autogluon.tabular 1.3.2b20250723__py3-none-any.whl → 1.4.0b20250725__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (31) hide show
  1. autogluon/tabular/configs/hyperparameter_configs.py +2 -265
  2. autogluon/tabular/configs/presets_configs.py +51 -23
  3. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -1
  4. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +309 -0
  5. autogluon/tabular/models/automm/automm_model.py +2 -0
  6. autogluon/tabular/models/automm/ft_transformer.py +4 -1
  7. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +18 -6
  8. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +8 -4
  9. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +5 -1
  10. autogluon/tabular/models/mitra/_internal/models/tab2d.py +3 -0
  11. autogluon/tabular/models/mitra/mitra_model.py +85 -21
  12. autogluon/tabular/models/mitra/sklearn_interface.py +15 -13
  13. autogluon/tabular/models/realmlp/realmlp_model.py +13 -6
  14. autogluon/tabular/models/tabicl/tabicl_model.py +17 -8
  15. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +3 -0
  16. autogluon/tabular/models/tabm/tabm_model.py +14 -6
  17. autogluon/tabular/models/tabm/tabm_reference.py +2 -0
  18. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
  19. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +29 -12
  20. autogluon/tabular/predictor/predictor.py +45 -5
  21. autogluon/tabular/trainer/abstract_trainer.py +2 -0
  22. autogluon/tabular/version.py +1 -1
  23. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/METADATA +40 -18
  24. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/RECORD +31 -30
  25. /autogluon.tabular-1.3.2b20250723-py3.9-nspkg.pth → /autogluon.tabular-1.4.0b20250725-py3.9-nspkg.pth +0 -0
  26. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/LICENSE +0 -0
  27. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/NOTICE +0 -0
  28. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/WHEEL +0 -0
  29. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/namespace_packages.txt +0 -0
  30. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/top_level.txt +0 -0
  31. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250723
3
+ Version: 1.4.0b20250725
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,20 +41,22 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.2b20250723
45
- Requires-Dist: autogluon.features==1.3.2b20250723
44
+ Requires-Dist: autogluon.core==1.4.0b20250725
45
+ Requires-Dist: autogluon.features==1.4.0b20250725
46
46
  Provides-Extra: all
47
- Requires-Dist: spacy<3.9; extra == "all"
48
- Requires-Dist: autogluon.core[all]==1.3.2b20250723; extra == "all"
47
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
49
48
  Requires-Dist: torch<2.8,>=2.2; extra == "all"
50
- Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
51
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
49
+ Requires-Dist: einx; extra == "all"
50
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
52
51
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
53
- Requires-Dist: huggingface-hub[torch]; extra == "all"
54
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
52
+ Requires-Dist: loguru; extra == "all"
55
53
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
56
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
57
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
54
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
55
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
56
+ Requires-Dist: spacy<3.9; extra == "all"
57
+ Requires-Dist: autogluon.core[all]==1.4.0b20250725; extra == "all"
58
+ Requires-Dist: omegaconf; extra == "all"
59
+ Requires-Dist: transformers; extra == "all"
58
60
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
59
61
  Provides-Extra: catboost
60
62
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
@@ -72,9 +74,11 @@ Provides-Extra: mitra
72
74
  Requires-Dist: loguru; extra == "mitra"
73
75
  Requires-Dist: einx; extra == "mitra"
74
76
  Requires-Dist: omegaconf; extra == "mitra"
77
+ Requires-Dist: torch<2.8,>=2.2; extra == "mitra"
75
78
  Requires-Dist: transformers; extra == "mitra"
79
+ Requires-Dist: huggingface-hub[torch]; extra == "mitra"
76
80
  Provides-Extra: ray
77
- Requires-Dist: autogluon.core[all]==1.3.2b20250723; extra == "ray"
81
+ Requires-Dist: autogluon.core[all]==1.4.0b20250725; extra == "ray"
78
82
  Provides-Extra: realmlp
79
83
  Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
80
84
  Provides-Extra: skex
@@ -85,6 +89,24 @@ Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
85
89
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
86
90
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
87
91
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
92
+ Provides-Extra: tabarena
93
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
94
+ Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
95
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
96
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
97
+ Requires-Dist: loguru; extra == "tabarena"
98
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
99
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
100
+ Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
101
+ Requires-Dist: spacy<3.9; extra == "tabarena"
102
