autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260116__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (135) hide show
  1. autogluon/tabular/__init__.py +1 -0
  2. autogluon/tabular/configs/config_helper.py +18 -6
  3. autogluon/tabular/configs/feature_generator_presets.py +3 -1
  4. autogluon/tabular/configs/hyperparameter_configs.py +42 -9
  5. autogluon/tabular/configs/presets_configs.py +38 -14
  6. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
  7. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
  8. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
  9. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
  10. autogluon/tabular/experimental/_scikit_mixin.py +6 -2
  11. autogluon/tabular/experimental/_tabular_classifier.py +3 -1
  12. autogluon/tabular/experimental/_tabular_regressor.py +3 -1
  13. autogluon/tabular/experimental/plot_leaderboard.py +73 -19
  14. autogluon/tabular/learner/abstract_learner.py +160 -42
  15. autogluon/tabular/learner/default_learner.py +78 -22
  16. autogluon/tabular/models/__init__.py +2 -2
  17. autogluon/tabular/models/_utils/rapids_utils.py +3 -1
  18. autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
  19. autogluon/tabular/models/automm/automm_model.py +12 -3
  20. autogluon/tabular/models/automm/ft_transformer.py +5 -1
  21. autogluon/tabular/models/catboost/callbacks.py +2 -2
  22. autogluon/tabular/models/catboost/catboost_model.py +93 -29
  23. autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
  24. autogluon/tabular/models/catboost/catboost_utils.py +3 -1
  25. autogluon/tabular/models/ebm/ebm_model.py +8 -13
  26. autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
  27. autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
  28. autogluon/tabular/models/fastainn/callbacks.py +20 -3
  29. autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
  30. autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
  31. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
  32. autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
  33. autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
  34. autogluon/tabular/models/knn/knn_model.py +41 -8
  35. autogluon/tabular/models/lgb/callbacks.py +32 -9
  36. autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
  37. autogluon/tabular/models/lgb/lgb_model.py +150 -34
  38. autogluon/tabular/models/lgb/lgb_utils.py +12 -4
  39. autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
  40. autogluon/tabular/models/lr/lr_model.py +40 -10
  41. autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
  42. autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
  43. autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
  44. autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
  45. autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
  46. autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
  47. autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
  48. autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
  49. autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
  50. autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
  51. autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
  52. autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
  53. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
  54. autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
  55. autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
  56. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
  57. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
  58. autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
  59. autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
  60. autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
  61. autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
  62. autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
  63. autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
  64. autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
  65. autogluon/tabular/models/mitra/mitra_model.py +16 -11
  66. autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
  67. autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
  68. autogluon/tabular/models/rf/compilers/onnx.py +1 -1
  69. autogluon/tabular/models/rf/rf_model.py +45 -12
  70. autogluon/tabular/models/rf/rf_quantile.py +4 -2
  71. autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
  72. autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
  73. autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
  74. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
  75. autogluon/tabular/models/tabm/tabm_model.py +8 -4
  76. autogluon/tabular/models/tabm/tabm_reference.py +53 -85
  77. autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
  78. autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
  79. autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
  80. autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
  81. autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
  82. autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
  83. autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
  84. autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
  85. autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
  86. autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
  87. autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
  88. autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
  89. autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
  90. autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
  91. autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
  92. autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
  93. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
  94. autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
  95. autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
  96. autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
  97. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
  98. autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
  99. autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
  100. autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
  101. autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
  102. autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
  103. autogluon/tabular/models/xgboost/callbacks.py +9 -3
  104. autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
  105. autogluon/tabular/models/xt/xt_model.py +1 -0
  106. autogluon/tabular/predictor/interpretable_predictor.py +3 -1
  107. autogluon/tabular/predictor/predictor.py +409 -128
  108. autogluon/tabular/registry/__init__.py +1 -1
  109. autogluon/tabular/registry/_ag_model_registry.py +4 -5
  110. autogluon/tabular/registry/_model_registry.py +1 -0
  111. autogluon/tabular/testing/fit_helper.py +55 -15
  112. autogluon/tabular/testing/generate_datasets.py +1 -1
  113. autogluon/tabular/testing/model_fit_helper.py +10 -4
  114. autogluon/tabular/trainer/abstract_trainer.py +644 -230
  115. autogluon/tabular/trainer/auto_trainer.py +19 -8
  116. autogluon/tabular/trainer/model_presets/presets.py +33 -9
  117. autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
  118. autogluon/tabular/version.py +1 -1
  119. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/METADATA +26 -26
  120. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/RECORD +127 -135
  121. autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
  122. autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
  123. autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
  124. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
  125. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
  126. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
  127. autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
  128. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
  129. /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260116-py3.11-nspkg.pth +0 -0
  130. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/WHEEL +0 -0
  131. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/licenses/LICENSE +0 -0
  132. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/licenses/NOTICE +0 -0
  133. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/namespace_packages.txt +0 -0
  134. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/top_level.txt +0 -0
  135. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260116.dist-info}/zip-safe +0 -0
@@ -4,10 +4,10 @@ from autogluon.core.models import AbstractModel
4
4
  from autogluon.core.utils import generate_train_test_split
5
5
 
