autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260116__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/__init__.py +1 -0
- autogluon/tabular/configs/config_helper.py +18 -6
- autogluon/tabular/configs/feature_generator_presets.py +3 -1
- autogluon/tabular/configs/hyperparameter_configs.py +42 -9
- autogluon/tabular/configs/presets_configs.py +38 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
- autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- autogluon/tabular/learner/abstract_learner.py +160 -42
- autogluon/tabular/learner/default_learner.py +78 -22
- autogluon/tabular/models/__init__.py +2 -2
- autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
- autogluon/tabular/models/automm/automm_model.py +12 -3
- autogluon/tabular/models/automm/ft_transformer.py +5 -1
- autogluon/tabular/models/catboost/callbacks.py +2 -2
- autogluon/tabular/models/catboost/catboost_model.py +93 -29
- autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- autogluon/tabular/models/ebm/ebm_model.py +8 -13
- autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- autogluon/tabular/models/fastainn/callbacks.py +20 -3
- autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
- autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- autogluon/tabular/models/knn/knn_model.py +41 -8
- autogluon/tabular/models/lgb/callbacks.py +32 -9
- autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- autogluon/tabular/models/lgb/lgb_model.py +150 -34
- autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
- autogluon/tabular/models/lr/lr_model.py +40 -10
- autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
- autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- autogluon/tabular/models/mitra/mitra_model.py +16 -11
- autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
- autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- autogluon/tabular/models/rf/rf_model.py +45 -12
- autogluon/tabular/models/rf/rf_quantile.py +4 -2
- autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
- autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
- autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- autogluon/tabular/models/tabm/tabm_model.py +8 -4
- autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
- autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
- autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
- autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
- autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
- autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
- autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
- autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- autogluon/tabular/models/xgboost/callbacks.py +9 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
- autogluon/tabular/models/xt/xt_model.py +1 -0
- autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- autogluon/tabular/predictor/predictor.py +409 -128
- autogluon/tabular/registry/__init__.py +1 -1
- autogluon/tabular/registry/_ag_model_registry.py +4 -5
- autogluon/tabular/registry/_model_registry.py +1 -0
- autogluon/tabular/testing/fit_helper.py +55 -15
- autogluon/tabular/testing/generate_datasets.py +1 -1
- autogluon/tabular/testing/model_fit_helper.py +10 -4
- autogluon/tabular/trainer/abstract_trainer.py +644 -230
- autogluon/tabular/trainer/auto_trainer.py +19 -8
- autogluon/tabular/trainer/model_presets/presets.py +33 -9
- autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/METADATA +26 -26
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/RECORD +127 -135
- autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
- /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260116-py3.11-nspkg.pth +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/WHEEL +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/licenses/LICENSE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/licenses/NOTICE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/top_level.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/zip-safe +0 -0
|
@@ -1,2 +1,775 @@
|
|
|
1
1
|
# On par with `best_quality` while being much faster for smaller datasets. Runs on CPU.
|
|
2
|
-
hyperparameter_portfolio_zeroshot_cpu_2025_12_18 = {'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -1}}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -17}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r47', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9918048278435, 'bagging_freq': 1, 'cat_l2': 0.984162386723, 'cat_smooth': 0.0049687445294, 'extra_trees': True, 'feature_fraction': 0.4974006116018, 'lambda_l1': 0.7970644065518, 'lambda_l2': 1.2179933810825, 'learning_rate': 0.0537072755122, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 1, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r1', 'priority': -19}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8836335684032, 'bagging_freq': 1, 'cat_l2': 0.6608043016307, 'cat_smooth': 0.0451936212097, 'extra_trees': True, 'feature_fraction': 0.6189315903408, 'lambda_l1': 0.6514130054123, 'lambda_l2': 1.7382678663835, 'learning_rate': 0.0412716109215, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 9, 'min_data_per_group': 3, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r19', 'priority': -26}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7106002663401, 'bagging_freq': 1, 'cat_l2': 0.1559746777257, 'cat_smooth': 0.0036366126697, 'extra_trees': False, 'feature_fraction': 0.688233104808, 'lambda_l1': 0.8732887427372, 'lambda_l2': 0.446716114323, 'learning_rate': 0.0815946452855, 'max_cat_to_onehot': 78, 'min_data_in_leaf': 12, 'min_data_per_group': 2, 'num_leaves': 16}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r34', 'priority': -32}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8453534561545, 'bagging_freq': 1, 'cat_l2': 0.0321580936847, 'cat_smooth': 0.0011470238114, 'extra_trees': True, 'feature_fraction': 