autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260116__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/__init__.py +1 -0
- autogluon/tabular/configs/config_helper.py +18 -6
- autogluon/tabular/configs/feature_generator_presets.py +3 -1
- autogluon/tabular/configs/hyperparameter_configs.py +42 -9
- autogluon/tabular/configs/presets_configs.py +38 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
- autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- autogluon/tabular/learner/abstract_learner.py +160 -42
- autogluon/tabular/learner/default_learner.py +78 -22
- autogluon/tabular/models/__init__.py +2 -2
- autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
- autogluon/tabular/models/automm/automm_model.py +12 -3
- autogluon/tabular/models/automm/ft_transformer.py +5 -1
- autogluon/tabular/models/catboost/callbacks.py +2 -2
- autogluon/tabular/models/catboost/catboost_model.py +93 -29
- autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- autogluon/tabular/models/ebm/ebm_model.py +8 -13
- autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- autogluon/tabular/models/fastainn/callbacks.py +20 -3
- autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
- autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- autogluon/tabular/models/knn/knn_model.py +41 -8
- autogluon/tabular/models/lgb/callbacks.py +32 -9
- autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- autogluon/tabular/models/lgb/lgb_model.py +150 -34
- autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
- autogluon/tabular/models/lr/lr_model.py +40 -10
- autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
- autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- autogluon/tabular/models/mitra/mitra_model.py +16 -11
- autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
- autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- autogluon/tabular/models/rf/rf_model.py +45 -12
- autogluon/tabular/models/rf/rf_quantile.py +4 -2
- autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
- autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
- autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- autogluon/tabular/models/tabm/tabm_model.py +8 -4
- autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
- autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
- autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
- autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
- autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
- autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
- autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
- autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- autogluon/tabular/models/xgboost/callbacks.py +9 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
- autogluon/tabular/models/xt/xt_model.py +1 -0
- autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- autogluon/tabular/predictor/predictor.py +409 -128
- autogluon/tabular/registry/__init__.py +1 -1
- autogluon/tabular/registry/_ag_model_registry.py +4 -5
- autogluon/tabular/registry/_model_registry.py +1 -0
- autogluon/tabular/testing/fit_helper.py +55 -15
- autogluon/tabular/testing/generate_datasets.py +1 -1
- autogluon/tabular/testing/model_fit_helper.py +10 -4
- autogluon/tabular/trainer/abstract_trainer.py +644 -230
- autogluon/tabular/trainer/auto_trainer.py +19 -8
- autogluon/tabular/trainer/model_presets/presets.py +33 -9
- autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/METADATA +26 -26
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/RECORD +127 -135
- autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
- /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260116-py3.11-nspkg.pth +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/WHEEL +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/licenses/LICENSE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/licenses/NOTICE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/top_level.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/zip-safe +0 -0
|
@@ -4,10 +4,10 @@ from autogluon.core.models import AbstractModel
|
|
|
4
4
|
from autogluon.core.utils import generate_train_test_split
|
|
5
5
|
|
|
6
6
|
from ..models.lgb.lgb_model import LGBModel
|
|
7
|
+
from ..registry import ag_model_registry
|
|
7
8
|
from .abstract_trainer import AbstractTabularTrainer
|
|
8
9
|
from .model_presets.presets import get_preset_models
|
|
9
10
|
from .model_presets.presets_distill import get_preset_models_distillation
|
|
10
|
-
from ..registry import ag_model_registry
|
|
11
11
|
|
|
12
12
|
logger = logging.getLogger(__name__)
|
|
13
13
|
|
|
@@ -67,14 +67,21 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
67
67
|
|
|
68
68
|
if use_bag_holdout:
|
|
69
69
|
if self.bagged_mode:
|
|
70
|
-
logger.log(
|
|
70
|
+
logger.log(
|
|
71
|
+
20,
|
|
72
|
+
f"use_bag_holdout={use_bag_holdout}, will use tuning_data as holdout (will not be used for early stopping).",
|
|
73
|
+
)
|
|
71
74
|
else:
|
|
72
|
-
logger.warning(
|
|
75
|
+
logger.warning(
|
|
76
|
+
f"Warning: use_bag_holdout={use_bag_holdout}, but bagged mode is not enabled. use_bag_holdout will be ignored."