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
103
+ Requires-Dist: autogluon.core[all]==1.4.0b20250725; extra == "tabarena"
104
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "tabarena"
105
+ Requires-Dist: omegaconf; extra == "tabarena"
106
+ Requires-Dist: transformers; extra == "tabarena"
107
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
108
+ Requires-Dist: einx; extra == "tabarena"
109
+ Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
88
110
  Provides-Extra: tabicl
89
111
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
90
112
  Provides-Extra: tabm
@@ -96,16 +118,16 @@ Requires-Dist: torch<2.8,>=2.2; extra == "tabpfnmix"
96
118
  Requires-Dist: huggingface-hub[torch]; extra == "tabpfnmix"
97
119
  Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
98
120
  Provides-Extra: tests
121
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
99
122
  Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
123
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "tests"
124
+ Requires-Dist: torch<2.8,>=2.2; extra == "tests"
125
+ Requires-Dist: huggingface-hub[torch]; extra == "tests"
126
+ Requires-Dist: einops<0.9,>=0.7; extra == "tests"
100
127
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
101
128
  Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
102
129
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
103
130
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
104
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
105
- Requires-Dist: loguru; extra == "tests"
106
- Requires-Dist: einx; extra == "tests"
107
- Requires-Dist: omegaconf; extra == "tests"
108
- Requires-Dist: transformers; extra == "tests"
109
131
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
110
132
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
111
133
  Provides-Extra: xgboost
@@ -153,7 +175,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
153
175
 
154
176
  ```python
155
177
  from autogluon.tabular import TabularPredictor
156
- predictor = TabularPredictor(label="class").fit("train.csv")
178
+ predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
157
179
  predictions = predictor.predict("test.csv")
158
180
  ```
159
181
 
@@ -1,13 +1,14 @@
1
- autogluon.tabular-1.3.2b20250723-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.0b20250725-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=cWdZXGTK9OOrSXp72ZyqoDUyrWAq0AaDJEEI5uLNbJM,91
3
+ autogluon/tabular/version.py,sha256=jKQHc6rb8KlpzX1_jnH5NX-mZVITo1-rtReHD8lPZms,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
- autogluon/tabular/configs/hyperparameter_configs.py,sha256=hp8J7g5GY3Couz929f1ItawobCw-isLTZJBcLoJY348,18035
8
- autogluon/tabular/configs/presets_configs.py,sha256=2Jlq1X9sVmVlyUxWsZpDV7ma2TncH5Y2HXDML7x2gYc,6810
7
+ autogluon/tabular/configs/hyperparameter_configs.py,sha256=aQ1rrF8P0MX4Ic5M33O96JtKV-K7YpDrgJmWhYmEyug,6848
8
+ autogluon/tabular/configs/presets_configs.py,sha256=KxZkUU58dxvKeY8g94gdIJkqi2eos68262-efDJVrhY,7755
9
9
  autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=oKO_2nEpI_EiLaUGmNN-3kPBIp5ATndbCOaVZ1m0048,29911
10
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=6yd84vPqOk-6sLCoM_e_PlphrR2NZUjliS7L1SMKMug,29777
11
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=1EH54KvJT35xNVegh1SuvBWt0Qx07vQUdHyc10TwaOI,11966
11
12
  autogluon/tabular/experimental/__init__.py,sha256=PpkdMSv_pPZted1XRIuzcFWKjM-66VMUukTnCcoiW0s,100
12
13
  autogluon/tabular/experimental/_scikit_mixin.py,sha256=cKeCmtURAXZnhQGrkCBw5rmACCQF7biAWTT3qX8bM2Q,2281
13
14
  autogluon/tabular/experimental/_tabular_classifier.py,sha256=7lGoFdvkHiZS3VpcXo97q4ENV9qyIVDExlWkm0wzL3s,2527
@@ -21,8 +22,8 @@ autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
21
22
  autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
22
23
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
23
24
  autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
- autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYMmQ4Jp5hINJa_fSm-j8,11322
25
- autogluon/tabular/models/automm/ft_transformer.py,sha256=yZ9-TTA4GbtutHhz0Djkrl-rIFNxc7A2LBOFOXYOxVY,3886
25
+ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB7EchcPdSVVncxA9jEM,11355
26
+ autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
26
27
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
28
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
28
29
  autogluon/tabular/models/catboost/catboost_model.py,sha256=08cLCrhSogJSsXlas0_1ZnomatxEGdOjN1WS_NyXOJI,18043
@@ -68,8 +69,8 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
68
69
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
70
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
71
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/mitra/mitra_model.py,sha256=SQehZMs9WBP9o51CJ6L8njuEq0UcunXbbOM3eedhokw,10263
72
- autogluon/tabular/models/mitra/sklearn_interface.py,sha256=p3keXfA3cdQhoT24jAytrC1uHOK8tQXpE2tSWagAQzU,18588
72
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=LISemlSeyZiwC10EHfCG1V_6_lx5Z2SjLqCL6nQKf8c,12712
73
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
73
74
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
74
75
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
75
76
  autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
@@ -81,20 +82,20 @@ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5P