0.8611499511087, 'lambda_l1': 0.910743969343, 'lambda_l2': 1.2750027607225, 'learning_rate': 0.0151455176168, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 60, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r32', 'priority': -37}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.927947070297, 'bagging_freq': 1, 'cat_l2': 0.0082294539727, 'cat_smooth': 0.0671878797989, 'extra_trees': True, 'feature_fraction': 0.9169657691675, 'lambda_l1': 0.9386485912678, 'lambda_l2': 1.619775689786, 'learning_rate': 0.0056864355547, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r7', 'priority': -38}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8984634022103, 'bagging_freq': 1, 'cat_l2': 0.0053608956358, 'cat_smooth': 89.7168790664636, 'extra_trees': False, 'feature_fraction': 0.847638045482, 'lambda_l1': 0.5684527742857, 'lambda_l2': 1.0738026980295, 'learning_rate': 0.0417108779005, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 2, 'min_data_per_group': 7, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r14', 'priority': -40}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9318953983366, 'bagging_freq': 1, 'cat_l2': 0.065532200068, 'cat_smooth': 0.0696287198368, 'extra_trees': True, 'feature_fraction': 0.4649868965096, 'lambda_l1': 0.6586569196642, 'lambda_l2': 1.7799375779553, 'learning_rate': 0.072046289471, 'max_cat_to_onehot': 72, 'min_data_in_leaf': 26, 'min_data_per_group': 32, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r27', 'priority': -42}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.811983527375, 'bagging_freq': 1, 'cat_l2': 0.0255048028385, 'cat_smooth': 1.5339379274002, 'extra_trees': True, 'feature_fraction': 0.5246746068724, 'lambda_l1': 0.9737915306165, 'lambda_l2': 1.929596568261, 'learning_rate': 0.0172284745143, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 8, 'min_data_per_group': 51, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r37', 'priority': -46}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7853761603489, 'bagging_freq': 1, 'cat_l2': 0.2934796127084, 'cat_smooth': 10.1721684646257, 'extra_trees': False, 'feature_fraction': 0.4813265290277, 'lambda_l1': 0.9744837697365, 'lambda_l2': 0.6058665958153, 'learning_rate': 0.0371000014124, 'max_cat_to_onehot': 85, 'min_data_in_leaf': 22, 'min_data_per_group': 3, 'num_leaves': 32}], 'GBM': [{'ag_args': {'name_suffix': '_r177', 'priority': -3}, 'bagging_fraction': 0.8769107816033, 'bagging_freq': 1, 'cat_l2': 0.3418014393813, 'cat_smooth': 15.4304556649114, 'extra_trees': True, 'feature_fraction': 0.4622189821941, 'lambda_l1': 0.2375070586896, 'lambda_l2': 0.3551561351804, 'learning_rate': 0.0178593900218, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 3, 'min_data_per_group': 9, 'num_leaves': 39}, {'ag_args': {'name_suffix': '_r163', 'priority': -5}, 'bagging_fraction': 0.9783898288461, 'bagging_freq': 1, 'cat_l2': 0.1553395260142, 'cat_smooth': 0.0093122749318, 'extra_trees': False, 'feature_fraction': 0.5279825611461, 'lambda_l1': 0.0269274915833, 'lambda_l2': 0.8375250972309, 'learning_rate': 0.0113913650333, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 3, 'min_data_per_group': 75, 'num_leaves': 84}, {'ag_args': {'name_suffix': '_r72', 'priority': -8}, 'bagging_fraction': 0.950146543918, 'bagging_freq': 1, 'cat_l2': 0.2159137242663, 'cat_smooth': 0.0638204395719, 'extra_trees': True, 'feature_fraction': 0.4044759649281, 'lambda_l1': 0.7661581500422, 'lambda_l2': 1.6041759693902, 'learning_rate': 0.0179845918984, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 12, 'min_data_per_group': 3, 'num_leaves': 180}, {'ag_args': {'name_suffix': '_r120', 'priority': -13}, 'bagging_fraction': 0.8541333332514, 'bagging_freq': 1, 'cat_l2': 0.0110343197541, 'cat_smooth': 5.0905236124522, 'extra_trees': True, 'feature_fraction': 0.7334718346252, 'lambda_l1': 0.241338427726, 'lambda_l2': 0.298107723769, 'learning_rate': 0.0126654490778, 'max_cat_to_onehot': 67, 'min_data_in_leaf': 12, 'min_data_per_group': 93, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r6', 'priority': -16}, 'bagging_fraction': 0.8148132107231, 'bagging_freq': 1, 'cat_l2': 0.0058363329714, 'cat_smooth': 0.0289414318324, 'extra_trees': False, 'feature_fraction': 0.939979116902, 'lambda_l1': 0.4369494828584, 'lambda_l2': 0.2997524486083, 'learning_rate': 0.0078971749764, 'max_cat_to_onehot': 28, 'min_data_in_leaf': 24, 'min_data_per_group': 3, 'num_leaves': 8}, {'ag_args': {'name_suffix': '_r184', 'priority': -21}, 'bagging_fraction': 0.8406256713136, 'bagging_freq': 1, 'cat_l2': 0.9284921901786, 'cat_smooth': 0.0898191451684, 'extra_trees': False, 'feature_fraction': 0.5876132298377, 'lambda_l1': 0.078943697912, 'lambda_l2': 0.7713118402478, 'learning_rate': 0.0090676429159, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 17, 'min_data_per_group': 11, 'num_leaves': 2}, {'ag_args': {'name_suffix': '_r46', 'priority': -23}, 'bagging_fraction': 0.999426150416, 'bagging_freq': 1, 'cat_l2': 0.0076879104679, 'cat_smooth': 89.4599055435924, 'extra_trees': False, 'feature_fraction': 0.8588138897928, 'lambda_l1': 0.0413597548025, 'lambda_l2': 0.2258713386858, 'learning_rate': 0.0074056102479, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 26, 'num_leaves': 14}, {'ag_args': {'name_suffix': '_r68', 'priority': -24}, 'bagging_fraction': 0.7199080522958, 'bagging_freq': 1, 'cat_l2': 0.9369509319667, 'cat_smooth': 11.0984745216942, 'extra_trees': False, 'feature_fraction': 0.9550596478029, 'lambda_l1': 0.1109843723892, 'lambda_l2': 0.5969094177111, 'learning_rate': 0.0079480499426, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 3, 'min_data_per_group': 8, 'num_leaves': 111}, {'ag_args': {'name_suffix': '_r47', 'priority': -29}, 'bagging_fraction': 0.8831228358892, 'bagging_freq': 1, 'cat_l2': 0.1402622388062, 'cat_smooth': 3.3545774392409, 'extra_trees': True, 'feature_fraction': 0.6155890374887, 