6
6
  from ..models.lgb.lgb_model import LGBModel
7
+ from ..registry import ag_model_registry
7
8
  from .abstract_trainer import AbstractTabularTrainer
8
9
  from .model_presets.presets import get_preset_models
9
10
  from .model_presets.presets_distill import get_preset_models_distillation
10
- from ..registry import ag_model_registry
11
11
 
12
12
  logger = logging.getLogger(__name__)
13
13
 
@@ -67,14 +67,21 @@ class AutoTrainer(AbstractTabularTrainer):
67
67
 
68
68
  if use_bag_holdout:
69
69
  if self.bagged_mode:
70
- logger.log(20, f"use_bag_holdout={use_bag_holdout}, will use tuning_data as holdout (will not be used for early stopping).")
70
+ logger.log(
71
+ 20,
72
+ f"use_bag_holdout={use_bag_holdout}, will use tuning_data as holdout (will not be used for early stopping).",
73
+ )
71
74
  else:
72
- logger.warning(f"Warning: use_bag_holdout={use_bag_holdout}, but bagged mode is not enabled. use_bag_holdout will be ignored.")
75
+ logger.warning(
76
+ f"Warning: use_bag_holdout={use_bag_holdout}, but bagged mode is not enabled. use_bag_holdout will be ignored."
77
+ )
73
78
 
74
79
  if (y_val is None) or (X_val is None):
75
80
  if not self.bagged_mode or use_bag_holdout:
76
81
  if groups is not None:
77
- raise AssertionError(f"Validation data must be manually specified if use_bag_holdout and groups are both specified.")
82
+ raise AssertionError(
83
+ f"Validation data must be manually specified if use_bag_holdout and groups are both specified."
84
+ )
78
85
  if self.bagged_mode:
79
86
  # Need at least 2 samples of each class in train data after split for downstream k-fold splits
80
87
  # to ensure each k-fold has at least 1 sample of each class in training data
@@ -90,7 +97,8 @@ class AutoTrainer(AbstractTabularTrainer):
90
97
  min_cls_count_train=min_cls_count_train,
91
98
  )
92
99
  logger.log(
93
- 20, f"Automatically generating train/validation split with holdout_frac={holdout_frac}, Train Rows: {len(X)}, Val Rows: {len(X_val)}"
100
+ 20,
101
+ f"Automatically generating train/validation split with holdout_frac={holdout_frac}, Train Rows: {len(X)}, Val Rows: {len(X_val)}",
94
102
  )
95
103
  elif self.bagged_mode:
96
104
  if not use_bag_holdout:
@@ -115,9 +123,10 @@ class AutoTrainer(AbstractTabularTrainer):
115
123
  if not display_all:
116
124
  # FIXME: This isn't correct
117
125
  extra_log_str = (
118
- f"Large model count detected ({n_configs} configs) ... " f"Only displaying the first 3 models of each family. To see all, set `verbosity=3`.\n"
126
+ f"Large model count detected ({n_configs} configs) ... "
127
+ f"Only displaying the first 3 models of each family. To see all, set `verbosity=3`.\n"
119
128
  )
120
- log_str = f"{extra_log_str}User-specified model hyperparameters to be fit:\n" "{\n"
129
+ log_str = f"{extra_log_str}User-specified model hyperparameters to be fit:\n{{\n"
121
130
  if display_all:
122
131
  for k in hyperparameters.keys():
123
132
  # TODO: Make hyperparameters[k] be a list upstream to avoid needing these edge-cases
@@ -189,7 +198,9 @@ class AutoTrainer(AbstractTabularTrainer):
189
198
  else:
190
199
  compiler_configs_new[k] = compiler_configs[k]
191
200
  compiler_configs = compiler_configs_new
192
- return super().compile(model_names=model_names, with_ancestors=with_ancestors, compiler_configs=compiler_configs)
201
+ return super().compile(
202
+ model_names=model_names, with_ancestors=with_ancestors, compiler_configs=compiler_configs
203
+ )
193
204
 