|
|
77
|
+
)
|
|
73
78
|
|
|
74
79
|
if (y_val is None) or (X_val is None):
|
|
75
80
|
if not self.bagged_mode or use_bag_holdout:
|
|
76
81
|
if groups is not None:
|
|
77
|
-
raise AssertionError(
|
|
82
|
+
raise AssertionError(
|
|
83
|
+
f"Validation data must be manually specified if use_bag_holdout and groups are both specified."
|
|
84
|
+
)
|
|
78
85
|
if self.bagged_mode:
|
|
79
86
|
# Need at least 2 samples of each class in train data after split for downstream k-fold splits
|
|
80
87
|
# to ensure each k-fold has at least 1 sample of each class in training data
|
|
@@ -90,7 +97,8 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
90
97
|
min_cls_count_train=min_cls_count_train,
|
|
91
98
|
)
|
|
92
99
|
logger.log(
|
|
93
|
-
20,
|
|
100
|
+
20,
|
|
101
|
+
f"Automatically generating train/validation split with holdout_frac={holdout_frac}, Train Rows: {len(X)}, Val Rows: {len(X_val)}",
|
|
94
102
|
)
|
|
95
103
|
elif self.bagged_mode:
|
|
96
104
|
if not use_bag_holdout:
|
|
@@ -115,9 +123,10 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
115
123
|
if not display_all:
|
|
116
124
|
# FIXME: This isn't correct
|
|
117
125
|
extra_log_str = (
|
|
118
|
-
f"Large model count detected ({n_configs} configs) ... "
|
|
126
|
+
f"Large model count detected ({n_configs} configs) ... "
|
|
127
|
+
f"Only displaying the first 3 models of each family. To see all, set `verbosity=3`.\n"
|
|
119
128
|
)
|
|
120
|
-
log_str = f"{extra_log_str}User-specified model hyperparameters to be fit:\n
|
|
129
|
+
log_str = f"{extra_log_str}User-specified model hyperparameters to be fit:\n{{\n"
|
|
121
130
|
if display_all:
|
|
122
131
|
for k in hyperparameters.keys():
|
|
123
132
|
# TODO: Make hyperparameters[k] be a list upstream to avoid needing these edge-cases
|
|
@@ -189,7 +198,9 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
189
198
|
else:
|
|
190
199
|
compiler_configs_new[k] = compiler_configs[k]
|
|
191
200
|
compiler_configs = compiler_configs_new
|
|
192
|
-
return super().compile(
|
|
201
|
+
return super().compile(
|
|
202
|
+
model_names=model_names, with_ancestors=with_ancestors, compiler_configs=compiler_configs
|
|
203
|
+
)
|
|
193
204
|
|
|
194
205
|
def _get_model_types_map(self) -> dict[str, AbstractModel]:
|
|
195
206
|
return ag_model_registry.key_to_cls_map()
|
|
@@ -108,7 +108,9 @@ def get_preset_models(
|
|
|
108
108
|
if level_key not in hyperparameters.keys() and level_key == "default":
|
|
109
109
|
hyperparameters = {"default": hyperparameters}
|
|
110
110
|
hp_level = hyperparameters[level_key]
|
|
111
|
-
hp_level = ModelFilter.filter_models(
|
|
111
|
+
hp_level = ModelFilter.filter_models(
|
|
112
|
+
models=hp_level, included_model_types=included_model_types, excluded_model_types=excluded_model_types
|
|
113
|
+
)
|
|
112
114
|
model_cfg_priority_dict = defaultdict(list)
|
|
113
115
|
model_type_list = list(hp_level.keys())
|
|
114
116
|
for model_type in model_type_list:
|
|
@@ -127,7 +129,9 @@ def get_preset_models(