'lambda_l1': 0.1749502746898, 'lambda_l2': 0.8761391715812, 'learning_rate': 0.00891978331, 'max_cat_to_onehot': 84, 'min_data_in_leaf': 1, 'min_data_per_group': 21, 'num_leaves': 55}, {'ag_args': {'name_suffix': '_r63', 'priority': -31}, 'bagging_fraction': 0.7801003412553, 'bagging_freq': 1, 'cat_l2': 0.0071438335269, 'cat_smooth': 0.1338043459574, 'extra_trees': False, 'feature_fraction': 0.490455360592, 'lambda_l1': 0.6420805635778, 'lambda_l2': 0.5813319300456, 'learning_rate': 0.0308746408751, 'max_cat_to_onehot': 38, 'min_data_in_leaf': 1, 'min_data_per_group': 83, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r39', 'priority': -36}, 'bagging_fraction': 0.7035743460186, 'bagging_freq': 1, 'cat_l2': 0.0134845084619, 'cat_smooth': 56.4934757686511, 'extra_trees': True, 'feature_fraction': 0.7824899527144, 'lambda_l1': 0.3700115211248, 'lambda_l2': 0.0341499593689, 'learning_rate': 0.094652390088, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 13, 'min_data_per_group': 4, 'num_leaves': 23}, {'ag_args': {'name_suffix': '_r18', 'priority': -43}, 'bagging_fraction': 0.7041134150362, 'bagging_freq': 1, 'cat_l2': 0.1139031650222, 'cat_smooth': 41.8937939300815, 'extra_trees': True, 'feature_fraction': 0.5028791565785, 'lambda_l1': 0.1031941284118, 'lambda_l2': 1.2554010747358, 'learning_rate': 0.0186530122901, 'max_cat_to_onehot': 29, 'min_data_in_leaf': 5, 'min_data_per_group': 74, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r50', 'priority': -45}, 'bagging_fraction': 0.9673434664048, 'bagging_freq': 1, 'cat_l2': 1.7662226703416, 'cat_smooth': 0.0097667848046, 'extra_trees': True, 'feature_fraction': 0.9286299570284, 'lambda_l1': 0.0448644389135, 'lambda_l2': 1.7322446850205, 'learning_rate': 0.0507909494543, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 4, 'min_data_per_group': 2, 'num_leaves': 106}, {'ag_args': {'name_suffix': '_r104', 'priority': -48}, 'bagging_fraction': 0.9327643671568, 'bagging_freq': 1, 'cat_l2': 0.0067636494662, 'cat_smooth': 29.2351010915576, 'extra_trees': False, 'feature_fraction': 0.660864035482, 'lambda_l1': 0.556745328417, 'lambda_l2': 1.2717605868201, 'learning_rate': 0.0433336000175, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 18, 'min_data_per_group': 6, 'num_leaves': 19}], 'NN_TORCH': [{'activation': 'elu', 'ag_args': {'name_suffix': '_r37', 'priority': -4}, 'dropout_prob': 0.0889772897547275, 'hidden_size': 109, 'learning_rate': 0.02184363543226557, 'num_layers': 3, 'use_batchnorm': True, 'weight_decay': 3.1736637236578543e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r31', 'priority': -9}, 'dropout_prob': 0.013288954106470907, 'hidden_size': 81, 'learning_rate': 0.005340914647396153, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 8.76216837077536e-05}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r193', 'priority': -14}, 'dropout_prob': 0.2976404923811552, 'hidden_size': 131, 'learning_rate': 0.0038408014156739775, 'num_layers': 3, 'use_batchnorm': False, 'weight_decay': 0.01745189206113213}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r144', 'priority': -15}, 'dropout_prob': 0.2670859555485912, 'hidden_size': 52, 'learning_rate': 0.015189605588375421, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 2.8013784883244263e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r82', 'priority': -22}, 'dropout_prob': 0.27342918414623907, 'hidden_size': 207, 'learning_rate': 0.0004069380929899853, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.002473667327700422}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r39', 'priority': -27}, 'dropout_prob': 0.21699951000415899, 'hidden_size': 182, 'learning_rate': 0.00014675249427915203, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 9.787353852692089e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r1', 'priority': -30}, 'dropout_prob': 0.23713784729000734, 'hidden_size': 200, 'learning_rate': 0.0031125617090901805, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 4.57301675647447e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r48', 'priority': -34}, 'dropout_prob': 0.14224509513998226, 'hidden_size': 26, 'learning_rate': 0.007085904739869829, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 2.465786211798467e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r135', 'priority': -39}, 'dropout_prob': 0.06134755114373829, 'hidden_size': 144, 'learning_rate': 0.005834535148903802, 'num_layers': 5, 'use_batchnorm': True, 'weight_decay': 2.0826540090463376e-09}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r24', 'priority': -49}, 'dropout_prob': 0.257596079691855, 'hidden_size': 168, 'learning_rate': 0.0034108596383714608, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 1.4840689603685264e-07}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r159', 'priority': -50}, 'dropout_prob': 0.16724368469920037, 'hidden_size': 44, 'learning_rate': 0.011043937174833164, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.007265742373924609}], 'FASTAI': [{'ag_args': {'name_suffix': '_r25', 'priority': -6}, 'bs': 1024, 'emb_drop': 0.6167722379778131, 'epochs': 44, 'layers': [200, 100, 50], 'lr': 0.05344037785562929, 'ps': 0.48477211305443607}, {'ag_args': {'name_suffix': '_r162', 'priority': -11}, 'bs': 2048, 'emb_drop': 0.5474625640581479, 'epochs': 45, 'layers': [400, 200], 'lr': 0.0047438648957706655, 'ps': 0.07533239360470734}, {'ag_args': {'name_suffix': '_r147', 'priority': -20}, 'bs': 128, 'emb_drop': 0.6378380130337095, 'epochs': 48, 'layers': [200], 'lr': 0.058027179860229344, 'ps': 0.23253362133888375}, {'ag_args': {'name_suffix': '_r192', 'priority': -25}, 'bs': 1024, 'emb_drop': 0.0698130630643278, 'epochs': 37, 'layers': [400, 200], 'lr': 0.0018949411343821322, 'ps': 0.6526067160491229}, {'ag_args': {'name_suffix': '_r109', 'priority': -28}, 'bs': 128, 'emb_drop': 0.1978897556618756, 'epochs': 49, 'layers': [400, 200, 100], 