194
205
  def _get_model_types_map(self) -> dict[str, AbstractModel]:
195
206
  return ag_model_registry.key_to_cls_map()
@@ -108,7 +108,9 @@ def get_preset_models(
108
108
  if level_key not in hyperparameters.keys() and level_key == "default":
109
109
  hyperparameters = {"default": hyperparameters}
110
110
  hp_level = hyperparameters[level_key]
111
- hp_level = ModelFilter.filter_models(models=hp_level, included_model_types=included_model_types, excluded_model_types=excluded_model_types)
111
+ hp_level = ModelFilter.filter_models(
112
+ models=hp_level, included_model_types=included_model_types, excluded_model_types=excluded_model_types
113
+ )
112
114
  model_cfg_priority_dict = defaultdict(list)
113
115
  model_type_list = list(hp_level.keys())
114
116
  for model_type in model_type_list:
@@ -127,7 +129,9 @@ def get_preset_models(
127
129
  ag_args_fit=ag_args_fit,
128
130
  problem_type=problem_type,
129
131
  )
130
- model_cfg[AG_ARGS]["priority"] = model_cfg[AG_ARGS].get("priority", default_priorities.get(model_type, DEFAULT_CUSTOM_MODEL_PRIORITY))
132
+ model_cfg[AG_ARGS]["priority"] = model_cfg[AG_ARGS].get(
133
+ "priority", default_priorities.get(model_type, DEFAULT_CUSTOM_MODEL_PRIORITY)
134
+ )
131
135
  model_priority = model_cfg[AG_ARGS]["priority"]
132
136
  # Check if model_cfg is valid
133
137
  is_valid = is_model_cfg_valid(model_cfg, level=level, problem_type=problem_type)
@@ -136,7 +140,11 @@ def get_preset_models(
136
140
  if is_valid:
137
141
  model_cfg_priority_dict[model_priority].append(model_cfg)
138
142
 
139
- model_cfg_priority_list = [model for priority in sorted(model_cfg_priority_dict.keys(), reverse=True) for model in model_cfg_priority_dict[priority]]
143
+ model_cfg_priority_list = [
144
+ model
145
+ for priority in sorted(model_cfg_priority_dict.keys(), reverse=True)
146
+ for model in model_cfg_priority_dict[priority]
147
+ ]
140
148
 
141
149
  if not silent:
142
150
  logger.log(20, "Model configs that will be trained (in order):")
@@ -156,7 +164,9 @@ def get_preset_models(
156
164
  )
157
165
  invalid_name_set.add(model.name)
158
166
  if "hyperparameter_tune_kwargs" in model_cfg[AG_ARGS]:
159
- model_args_fit[model.name] = {"hyperparameter_tune_kwargs": model_cfg[AG_ARGS]["hyperparameter_tune_kwargs"]}
167
+ model_args_fit[model.name] = {
168
+ "hyperparameter_tune_kwargs": model_cfg[AG_ARGS]["hyperparameter_tune_kwargs"]
169
+ }
160
170
  if "ag_args_ensemble" in model_cfg and not model_cfg["ag_args_ensemble"]:
161
171
  model_cfg.pop("ag_args_ensemble")
162
172
  if not silent:
@@ -165,7 +175,9 @@ def get_preset_models(
165
175
  return models, model_args_fit
166
176
 