|
|
|
127
129
|
ag_args_fit=ag_args_fit,
|
|
128
130
|
problem_type=problem_type,
|
|
129
131
|
)
|
|
130
|
-
model_cfg[AG_ARGS]["priority"] = model_cfg[AG_ARGS].get(
|
|
132
|
+
model_cfg[AG_ARGS]["priority"] = model_cfg[AG_ARGS].get(
|
|
133
|
+
"priority", default_priorities.get(model_type, DEFAULT_CUSTOM_MODEL_PRIORITY)
|
|
134
|
+
)
|
|
131
135
|
model_priority = model_cfg[AG_ARGS]["priority"]
|
|
132
136
|
# Check if model_cfg is valid
|
|
133
137
|
is_valid = is_model_cfg_valid(model_cfg, level=level, problem_type=problem_type)
|
|
@@ -136,7 +140,11 @@ def get_preset_models(
|
|
|
136
140
|
if is_valid:
|
|
137
141
|
model_cfg_priority_dict[model_priority].append(model_cfg)
|
|
138
142
|
|
|
139
|
-
model_cfg_priority_list = [
|
|
143
|
+
model_cfg_priority_list = [
|
|
144
|
+
model
|
|
145
|
+
for priority in sorted(model_cfg_priority_dict.keys(), reverse=True)
|
|
146
|
+
for model in model_cfg_priority_dict[priority]
|
|
147
|
+
]
|
|
140
148
|
|
|
141
149
|
if not silent:
|
|
142
150
|
logger.log(20, "Model configs that will be trained (in order):")
|
|
@@ -156,7 +164,9 @@ def get_preset_models(
|
|
|
156
164
|
)
|
|
157
165
|
invalid_name_set.add(model.name)
|
|
158
166
|
if "hyperparameter_tune_kwargs" in model_cfg[AG_ARGS]:
|
|
159
|
-
model_args_fit[model.name] = {
|
|
167
|
+
model_args_fit[model.name] = {
|
|
168
|
+
"hyperparameter_tune_kwargs": model_cfg[AG_ARGS]["hyperparameter_tune_kwargs"]
|
|
169
|
+
}
|
|
160
170
|
if "ag_args_ensemble" in model_cfg and not model_cfg["ag_args_ensemble"]:
|
|
161
171
|
model_cfg.pop("ag_args_ensemble")
|
|
162
172
|
if not silent:
|
|
@@ -165,7 +175,9 @@ def get_preset_models(
|
|
|
165
175
|
return models, model_args_fit
|
|
166
176
|
|
|
167
177
|
|
|
168
|
-
def clean_model_cfg(
|
|
178
|
+
def clean_model_cfg(
|
|
179
|
+
model_cfg: dict, model_type=None, ag_args=None, ag_args_ensemble=None, ag_args_fit=None, problem_type=None
|
|
180
|
+
):
|
|
169
181
|
model_cfg = _verify_model_cfg(model_cfg=model_cfg, model_type=model_type)
|
|
170
182
|
model_cfg = copy.deepcopy(model_cfg)
|
|
171
183
|
if AG_ARGS not in model_cfg:
|
|
@@ -178,7 +190,9 @@ def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ense
|
|
|
178
190
|
model_types = ag_model_registry.key_to_cls_map()
|
|
179
191
|
if not inspect.isclass(model_type):
|
|
180
192
|
if model_type not in model_types:
|
|
181
|
-
raise AssertionError(
|
|
193
|
+
raise AssertionError(
|
|
194
|
+
f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(model_types.keys())}"
|
|
195
|
+
)
|
|
182
196
|
model_type = model_types[model_type]
|
|
183
197
|
elif not issubclass(model_type, AbstractModel):
|
|
184
198
|
logger.warning(
|
|
@@ -254,7 +268,9 @@ def is_model_cfg_valid(model_cfg, level=1, problem_type=None):
|
|
|
254
268
|
is_valid = False # AG_ARGS is required
|
|
255
269
|
elif model_cfg[AG_ARGS].get("model_type", None) is None:
|
|
256
270
|
is_valid = False # model_type is required
|
|
257
|
-