'lr': 0.02155144303508465, 'ps': 0.005518872455908264}, {'ag_args': {'name_suffix': '_r78', 'priority': -33}, 'bs': 512, 'emb_drop': 0.4897354379753617, 'epochs': 26, 'layers': [400, 200, 100], 'lr': 0.027563880686468895, 'ps': 0.44524273881299886}, {'ag_args': {'name_suffix': '_r150', 'priority': -35}, 'bs': 2048, 'emb_drop': 0.6148607467659958, 'epochs': 27, 'layers': [400, 200], 'lr': 0.09351668652547614, 'ps': 0.5314977162016676}, {'ag_args': {'name_suffix': '_r133', 'priority': -41}, 'bs': 256, 'emb_drop': 0.6242606757570891, 'epochs': 43, 'layers': [200, 100, 50], 'lr': 0.001533613235987637, 'ps': 0.5354961132962562}, {'ag_args': {'name_suffix': '_r99', 'priority': -44}, 'bs': 512, 'emb_drop': 0.6071025838237253, 'epochs': 49, 'layers': [400, 200], 'lr': 0.02669945959641021, 'ps': 0.4897025421573259}, {'ag_args': {'name_suffix': '_r197', 'priority': -47}, 'bs': 256, 'emb_drop': 0.5277230463737563, 'epochs': 45, 'layers': [400, 200], 'lr': 0.006908743712130657, 'ps': 0.08262909528632323}]}
|
|
2
|
+
hyperparameter_portfolio_zeroshot_cpu_2025_12_18 = {
|
|
3
|
+
"CAT": [{"ag_args": {"name_suffix": "_c1", "priority": -1}}],
|
|
4
|
+
"GBM_PREP": [
|
|
5
|
+
{
|
|
6
|
+
"ag.prep_params": [
|
|
7
|
+
[
|
|
8
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
9
|
+
[
|
|
10
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
11
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
12
|
+
],
|
|
13
|
+
]
|
|
14
|
+
],
|
|
15
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
16
|
+
"ag_args": {"name_suffix": "_r13", "priority": -2},
|
|
17
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
18
|
+
"bagging_fraction": 0.9923026236907,
|
|
19
|
+
"bagging_freq": 1,
|
|
20
|
+
"cat_l2": 0.014290368488,
|
|
21
|
+
"cat_smooth": 1.8662939903973,
|
|
22
|
+
"extra_trees": True,
|
|
23
|
+
"feature_fraction": 0.5533919718605,
|
|
24
|
+
"lambda_l1": 0.914411672958,
|
|
25
|
+
"lambda_l2": 1.90439560009,
|
|
26
|
+
"learning_rate": 0.0193225778401,
|
|
27
|
+
"max_cat_to_onehot": 18,
|
|
28
|
+
"min_data_in_leaf": 28,
|
|
29
|
+
"min_data_per_group": 54,
|
|
30
|
+
"num_leaves": 64,
|
|
31
|
+
},
|
|
32
|
+
{
|
|
33
|
+
"ag.prep_params": [
|
|
34
|
+
[
|
|
35
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
36
|
+
[
|
|
37
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
38
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
39
|
+
],
|
|
40
|
+
]
|
|
41
|
+
],
|
|
42
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
43
|
+
"ag_args": {"name_suffix": "_r41", "priority": -7},
|
|
44
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
45
|
+
"bagging_fraction": 0.7215411996558,
|
|
46
|
+
"bagging_freq": 1,
|
|
47
|
+
"cat_l2": 1.887369154362,
|
|
48
|
+
"cat_smooth": 0.0278693980873,
|
|
49
|
+
"extra_trees": True,
|
|
50
|
+
"feature_fraction": 0.4247583287144,
|
|
51
|
+
"lambda_l1": 0.1129800247772,
|
|
52
|
+
"lambda_l2": 0.2623265718536,
|
|
53
|
+
"learning_rate": 0.0074201920651,
|
|
54
|
+
"max_cat_to_onehot": 9,
|
|
55
|
+
"min_data_in_leaf": 15,
|
|
56
|
+
"min_data_per_group": 10,
|
|
57
|
+
"num_leaves": 8,
|
|
58
|
+
},
|
|
59
|
+
{
|
|
60
|
+
"ag.prep_params": [
|
|
61
|
+
[
|
|
62
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
63
|
+
[
|
|
64
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
65
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
66
|
+
],
|
|
67
|
+
]
|
|
68
|
+
],
|
|
69
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
70
|
+
"ag_args": {"name_suffix": "_r31", "priority": -10},
|
|
71
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
72
|
+
"bagging_fraction": 0.9591526242875,
|
|
73
|
+
"bagging_freq": 1,
|
|
74
|
+
"cat_l2": 1.8962346412823,
|
|
75
|
+
"cat_smooth": 0.0215219089995,
|
|
76
|
+
"extra_trees": False,
|
|
77
|
+
"feature_fraction": 0.5791844062459,
|
|
78
|
+
"lambda_l1": 0.938461750637,
|
|
79
|
+
"lambda_l2": 0.9899852075056,
|
|
80
|
+
"learning_rate": 0.0397613094741,
|
|
81
|
+
"max_cat_to_onehot": 27,
|
|
82
|
+
"min_data_in_leaf": 1,
|
|
83
|
+
"min_data_per_group": 39,
|
|
84
|
+
"num_leaves": 16,
|
|
85
|
+
},
|
|
86
|
+
{
|
|
87
|
+
"ag.prep_params": [],
|
|
88
|
+
"ag_args": {"name_suffix": "_r21", "priority": -12},
|
|
89
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
90
|
+
"bagging_fraction": 0.7111549514262,
|
|
91
|
+
"bagging_freq": 1,
|
|
92
|
+
"cat_l2": 0.8679131150136,
|
|
93
|
+
"cat_smooth": 48.7244965504817,
|
|
94
|
+
"extra_trees": False,
|
|
95
|
+
"feature_fraction": 0.425140839263,
|
|
96
|
+
"lambda_l1": 0.5140528525242,
|
|
97
|
+
"lambda_l2": 0.5134051978198,
|
|
98
|
+
"learning_rate": 0.0134375321277,
|
|
99
|
+
"max_cat_to_onehot": 16,
|
|
100
|
+
"min_data_in_leaf": 2,
|
|
101
|
+
"min_data_per_group": 32,
|
|
102
|
+
"num_leaves": 20,
|
|
103
|
+
},
|
|
104
|
+
{
|
|
105
|
+
"ag.prep_params": [
|
|
106
|
+
[
|
|
107
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
108
|
+
[
|
|
109
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
110
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
111
|
+
],
|
|
112
|
+
]
|
|
113
|
+
],
|
|
114
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
115
|
+
"ag_args": {"name_suffix": "_r17", "priority": -17},
|
|
116
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
117
|
+
"bagging_fraction": 0.9277474245702,
|
|
118
|
+
"bagging_freq": 1,
|
|
119
|
+
"cat_l2": 0.0731876168104,
|
|
120
|
+
"cat_smooth": 0.1369210915339,
|
|
121
|
+
"extra_trees": False,
|
|
122
|
+
"feature_fraction": 0.6680440910385,
|
|
123
|
+
"lambda_l1": 0.0125057410295,
|
|
124
|
+
"lambda_l2": 0.7157181359874,
|
|
125
|
+
"learning_rate": 0.0351342879995,
|
|
126
|
+
"max_cat_to_onehot": 20,
|
|
127
|
+
"min_data_in_leaf": 1,
|
|
128
|
+
"min_data_per_group": 2,
|
|
129
|
+
"num_leaves": 64,
|
|
130
|
+
},
|
|
131
|
+
{
|
|
132
|
+
"ag.prep_params": [[[["ArithmeticFeatureGenerator", {}]]]],
|
|
133
|
+
"ag_args": {"name_suffix": "_r47", "priority": -18},