167
177
 
168
- def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ensemble=None, ag_args_fit=None, problem_type=None):
178
+ def clean_model_cfg(
179
+ model_cfg: dict, model_type=None, ag_args=None, ag_args_ensemble=None, ag_args_fit=None, problem_type=None
180
+ ):
169
181
  model_cfg = _verify_model_cfg(model_cfg=model_cfg, model_type=model_type)
170
182
  model_cfg = copy.deepcopy(model_cfg)
171
183
  if AG_ARGS not in model_cfg:
@@ -178,7 +190,9 @@ def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ense
178
190
  model_types = ag_model_registry.key_to_cls_map()
179
191
  if not inspect.isclass(model_type):
180
192
  if model_type not in model_types:
181
- raise AssertionError(f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(model_types.keys())}")
193
+ raise AssertionError(
194
+ f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(model_types.keys())}"
195
+ )
182
196
  model_type = model_types[model_type]
183
197
  elif not issubclass(model_type, AbstractModel):
184
198
  logger.warning(
@@ -254,7 +268,9 @@ def is_model_cfg_valid(model_cfg, level=1, problem_type=None):
254
268
  is_valid = False # AG_ARGS is required
255
269
  elif model_cfg[AG_ARGS].get("model_type", None) is None:
256
270
  is_valid = False # model_type is required
257
- elif model_cfg[AG_ARGS].get("hyperparameter_tune_kwargs", None) and model_cfg[AG_ARGS].get("disable_in_hpo", False):
271
+ elif model_cfg[AG_ARGS].get("hyperparameter_tune_kwargs", None) and model_cfg[AG_ARGS].get(
272
+ "disable_in_hpo", False
273
+ ):
258
274
  is_valid = False
259
275
  elif not model_cfg[AG_ARGS].get("valid_stacker", True) and level > 1:
260
276
  is_valid = False # Not valid as a stacker model
@@ -335,7 +351,13 @@ def model_factory(
335
351
  if ensemble_kwargs_model["hyperparameters"] is None:
336
352
  ensemble_kwargs_model["hyperparameters"] = {}
337
353
  ensemble_kwargs_model["hyperparameters"].update(extra_ensemble_hyperparameters)
338
- model_init = ensemble_type(path=path, name=name_stacker, model_base=model_type, model_base_kwargs=model_init_kwargs, **ensemble_kwargs_model)
354
+ model_init = ensemble_type(
355
+ path=path,
356
+ name=name_stacker,
357
+ model_base=model_type,
358
+ model_base_kwargs=model_init_kwargs,
359
+ **ensemble_kwargs_model,
360
+ )
339
361
  else:
340
362
  model_init = model_type(**model_init_kwargs)
341
363
 
@@ -358,7 +380,9 @@ def get_preset_models_softclass(hyperparameters, invalid_model_names: list = Non
358
380
  rf_newparams = {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE"}}
359
381
  for i in range(len(rf_params)):
360
382
  rf_params[i].update(rf_newparams)
361
- rf_params = [j for n, j in enumerate(rf_params) if j not in rf_params[(n + 1) :]] # Remove duplicates which may arise after overwriting criterion
383
+ rf_params = [
384
+ j for n, j in enumerate(rf_params) if j not in rf_params[(n + 1) :]
385
+ ] # Remove duplicates which may arise after overwriting criterion
362
386
  hyperparameters_standard["RF"] = rf_params
363
387
  models, model_args_fit = get_preset_models(
364
388
  problem_type=SOFTCLASS,
@@ -17,7 +17,16 @@ DEFAULT_DISTILL_PRIORITY = dict(
17
17
  )
18
18
 