elif model_cfg[AG_ARGS].get("hyperparameter_tune_kwargs", None) and model_cfg[AG_ARGS].get(
|
|
271
|
+
elif model_cfg[AG_ARGS].get("hyperparameter_tune_kwargs", None) and model_cfg[AG_ARGS].get(
|
|
272
|
+
"disable_in_hpo", False
|
|
273
|
+
):
|
|
258
274
|
is_valid = False
|
|
259
275
|
elif not model_cfg[AG_ARGS].get("valid_stacker", True) and level > 1:
|
|
260
276
|
is_valid = False # Not valid as a stacker model
|
|
@@ -335,7 +351,13 @@ def model_factory(
|
|
|
335
351
|
if ensemble_kwargs_model["hyperparameters"] is None:
|
|
336
352
|
ensemble_kwargs_model["hyperparameters"] = {}
|
|
337
353
|
ensemble_kwargs_model["hyperparameters"].update(extra_ensemble_hyperparameters)
|
|
338
|
-
model_init = ensemble_type(
|
|
354
|
+
model_init = ensemble_type(
|
|
355
|
+
path=path,
|
|
356
|
+
name=name_stacker,
|
|
357
|
+
model_base=model_type,
|
|
358
|
+
model_base_kwargs=model_init_kwargs,
|
|
359
|
+
**ensemble_kwargs_model,
|
|
360
|
+
)
|
|
339
361
|
else:
|
|
340
362
|
model_init = model_type(**model_init_kwargs)
|
|
341
363
|
|
|
@@ -358,7 +380,9 @@ def get_preset_models_softclass(hyperparameters, invalid_model_names: list = Non
|
|
|
358
380
|
rf_newparams = {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE"}}
|
|
359
381
|
for i in range(len(rf_params)):
|
|
360
382
|
rf_params[i].update(rf_newparams)
|
|
361
|
-
rf_params = [
|
|
383
|
+
rf_params = [
|
|
384
|
+
j for n, j in enumerate(rf_params) if j not in rf_params[(n + 1) :]
|
|
385
|
+
] # Remove duplicates which may arise after overwriting criterion
|
|
362
386
|
hyperparameters_standard["RF"] = rf_params
|
|
363
387
|
models, model_args_fit = get_preset_models(
|
|
364
388
|
problem_type=SOFTCLASS,
|
|
@@ -17,7 +17,16 @@ DEFAULT_DISTILL_PRIORITY = dict(
|
|
|
17
17
|
)
|
|
18
18
|
|
|
19
19
|
|
|
20
|
-
def get_preset_models_distillation(
|
|
20
|
+
def get_preset_models_distillation(
|
|
21
|
+
path,
|
|
22
|
+
problem_type,
|
|
23
|
+
eval_metric,
|
|
24
|
+
hyperparameters,
|
|
25
|
+
level=1,
|
|
26
|
+
name_suffix="_DSTL",
|
|
27
|
+
invalid_model_names: list = None,
|
|
28
|
+
**kwargs,
|
|
29
|
+
):
|
|
21
30
|
hyperparameters = process_hyperparameters(hyperparameters)
|
|
22
31
|
level_key = level if level in hyperparameters.keys() else "default"
|
|
23
32
|
if level_key not in hyperparameters.keys() and level_key == "default":
|
|
@@ -52,7 +61,12 @@ def get_preset_models_distillation(path, problem_type, eval_metric, hyperparamet
|
|
|
52
61
|
|
|
53
62
|
if problem_type == MULTICLASS:
|
|
54
63
|
models, model_args_fit = get_preset_models_softclass(
|
|
55
|
-
path=path,
|
|
64
|
+
path=path,
|
|
65
|
+
hyperparameters=hyperparameters,
|
|
66
|
+
level=level,
|
|
67
|
+
name_suffix=name_suffix,
|
|
68
|
+
invalid_model_names=invalid_model_names,
|
|
69
|
+
**kwargs,
|
|
56
70
|
)
|
|
57
71
|
else: # BINARY or REGRESSION
|
|
58
72
|
models, model_args_fit = get_preset_models(
|
autogluon/tabular/version.py
CHANGED
{autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.5.