|
|
134
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
135
|
+
"bagging_fraction": 0.9918048278435,
|
|
136
|
+
"bagging_freq": 1,
|
|
137
|
+
"cat_l2": 0.984162386723,
|
|
138
|
+
"cat_smooth": 0.0049687445294,
|
|
139
|
+
"extra_trees": True,
|
|
140
|
+
"feature_fraction": 0.4974006116018,
|
|
141
|
+
"lambda_l1": 0.7970644065518,
|
|
142
|
+
"lambda_l2": 1.2179933810825,
|
|
143
|
+
"learning_rate": 0.0537072755122,
|
|
144
|
+
"max_cat_to_onehot": 13,
|
|
145
|
+
"min_data_in_leaf": 1,
|
|
146
|
+
"min_data_per_group": 4,
|
|
147
|
+
"num_leaves": 32,
|
|
148
|
+
},
|
|
149
|
+
{
|
|
150
|
+
"ag.prep_params": [
|
|
151
|
+
[
|
|
152
|
+
[
|
|
153
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
154
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
155
|
+
]
|
|
156
|
+
]
|
|
157
|
+
],
|
|
158
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
159
|
+
"ag_args": {"name_suffix": "_r1", "priority": -19},
|
|
160
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
161
|
+
"bagging_fraction": 0.8836335684032,
|
|
162
|
+
"bagging_freq": 1,
|
|
163
|
+
"cat_l2": 0.6608043016307,
|
|
164
|
+
"cat_smooth": 0.0451936212097,
|
|
165
|
+
"extra_trees": True,
|
|
166
|
+
"feature_fraction": 0.6189315903408,
|
|
167
|
+
"lambda_l1": 0.6514130054123,
|
|
168
|
+
"lambda_l2": 1.7382678663835,
|
|
169
|
+
"learning_rate": 0.0412716109215,
|
|
170
|
+
"max_cat_to_onehot": 9,
|
|
171
|
+
"min_data_in_leaf": 9,
|
|
172
|
+
"min_data_per_group": 3,
|
|
173
|
+
"num_leaves": 128,
|
|
174
|
+
},
|
|
175
|
+
{
|
|
176
|
+
"ag.prep_params": [
|
|
177
|
+
[
|
|
178
|
+
[
|
|
179
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
180
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
181
|
+
]
|
|
182
|
+
]
|
|
183
|
+
],
|
|
184
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
185
|
+
"ag_args": {"name_suffix": "_r19", "priority": -26},
|
|
186
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
187
|
+
"bagging_fraction": 0.7106002663401,
|
|
188
|
+
"bagging_freq": 1,
|
|
189
|
+
"cat_l2": 0.1559746777257,
|
|
190
|
+
"cat_smooth": 0.0036366126697,
|
|
191
|
+
"extra_trees": False,
|
|
192
|
+
"feature_fraction": 0.688233104808,
|
|
193
|
+
"lambda_l1": 0.8732887427372,
|
|
194
|
+
"lambda_l2": 0.446716114323,
|
|
195
|
+
"learning_rate": 0.0815946452855,
|
|
196
|
+
"max_cat_to_onehot": 78,
|
|
197
|
+
"min_data_in_leaf": 12,
|
|
198
|
+
"min_data_per_group": 2,
|
|
199
|
+
"num_leaves": 16,
|
|
200
|
+
},
|
|
201
|
+
{
|
|
202
|
+
"ag.prep_params": [
|
|
203
|
+
[
|
|
204
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
205
|
+
[
|
|
206
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
207
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
208
|
+
],
|
|
209
|
+
]
|
|
210
|
+
],
|
|
211
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
212
|
+
"ag_args": {"name_suffix": "_r34", "priority": -32},
|
|
213
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
214
|
+
"bagging_fraction": 0.8453534561545,
|
|
215
|
+
"bagging_freq": 1,
|
|
216
|
+
"cat_l2": 0.0321580936847,
|
|
217
|
+
"cat_smooth": 0.0011470238114,
|
|
218
|
+
"extra_trees": True,
|
|
219
|
+
"feature_fraction": 0.8611499511087,
|
|
220
|
+
"lambda_l1": 0.910743969343,
|
|
221
|
+
"lambda_l2": 1.2750027607225,
|
|
222
|
+
"learning_rate": 0.0151455176168,
|
|
223
|
+
"max_cat_to_onehot": 8,
|
|
224
|
+
"min_data_in_leaf": 60,
|
|
225
|
+
"min_data_per_group": 4,
|
|
226
|
+
"num_leaves": 32,
|
|
227
|
+
},
|
|
228
|
+
{
|
|
229
|
+
"ag.prep_params": [
|
|
230
|
+
[
|
|
231
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
232
|
+
[
|
|
233
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
234
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
235
|
+
],
|
|
236
|
+
]
|
|
237
|
+
],
|
|
238
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
239
|
+
"ag_args": {"name_suffix": "_r32", "priority": -37},
|
|
240
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
241
|
+
"bagging_fraction": 0.927947070297,
|
|
242
|
+
"bagging_freq": 1,
|
|
243
|
+
"cat_l2": 0.0082294539727,
|
|
244
|
+
"cat_smooth": 0.0671878797989,
|
|
245
|
+
"extra_trees": True,
|
|
246
|
+
"feature_fraction": 0.9169657691675,
|
|
247
|
+
"lambda_l1": 0.9386485912678,
|
|
248
|
+
"lambda_l2": 1.619775689786,
|
|
249
|
+
"learning_rate": 0.0056864355547,
|
|
250
|
+
"max_cat_to_onehot": 11,
|
|
251
|
+
"min_data_in_leaf": 1,
|
|
252
|
+
"min_data_per_group": 10,
|
|
253
|
+
"num_leaves": 32,
|
|
254
|
+
},
|
|
255
|
+
{
|
|
256
|
+
"ag.prep_params": [
|
|
257
|
+
[
|
|
258
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
259
|
+
[
|
|
260
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
261
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
262
|
+
],
|
|
263
|
+
]
|
|
264
|
+
],
|
|
265
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
266
|
+
"ag_args": {"name_suffix": "_r7", "priority": -38},
|
|
267
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
268
|
+
"bagging_fraction": 0.8984634022103,
|
|
269
|
+
"bagging_freq": 1,
|
|
270
|
+
"cat_l2": 0.0053608956358,
|
|
271
|
+
"cat_smooth": 89.7168790664636,
|
|
272
|
+
"extra_trees": False,
|
|
273
|
+
"feature_fraction": 0.847638045482,
|
|
274
|
+
"lambda_l1": 0.5684527742857,
|
|
275
|
+
"lambda_l2": 1.0738026980295,
|
|
276
|
+
"learning_rate": 0.0417108779005,
|
|
277
|
+
"max_cat_to_onehot": 8,
|
|
278
|
+
"min_data_in_leaf": 2,
|
|
279
|
+
"min_data_per_group": 7,
|
|
280
|
+
"num_leaves": 128,
|
|
281
|
+
},
|
|
282
|
+
{
|
|
283
|
+
"ag.prep_params": [
|
|
284
|
+
[
|
|
285
|
+
[
|
|
286
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
287
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
288
|
+
]
|
|
289
|
+
]
|
|
290
|
+
],
|
|
291
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
292
|
+
"ag_args": {"name_suffix": "_r14", "priority": -40},
|
|
293
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
294
|
+
"bagging_fraction": 0.9318953983366,
