4DZaervXAZ_c1M7I4iLrPnVax8yC6pgv46bEjc,2228
89
+ autogluon/timeseries/utils/timer.py,sha256=qDROHYG_Z8fulMpyZMrRhfQoTneazTzYhur4qjqqydA,5799
90
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
91
+ autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
92
+ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
93
+ autogluon/timeseries/utils/datetime/lags.py,sha256=dijskkPDJXhXbRHGQZPhUFuEom3typKbOeET7cxkHGY,5965
94
+ autogluon/timeseries/utils/datetime/seasonality.py,sha256=-w3bULdkIZKP-JrO1ahHLyNCanLhejocHlasZShuwA0,802
95
+ autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
96
+ autogluon_timeseries-1.4.1b20251210.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
97
+ autogluon_timeseries-1.4.1b20251210.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
98
+ autogluon_timeseries-1.4.1b20251210.dist-info/METADATA,sha256=pqn6x9nopW95MEiiivuyZy8-Op_U5iOpJFxM014sCzg,13425
99
+ autogluon_timeseries-1.4.1b20251210.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
+ autogluon_timeseries-1.4.1b20251210.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
101
+ autogluon_timeseries-1.4.1b20251210.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
102
+ autogluon_timeseries-1.4.1b20251210.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
103
+ autogluon_timeseries-1.4.1b20251210.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,11 +0,0 @@
1
- """Preset configurations for autogluon.timeseries Predictors"""
2
-
3
- # TODO: change default HPO settings when other HPO strategies (e.g., Ray tune) are available
4
- # TODO: add refit_full arguments once refitting is available
5
-
6
- TIMESERIES_PRESETS_CONFIGS = dict(
7
- best_quality={"hyperparameters": "default", "num_val_windows": 2},
8
- high_quality={"hyperparameters": "default"},
9
- medium_quality={"hyperparameters": "light"},
10
- fast_training={"hyperparameters": "very_light"},
11
- )
@@ -1,6 +0,0 @@
1
- class TimeSeriesEvaluator:
2
- def __init__(self, *args, **kwargs):
3
- raise ValueError(
4
- "`TimeSeriesEvaluator` has been deprecated. "
5
- "Please use the metrics defined in `autogluon.timeseries.metrics` instead."
6
- )