19
19
 
20
- def get_preset_models_distillation(path, problem_type, eval_metric, hyperparameters, level=1, name_suffix="_DSTL", invalid_model_names: list = None, **kwargs):
20
+ def get_preset_models_distillation(
21
+ path,
22
+ problem_type,
23
+ eval_metric,
24
+ hyperparameters,
25
+ level=1,
26
+ name_suffix="_DSTL",
27
+ invalid_model_names: list = None,
28
+ **kwargs,
29
+ ):
21
30
  hyperparameters = process_hyperparameters(hyperparameters)
22
31
  level_key = level if level in hyperparameters.keys() else "default"
23
32
  if level_key not in hyperparameters.keys() and level_key == "default":
@@ -52,7 +61,12 @@ def get_preset_models_distillation(path, problem_type, eval_metric, hyperparamet
52
61
 
53
62
  if problem_type == MULTICLASS:
54
63
  models, model_args_fit = get_preset_models_softclass(
55
- path=path, hyperparameters=hyperparameters, level=level, name_suffix=name_suffix, invalid_model_names=invalid_model_names, **kwargs
64
+ path=path,
65
+ hyperparameters=hyperparameters,
66
+ level=level,
67
+ name_suffix=name_suffix,
68
+ invalid_model_names=invalid_model_names,
69
+ **kwargs,
56
70
  )
57
71
  else: # BINARY or REGRESSION
58
72
  models, model_args_fit = get_preset_models(
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.5.1b20260105"
3
+ __version__ = "1.5.1b20260116"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.5.1b20260105
3
+ Version: 1.5.1b20260116
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.5.1b20260105
44
- Requires-Dist: autogluon.features==1.5.1b20260105
43
+ Requires-Dist: autogluon.core==1.5.1b20260116
44
+ Requires-Dist: autogluon.features==1.5.1b20260116
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
@@ -55,7 +55,7 @@ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
55
55
  Provides-Extra: fastai
56
56
  Requires-Dist: spacy<3.9; extra == "fastai"
57
57
  Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
58
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
58
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
59
59
  Provides-Extra: tabm
60
60
  Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
61
61
  Provides-Extra: tabpfn
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
77
77
  Provides-Extra: tabicl
78
78
  Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
79
79
  Provides-Extra: ray
80
- Requires-Dist: autogluon.core[all]==1.5.1b20260105; extra == "ray"
80
+ Requires-Dist: autogluon.core[all]==1.5.1b20260116; extra == "ray"
81
81
  Provides-Extra: skex
82
82
  Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
83
83
  Provides-Extra: imodels
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
89
89
  Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
90
90
  Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
91
91
  Provides-Extra: all
92
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
93
- Requires-Dist: loguru; extra == "all"
94
- Requires-Dist: transformers; extra == "all"
95
- Requires-Dist: torch<2.10,>=2.6; extra == "all"
96
92
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
93
+ Requires-Dist: loguru; extra == "all"
97
94
  Requires-Dist: omegaconf; extra == "all"
98
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
99
- Requires-Dist: autogluon.core[all]==1.5.1b20260105; extra == "all"
100
95
  Requires-Dist: spacy<3.9; extra == "all"
101
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
96
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
97
+ Requires-Dist: torch<2.10,>=2.6; extra == "all"
98
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
+ Requires-Dist: autogluon.core[all]==1.5.1b20260116; extra == "all"
102
100
  Requires-Dist: einx; extra == "all"
101
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
102
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
103
103
  Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
104
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
104
+ Requires-Dist: transformers; extra == "all"
105
105
  Provides-Extra: tabarena
106
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
107
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
108
- Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
109
- Requires-Dist: loguru; extra == "tabarena"
110
- Requires-Dist: transformers; extra == "tabarena"
111
- Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
112
106
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
107
+ Requires-Dist: loguru; extra == "tabarena"
108
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
109
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
110
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
113
111
  Requires-Dist: omegaconf; extra == "tabarena"
114
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
115
- Requires-Dist: autogluon.core[all]==1.5.1b20260105; extra == "tabarena"
112
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
116
113
  Requires-Dist: spacy<3.9; extra == "tabarena"
117
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
118
- Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
114
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
115
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
116
+ Requires-Dist: autogluon.core[all]==1.5.1b20260116; extra == "tabarena"
119
117
  Requires-Dist: einx; extra == "tabarena"
120
- Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
121
118
  Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
122
- Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
123
- Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
119
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
120
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
121
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
122
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
123
+ Requires-Dist: transformers; extra == "tabarena"
124
124
  Provides-Extra: tests
125
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
126
  Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"