|
|
295
|
+
"bagging_freq": 1,
|
|
296
|
+
"cat_l2": 0.065532200068,
|
|
297
|
+
"cat_smooth": 0.0696287198368,
|
|
298
|
+
"extra_trees": True,
|
|
299
|
+
"feature_fraction": 0.4649868965096,
|
|
300
|
+
"lambda_l1": 0.6586569196642,
|
|
301
|
+
"lambda_l2": 1.7799375779553,
|
|
302
|
+
"learning_rate": 0.072046289471,
|
|
303
|
+
"max_cat_to_onehot": 72,
|
|
304
|
+
"min_data_in_leaf": 26,
|
|
305
|
+
"min_data_per_group": 32,
|
|
306
|
+
"num_leaves": 32,
|
|
307
|
+
},
|
|
308
|
+
{
|
|
309
|
+
"ag.prep_params": [[[["ArithmeticFeatureGenerator", {}]]]],
|
|
310
|
+
"ag_args": {"name_suffix": "_r27", "priority": -42},
|
|
311
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
312
|
+
"bagging_fraction": 0.811983527375,
|
|
313
|
+
"bagging_freq": 1,
|
|
314
|
+
"cat_l2": 0.0255048028385,
|
|
315
|
+
"cat_smooth": 1.5339379274002,
|
|
316
|
+
"extra_trees": True,
|
|
317
|
+
"feature_fraction": 0.5246746068724,
|
|
318
|
+
"lambda_l1": 0.9737915306165,
|
|
319
|
+
"lambda_l2": 1.929596568261,
|
|
320
|
+
"learning_rate": 0.0172284745143,
|
|
321
|
+
"max_cat_to_onehot": 9,
|
|
322
|
+
"min_data_in_leaf": 8,
|
|
323
|
+
"min_data_per_group": 51,
|
|
324
|
+
"num_leaves": 20,
|
|
325
|
+
},
|
|
326
|
+
{
|
|
327
|
+
"ag.prep_params": [[[["ArithmeticFeatureGenerator", {}]]]],
|
|
328
|
+
"ag_args": {"name_suffix": "_r37", "priority": -46},
|
|
329
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
330
|
+
"bagging_fraction": 0.7853761603489,
|
|
331
|
+
"bagging_freq": 1,
|
|
332
|
+
"cat_l2": 0.2934796127084,
|
|
333
|
+
"cat_smooth": 10.1721684646257,
|
|
334
|
+
"extra_trees": False,
|
|
335
|
+
"feature_fraction": 0.4813265290277,
|
|
336
|
+
"lambda_l1": 0.9744837697365,
|
|
337
|
+
"lambda_l2": 0.6058665958153,
|
|
338
|
+
"learning_rate": 0.0371000014124,
|
|
339
|
+
"max_cat_to_onehot": 85,
|
|
340
|
+
"min_data_in_leaf": 22,
|
|
341
|
+
"min_data_per_group": 3,
|
|
342
|
+
"num_leaves": 32,
|
|
343
|
+
},
|
|
344
|
+
],
|
|
345
|
+
"GBM": [
|
|
346
|
+
{
|
|
347
|
+
"ag_args": {"name_suffix": "_r177", "priority": -3},
|
|
348
|
+
"bagging_fraction": 0.8769107816033,
|
|
349
|
+
"bagging_freq": 1,
|
|
350
|
+
"cat_l2": 0.3418014393813,
|
|
351
|
+
"cat_smooth": 15.4304556649114,
|
|
352
|
+
"extra_trees": True,
|
|
353
|
+
"feature_fraction": 0.4622189821941,
|
|
354
|
+
"lambda_l1": 0.2375070586896,
|
|
355
|
+
"lambda_l2": 0.3551561351804,
|
|
356
|
+
"learning_rate": 0.0178593900218,
|
|
357
|
+
"max_cat_to_onehot": 16,
|
|
358
|
+
"min_data_in_leaf": 3,
|
|
359
|
+
"min_data_per_group": 9,
|
|
360
|
+
"num_leaves": 39,
|
|
361
|
+
},
|
|
362
|
+
{
|
|
363
|
+
"ag_args": {"name_suffix": "_r163", "priority": -5},
|
|
364
|
+
"bagging_fraction": 0.9783898288461,
|
|
365
|
+
"bagging_freq": 1,
|
|
366
|
+
"cat_l2": 0.1553395260142,
|
|
367
|
+
"cat_smooth": 0.0093122749318,
|
|
368
|
+
"extra_trees": False,
|
|
369
|
+
"feature_fraction": 0.5279825611461,
|
|
370
|
+
"lambda_l1": 0.0269274915833,
|
|
371
|
+
"lambda_l2": 0.8375250972309,
|
|
372
|
+
"learning_rate": 0.0113913650333,
|
|
373
|
+
"max_cat_to_onehot": 42,
|
|
374
|
+
"min_data_in_leaf": 3,
|
|
375
|
+
"min_data_per_group": 75,
|
|
376
|
+
"num_leaves": 84,
|
|
377
|
+
},
|
|
378
|
+
{
|
|
379
|
+
"ag_args": {"name_suffix": "_r72", "priority": -8},
|
|
380
|
+
"bagging_fraction": 0.950146543918,
|
|
381
|
+
"bagging_freq": 1,
|
|
382
|
+
"cat_l2": 0.2159137242663,
|
|
383
|
+
"cat_smooth": 0.0638204395719,
|
|
384
|
+
"extra_trees": True,
|
|
385
|
+
"feature_fraction": 0.4044759649281,
|
|
386
|
+
"lambda_l1": 0.7661581500422,
|
|
387
|
+
"lambda_l2": 1.6041759693902,
|
|
388
|
+
"learning_rate": 0.0179845918984,
|
|
389
|
+
"max_cat_to_onehot": 11,
|
|
390
|
+
"min_data_in_leaf": 12,
|
|
391
|
+
"min_data_per_group": 3,
|
|
392
|
+
"num_leaves": 180,
|
|
393
|
+
},
|
|
394
|
+
{
|
|
395
|
+
"ag_args": {"name_suffix": "_r120", "priority": -13},
|
|
396
|
+
"bagging_fraction": 0.8541333332514,
|
|
397
|
+
"bagging_freq": 1,
|
|
398
|
+
"cat_l2": 0.0110343197541,
|
|
399
|
+
"cat_smooth": 5.0905236124522,
|
|
400
|
+
"extra_trees": True,
|
|
401
|
+
"feature_fraction": 0.7334718346252,
|
|
402
|
+
"lambda_l1": 0.241338427726,
|
|
403
|
+
"lambda_l2": 0.298107723769,
|
|
404
|
+
"learning_rate": 0.0126654490778,
|
|
405
|
+
"max_cat_to_onehot": 67,
|
|
406
|
+
"min_data_in_leaf": 12,
|
|
407
|
+
"min_data_per_group": 93,
|
|
408
|
+
"num_leaves": 5,
|
|
409
|
+
},
|
|
410
|
+
{
|
|
411
|
+
"ag_args": {"name_suffix": "_r6", "priority": -16},
|
|
412
|
+
"bagging_fraction": 0.8148132107231,
|
|
413
|
+
"bagging_freq": 1,
|
|
414
|
+
"cat_l2": 0.0058363329714,
|
|
415
|
+
"cat_smooth": 0.0289414318324,
|
|
416
|
+
"extra_trees": False,
|
|
417
|
+
"feature_fraction": 0.939979116902,
|
|
418
|
+
"lambda_l1": 0.4369494828584,
|
|
419
|
+
"lambda_l2": 0.2997524486083,
|
|
420
|
+
"learning_rate": 0.0078971749764,
|
|
421
|
+
"max_cat_to_onehot": 28,
|
|
422
|
+
"min_data_in_leaf": 24,
|
|
423
|
+
"min_data_per_group": 3,
|
|
424
|
+
"num_leaves": 8,
|
|
425
|
+
},
|
|
426
|
+
{
|
|
427
|
+
"ag_args": {"name_suffix": "_r184", "priority": -21},
|
|
428
|
+
"bagging_fraction": 0.8406256713136,
|
|
429
|
+
"bagging_freq": 1,
|
|
430
|
+
"cat_l2": 0.9284921901786,
|
|
431
|
+
"cat_smooth": 0.0898191451684,
|
|
432
|
+
"extra_trees": False,
|
|
433
|
+
"feature_fraction": 0.5876132298377,
|
|
434
|
+
"lambda_l1": 0.078943697912,
|
|
435
|
+
"lambda_l2": 0.7713118402478,
|
|
436
|
+
"learning_rate": 0.0090676429159,
|
|
437
|
+
"max_cat_to_onehot": 16,
|
|
438
|
+
"min_data_in_leaf": 17,
|
|
439
|
+
"min_data_per_group": 11,
|
|
440
|
+
"num_leaves": 2,
|
|
441
|
+
},
|
|
442
|
+
{
|
|
443
|
+
"ag_args": {"name_suffix": "_r46", "priority": -23},
|
|
444
|
+
"bagging_fraction": 0.999426150416,
|
|
445
|
+
"bagging_freq": 1,
|
|
446
|
+
"cat_l2": 0.0076879104679,
|
|
447
|
+
"cat_smooth": 89.4599055435924,
|
|
448
|
+
"extra_trees": False,