|
|
3
|
+
Version: 1.5.1b20260116
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.5.
|
|
44
|
-
Requires-Dist: autogluon.features==1.5.
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.1b20260116
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.1b20260116
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
@@ -55,7 +55,7 @@ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
|
55
55
|
Provides-Extra: fastai
|
|
56
56
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
57
57
|
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
58
|
-
Requires-Dist: fastai<2.
|
|
58
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
|
|
59
59
|
Provides-Extra: tabm
|
|
60
60
|
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
61
61
|
Provides-Extra: tabpfn
|
|
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
|
77
77
|
Provides-Extra: tabicl
|
|
78
78
|
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
79
79
|
Provides-Extra: ray
|
|
80
|
-
Requires-Dist: autogluon.core[all]==1.5.
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260116; extra == "ray"
|
|
81
81
|
Provides-Extra: skex
|
|
82
82
|
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
83
83
|
Provides-Extra: imodels
|
|
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
|
|
|
89
89
|
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
90
90
|
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
91
91
|
Provides-Extra: all
|
|
92
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
93
|
-
Requires-Dist: loguru; extra == "all"
|
|
94
|
-
Requires-Dist: transformers; extra == "all"
|
|
95
|
-
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
96
92
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
93
|
+
Requires-Dist: loguru; extra == "all"
|
|
97
94
|
Requires-Dist: omegaconf; extra == "all"
|
|
98
|
-
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
99
|
-
Requires-Dist: autogluon.core[all]==1.5.1b20260105; extra == "all"
|
|
100
95
|
Requires-Dist: spacy<3.9; extra == "all"
|
|
101
|
-
Requires-Dist: fastai<2.
|
|
96
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
|
|
97
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
98
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260116; extra == "all"
|
|
102
100
|
Requires-Dist: einx; extra == "all"
|
|
101
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
102
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
103
103
|
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
104
|
-
Requires-Dist:
|
|
104
|
+
Requires-Dist: transformers; extra == "all"
|
|
105
105
|
Provides-Extra: tabarena
|
|
106
|
-
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
107
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
108
|
-
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
109
|
-
Requires-Dist: loguru; extra == "tabarena"
|
|
110
|
-
Requires-Dist: transformers; extra == "tabarena"
|
|
111
|
-
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
112
106
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
107
|
+
Requires-Dist: loguru; extra == "tabarena"
|
|
108
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
109
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
110
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
113
111
|
Requires-Dist: omegaconf; extra == "tabarena"
|
|
114
|
-
Requires-Dist:
|
|
115
|
-
Requires-Dist: autogluon.core[all]==1.5.1b20260105; extra == "tabarena"
|
|
112
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
116
113
|
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
117
|
-
Requires-Dist:
|
|
118
|
-
Requires-Dist:
|
|
114
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
115
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
116
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260116; extra == "tabarena"
|
|
119
117
|
Requires-Dist: einx; extra == "tabarena"
|
|
120
|
-
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
121
118
|
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
122
|
-
Requires-Dist:
|
|
123
|
-
Requires-Dist:
|
|
119
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
120
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
121
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
122
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
123
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
124
124
|
Provides-Extra: tests
|
|
125
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
126
|
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|