|
|
449
|
+
"feature_fraction": 0.8588138897928,
|
|
450
|
+
"lambda_l1": 0.0413597548025,
|
|
451
|
+
"lambda_l2": 0.2258713386858,
|
|
452
|
+
"learning_rate": 0.0074056102479,
|
|
453
|
+
"max_cat_to_onehot": 11,
|
|
454
|
+
"min_data_in_leaf": 1,
|
|
455
|
+
"min_data_per_group": 26,
|
|
456
|
+
"num_leaves": 14,
|
|
457
|
+
},
|
|
458
|
+
{
|
|
459
|
+
"ag_args": {"name_suffix": "_r68", "priority": -24},
|
|
460
|
+
"bagging_fraction": 0.7199080522958,
|
|
461
|
+
"bagging_freq": 1,
|
|
462
|
+
"cat_l2": 0.9369509319667,
|
|
463
|
+
"cat_smooth": 11.0984745216942,
|
|
464
|
+
"extra_trees": False,
|
|
465
|
+
"feature_fraction": 0.9550596478029,
|
|
466
|
+
"lambda_l1": 0.1109843723892,
|
|
467
|
+
"lambda_l2": 0.5969094177111,
|
|
468
|
+
"learning_rate": 0.0079480499426,
|
|
469
|
+
"max_cat_to_onehot": 8,
|
|
470
|
+
"min_data_in_leaf": 3,
|
|
471
|
+
"min_data_per_group": 8,
|
|
472
|
+
"num_leaves": 111,
|
|
473
|
+
},
|
|
474
|
+
{
|
|
475
|
+
"ag_args": {"name_suffix": "_r47", "priority": -29},
|
|
476
|
+
"bagging_fraction": 0.8831228358892,
|
|
477
|
+
"bagging_freq": 1,
|
|
478
|
+
"cat_l2": 0.1402622388062,
|
|
479
|
+
"cat_smooth": 3.3545774392409,
|
|
480
|
+
"extra_trees": True,
|
|
481
|
+
"feature_fraction": 0.6155890374887,
|
|
482
|
+
"lambda_l1": 0.1749502746898,
|
|
483
|
+
"lambda_l2": 0.8761391715812,
|
|
484
|
+
"learning_rate": 0.00891978331,
|
|
485
|
+
"max_cat_to_onehot": 84,
|
|
486
|
+
"min_data_in_leaf": 1,
|
|
487
|
+
"min_data_per_group": 21,
|
|
488
|
+
"num_leaves": 55,
|
|
489
|
+
},
|
|
490
|
+
{
|
|
491
|
+
"ag_args": {"name_suffix": "_r63", "priority": -31},
|
|
492
|
+
"bagging_fraction": 0.7801003412553,
|
|
493
|
+
"bagging_freq": 1,
|
|
494
|
+
"cat_l2": 0.0071438335269,
|
|
495
|
+
"cat_smooth": 0.1338043459574,
|
|
496
|
+
"extra_trees": False,
|
|
497
|
+
"feature_fraction": 0.490455360592,
|
|
498
|
+
"lambda_l1": 0.6420805635778,
|
|
499
|
+
"lambda_l2": 0.5813319300456,
|
|
500
|
+
"learning_rate": 0.0308746408751,
|
|
501
|
+
"max_cat_to_onehot": 38,
|
|
502
|
+
"min_data_in_leaf": 1,
|
|
503
|
+
"min_data_per_group": 83,
|
|
504
|
+
"num_leaves": 24,
|
|
505
|
+
},
|
|
506
|
+
{
|
|
507
|
+
"ag_args": {"name_suffix": "_r39", "priority": -36},
|
|
508
|
+
"bagging_fraction": 0.7035743460186,
|
|
509
|
+
"bagging_freq": 1,
|
|
510
|
+
"cat_l2": 0.0134845084619,
|
|
511
|
+
"cat_smooth": 56.4934757686511,
|
|
512
|
+
"extra_trees": True,
|
|
513
|
+
"feature_fraction": 0.7824899527144,
|
|
514
|
+
"lambda_l1": 0.3700115211248,
|
|
515
|
+
"lambda_l2": 0.0341499593689,
|
|
516
|
+
"learning_rate": 0.094652390088,
|
|
517
|
+
"max_cat_to_onehot": 13,
|
|
518
|
+
"min_data_in_leaf": 13,
|
|
519
|
+
"min_data_per_group": 4,
|
|
520
|
+
"num_leaves": 23,
|
|
521
|
+
},
|
|
522
|
+
{
|
|
523
|
+
"ag_args": {"name_suffix": "_r18", "priority": -43},
|
|
524
|
+
"bagging_fraction": 0.7041134150362,
|
|
525
|
+
"bagging_freq": 1,
|
|
526
|
+
"cat_l2": 0.1139031650222,
|
|
527
|
+
"cat_smooth": 41.8937939300815,
|
|
528
|
+
"extra_trees": True,
|
|
529
|
+
"feature_fraction": 0.5028791565785,
|
|
530
|
+
"lambda_l1": 0.1031941284118,
|
|
531
|
+
"lambda_l2": 1.2554010747358,
|
|
532
|
+
"learning_rate": 0.0186530122901,
|
|
533
|
+
"max_cat_to_onehot": 29,
|
|
534
|
+
"min_data_in_leaf": 5,
|
|
535
|
+
"min_data_per_group": 74,
|
|
536
|
+
"num_leaves": 5,
|
|
537
|
+
},
|
|
538
|
+
{
|
|
539
|
+
"ag_args": {"name_suffix": "_r50", "priority": -45},
|
|
540
|
+
"bagging_fraction": 0.9673434664048,
|
|
541
|
+
"bagging_freq": 1,
|
|
542
|
+
"cat_l2": 1.7662226703416,
|
|
543
|
+
"cat_smooth": 0.0097667848046,
|
|
544
|
+
"extra_trees": True,
|
|
545
|
+
"feature_fraction": 0.9286299570284,
|
|
546
|
+
"lambda_l1": 0.0448644389135,
|
|
547
|
+
"lambda_l2": 1.7322446850205,
|
|
548
|
+
"learning_rate": 0.0507909494543,
|
|
549
|
+
"max_cat_to_onehot": 11,
|
|
550
|
+
"min_data_in_leaf": 4,
|
|
551
|
+
"min_data_per_group": 2,
|
|
552
|
+
"num_leaves": 106,
|
|
553
|
+
},
|
|
554
|
+
{
|
|
555
|
+
"ag_args": {"name_suffix": "_r104", "priority": -48},
|
|
556
|
+
"bagging_fraction": 0.9327643671568,
|
|
557
|
+
"bagging_freq": 1,
|
|
558
|
+
"cat_l2": 0.0067636494662,
|
|
559
|
+
"cat_smooth": 29.2351010915576,
|
|
560
|
+
"extra_trees": False,
|
|
561
|
+
"feature_fraction": 0.660864035482,
|
|
562
|
+
"lambda_l1": 0.556745328417,
|
|
563
|
+
"lambda_l2": 1.2717605868201,
|
|
564
|
+
"learning_rate": 0.0433336000175,
|
|
565
|
+
"max_cat_to_onehot": 42,
|
|
566
|
+
"min_data_in_leaf": 18,
|
|
567
|
+
"min_data_per_group": 6,
|
|
568
|
+
"num_leaves": 19,
|
|
569
|
+
},
|
|
570
|
+
],
|
|
571
|
+
"NN_TORCH": [
|
|
572
|
+
{
|
|
573
|
+
"activation": "elu",
|
|
574
|
+
"ag_args": {"name_suffix": "_r37", "priority": -4},
|
|
575
|
+
"dropout_prob": 0.0889772897547275,
|
|
576
|
+
"hidden_size": 109,
|
|
577
|
+
"learning_rate": 0.02184363543226557,
|
|
578
|
+
"num_layers": 3,
|
|
579
|
+
"use_batchnorm": True,
|
|
580
|
+
"weight_decay": 3.1736637236578543e-10,
|
|
581
|
+
},
|
|
582
|
+
{
|
|
583
|
+
"activation": "elu",
|
|
584
|
+
"ag_args": {"name_suffix": "_r31", "priority": -9},
|
|
585
|
+
"dropout_prob": 0.013288954106470907,
|
|
586
|
+
"hidden_size": 81,
|
|
587
|
+
"learning_rate": 0.005340914647396153,
|
|
588
|
+
"num_layers": 4,
|
|
589
|
+
"use_batchnorm": False,
|
|
590
|
+
"weight_decay": 8.76216837077536e-05,
|
|
591
|
+
},
|
|
592
|
+
{
|
|
593
|
+
"activation": "elu",
|
|
594
|
+
"ag_args": {"name_suffix": "_r193", "priority": -14},
|
|
595
|
+
"dropout_prob": 0.2976404923811552,
|
|
596
|
+
"hidden_size": 131,
|
|
597
|
+
"learning_rate": 0.0038408014156739775,
|
|
598
|
+
"num_layers": 3,
|
|
599
|
+
"use_batchnorm": False,
|
|
600
|
+
"weight_decay": 0.01745189206113213,
|
|
601
|
+
},
|
|
602
|
+
{
|
|
603
|
+
"activation": "elu",
|
|
604
|
+
"ag_args": {"name_suffix": "_r144", "priority": -15},
|
|
605
|
+
"dropout_prob": 0.2670859555485912,
|
|
606
|
+
"hidden_size": 52,
|
|
607
|
+
"learning_rate": 0.015189605588375421,
|
|
608
|
+
"num_layers": 4,
|
|
609
|
+
"use_batchnorm": True,
|
|
610
|
+
"weight_decay": 2.8013784883244263e-08,
|
|
611
|
+
},
|
|
612
|
+
{
|
|
613
|
+
"activation": "relu",
|
|
614
|
+
"ag_args": {"name_suffix": "_r82", "priority": -22},
|
|
615
|
+
"dropout_prob": 0.27342918414623907,
|
|
616
|
+
"hidden_size": 207,
|
|
617
|
+
"learning_rate": 0.0004069380929899853,
|
|
618
|
+
"num_layers": 4,
|
|
619
|
+
"use_batchnorm": False,
|
|
620
|
+
"weight_decay": 0.002473667327700422,
|
|
621
|
+
},
|
|
622
|
+
{
|
|
623
|
+
"activation": "elu",
|
|
624
|
+
"ag_args": {"name_suffix": "_r39", "priority": -27},
|
|
625
|
+
"dropout_prob": 0.21699951000415899,
|
|
626
|
+
"hidden_size": 182,
|
|
627
|
+
"learning_rate": 0.00014675249427915203,
|
|
628
|
+
"num_layers": 2,
|
|
629
|
+
"use_batchnorm": False,
|
|
630
|
+
"weight_decay": 9.787353852692089e-08,
|
|
631
|
+
},
|
|
632
|
+
{
|
|
633
|
+
"activation": "relu",
|
|
634
|
+
"ag_args": {"name_suffix": "_r1", "priority": -30},
|
|
635
|
+
"dropout_prob": 0.23713784729000734,
|
|
636
|
+
"hidden_size": 200,
|
|
637
|
+
"learning_rate": 0.0031125617090901805,
|
|
638
|
+
"num_layers": 4,
|
|
639
|
+
"use_batchnorm": True,
|
|
640
|
+
"weight_decay": 4.57301675647447e-08,
|
|
641
|
+
},
|
|
642
|
+
{
|
|
643
|
+
"activation": "relu",
|
|
644
|
+
"ag_args": {"name_suffix": "_r48", "priority": -34},
|
|
645
|
+
"dropout_prob": 0.14224509513998226,
|
|
646
|
+
"hidden_size": 26,
|
|
647
|
+
"learning_rate": 0.007085904739869829,
|
|
648
|
+
"num_layers": 2,
|
|
649
|
+
"use_batchnorm": False,
|
|
650
|
+
"weight_decay": 2.465786211798467e-10,
|
|
651
|
+
},
|
|
652
|
+
{
|
|
653
|
+
"activation": "elu",
|
|
654
|
+
"ag_args": {"name_suffix": "_r135", "priority": -39},
|
|
655
|
+
"dropout_prob": 0.06134755114373829,
|
|
656
|
+
"hidden_size": 144,
|
|
657
|
+
"learning_rate": 0.005834535148903802,
|
|
658
|
+
"num_layers": 5,
|
|
659
|
+
"use_batchnorm": True,
|
|
660
|
+
"weight_decay": 2.0826540090463376e-09,
|
|
661
|
+
},
|
|
662
|
+
{
|
|
663
|
+
"activation": "elu",
|
|
664
|
+
"ag_args": {"name_suffix": "_r24", "priority": -49},
|
|
665
|
+
"dropout_prob": 0.257596079691855,
|
|
666
|
+
"hidden_size": 168,
|
|
667
|
+
"learning_rate": 0.0034108596383714608,
|
|
668
|
+
"num_layers": 4,
|
|
669
|
+
"use_batchnorm": True,
|
|
670
|
+
"weight_decay": 1.4840689603685264e-07,
|
|
671
|
+
},
|
|
672
|
+
{
|
|
673
|
+
"activation": "relu",
|
|
674
|
+
"ag_args": {"name_suffix": "_r159", "priority": -50},
|
|
675
|
+
"dropout_prob": 0.16724368469920037,
|
|
676
|
+
"hidden_size": 44,
|
|
677
|
+
"learning_rate": 0.011043937174833164,
|
|
678
|
+
"num_layers": 4,
|
|
679
|
+
"use_batchnorm": False,
|
|
680
|
+
"weight_decay": 0.007265742373924609,
|
|
681
|
+
},
|
|
682
|
+
],
|
|
683
|
+
"FASTAI": [
|
|
684
|
+
{
|
|
685
|
+
"ag_args": {"name_suffix": "_r25", "priority": -6},
|
|
686
|
+
"bs": 1024,
|
|
687
|
+
"emb_drop": 0.6167722379778131,
|
|
688
|
+
"epochs": 44,
|
|
689
|
+
"layers": [200, 100, 50],
|
|
690
|
+
"lr": 0.05344037785562929,
|
|
691
|
+
"ps": 0.48477211305443607,
|
|
692
|
+
},
|
|
693
|
+
{
|
|
694
|
+
"ag_args": {"name_suffix": "_r162", "priority": -11},
|
|
695
|
+
"bs": 2048,
|
|
696
|
+
"emb_drop": 0.5474625640581479,
|
|
697
|
+
"epochs": 45,
|
|
698
|
+
"layers": [400, 200],
|
|
699
|
+
"lr": 0.0047438648957706655,
|
|
700
|
+
"ps": 0.07533239360470734,
|
|
701
|
+
},
|
|
702
|
+
{
|
|
703
|
+
"ag_args": {"name_suffix": "_r147", "priority": -20},
|
|
704
|
+
"bs": 128,
|
|
705
|
+
"emb_drop": 0.6378380130337095,
|
|
706
|
+
"epochs": 48,
|
|
707
|
+
"layers": [200],
|
|
708
|
+
"lr": 0.058027179860229344,
|
|
709
|
+
"ps": 0.23253362133888375,
|
|
710
|
+
},
|
|
711
|
+
{
|
|
712
|
+
"ag_args": {"name_suffix": "_r192", "priority": -25},
|
|
713
|
+
"bs": 1024,
|
|
714
|
+
"emb_drop": 0.0698130630643278,
|
|
715
|
+
"epochs": 37,
|
|
716
|
+
"layers": [400, 200],
|
|
717
|
+
"lr": 0.0018949411343821322,
|
|
718
|
+
"ps": 0.6526067160491229,
|
|
719
|
+
},
|
|
720
|
+
{
|
|
721
|
+
"ag_args": {"name_suffix": "_r109", "priority": -28},
|
|
722
|
+
"bs": 128,
|
|
723
|
+
"emb_drop": 0.1978897556618756,
|
|
724
|
+
"epochs": 49,
|
|
725
|
+
"layers": [400, 200, 100],
|
|
726
|
+
"lr": 0.02155144303508465,
|
|
727
|
+
"ps": 0.005518872455908264,
|
|
728
|
+
},
|
|
729
|
+
{
|
|
730
|
+
"ag_args": {"name_suffix": "_r78", "priority": -33},
|
|
731
|
+
"bs": 512,
|
|
732
|
+
"emb_drop": 0.4897354379753617,
|
|
733
|
+
"epochs": 26,
|
|
734
|
+
"layers": [400, 200, 100],
|
|
735
|
+
"lr": 0.027563880686468895,
|
|
736
|
+
"ps": 0.44524273881299886,
|
|
737
|
+
},
|
|
738
|
+
{
|
|
739
|
+
"ag_args": {"name_suffix": "_r150", "priority": -35},
|
|
740
|
+
"bs": 2048,
|
|
741
|
+
"emb_drop": 0.6148607467659958,
|
|
742
|
+
"epochs": 27,
|
|
743
|
+
"layers": [400, 200],
|
|
744
|
+
"lr": 0.09351668652547614,
|
|
745
|
+
"ps": 0.5314977162016676,
|
|
746
|
+
},
|
|
747
|
+
{
|
|
748
|
+
"ag_args": {"name_suffix": "_r133", "priority": -41},
|
|
749
|
+
"bs": 256,
|
|
750
|
+
"emb_drop": 0.6242606757570891,
|
|
751
|
+
"epochs": 43,
|
|
752
|
+
"layers": [200, 100, 50],
|
|
753
|
+
"lr": 0.001533613235987637,
|
|
754
|
+
"ps": 0.5354961132962562,
|
|
755
|
+
},
|
|
756
|
+
{
|
|
757
|
+
"ag_args": {"name_suffix": "_r99", "priority": -44},
|
|
758
|
+
"bs": 512,
|
|
759
|
+
"emb_drop": 0.6071025838237253,
|
|
760
|
+
"epochs": 49,
|
|
761
|
+
"layers": [400, 200],
|
|
762
|
+
"lr": 0.02669945959641021,
|
|
763
|
+
"ps": 0.4897025421573259,
|
|
764
|
+
},
|
|
765
|
+
{
|
|
766
|
+
"ag_args": {"name_suffix": "_r197", "priority": -47},
|
|
767
|
+
"bs": 256,
|
|
768
|
+
"emb_drop": 0.5277230463737563,
|
|
769
|
+
"epochs": 45,
|
|
770
|
+
"layers": [400, 200],
|
|
771
|
+
"lr": 0.006908743712130657,
|
|
772
|
+
"ps": 0.08262909528632323,
|
|
773
|
+
},
|
|
774
|
+
],
|
|
775
|
+
}
|