81
82
  autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
82
83
  autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
83
84
  autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
84
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=LWw60of990QFYKAmKZJytERjj5_m1sveYyRFqPcb6DE,17527
85
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=tI8sN9mv3PtEBdmDxcBgzderZ7YQdtn6MxtOWAc8or8,17908
85
86
  autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
86
87
  autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
87
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=M2QbXjnb5b4CK5qBthWa7bGvsi8Ox8cz_D0u7tBD4Mo,4232
88
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=xpG62WFjg9NTqukKSJx3byq-SFqhxgpIG4jwIl1YuEc,1929
88
+ autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=AYxyQ1NJZ3pAp6ny-Y_hqw_4VtyW5X1AABchf7pVsSM,4340
89
+ autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=0uvfyiKrzipde4ZcCDwTE1E3zHelE8xbuNvCeL38J5c,2033
89
90
  autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGSSawPaj7ieRjFOtct_Fyh8LYjo_YtlNG0,13821
90
91
  autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
91
92
  autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
92
93
  autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
93
- autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=w73QQrXZA7m2fdEPpJDVx-XVZK8xWdc_Q1F38uAZiZA,25690
94
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=TorZsQR7LE5QRq2EAq1iT2asLuuAHpgy-PXXrTMxgSs,25743
94
95
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
95
96
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
96
97
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
97
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=hS3n6spbhZ2bTXqP4t73UnzrSNiUqiaQqPakNQHrS9Y,14332
98
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=DS1fsA6gwQGARBQL5KHpw7ExjRE6He4GJkn0NpGGFy8,14591
98
99
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
99
100
  autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
100
101
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
@@ -103,14 +104,14 @@ autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
103
104
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
104
105
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
105
106
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=bOCOW2E2bcWQRik2gmebKDEzevswQO_3WAF0JVX-Sis,6038
107
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=je647L7pFFm8q3Lnl_d7hDPCDIvEkeCiMvBHv6sTDMU,6461
107
108
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
109
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
109
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
110
- autogluon/tabular/models/tabm/tabm_model.py,sha256=IQ4RHM1wnf9GHuEa1zDO_yWUPfmh5xUMEVtQ4EFeQRI,10152
111
- autogluon/tabular/models/tabm/tabm_reference.py,sha256=sZt1LGdifDfJyauVb8wBs9h6lXZJVe0fz0v6oIjXw5A,21908
110
+ autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
111
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=ZWQFNmgsj2pK0-0E_8CXpD-T9AkKyGQWq4npuyLgVcc,10458
112
+ autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
112
113
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
114
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=fZAkiKojjVyLhukH16oOwFpf3v3vRF0XEDGvZDy1zjQ,16304
114
115
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
115
116
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
116
117
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
@@ -136,7 +137,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
136
137
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
138
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
138
139
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
139
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dqjDUpIKQ-SIvbeaDVTq1LfmH4iJ1qRVKpb5_ZMM6oE,14296
140
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=ykE0KGO9tH0RhMLXXjgp1gJ4cKkk7BTLr_rjNnjzT7c,14999
140
141
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
141
142
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
142
143
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -172,7 +173,7 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
172
173
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
173
174
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
174
175
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
175
- autogluon/tabular/predictor/predictor.py,sha256=cjszntXs6k5BZMOaLGaMiC1e2sGkCsnXrH9rVI972-0,356548
176
+ autogluon/tabular/predictor/predictor.py,sha256=ZbkMRGlFJtDyptgU4eDKC7S30OLMB1FnhdGHp3vyoDM,359083
176
177
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
177
178
  autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
178
179
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
@@ -181,18 +182,18 @@ autogluon/tabular/testing/fit_helper.py,sha256=0eTvPtqM8k8hlOUIHQiwTzik4juTjHQt1
181
182
  autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
182
183
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
183
184
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
184
- autogluon/tabular/trainer/abstract_trainer.py,sha256=8uP3DNJCgmQuDWG0zGJnSNrMCVyMbe8mm11hA8GSP98,232409
185
+ autogluon/tabular/trainer/abstract_trainer.py,sha256=9FiBqOV2h8era6KfydFSqhTlh7RnHkvlvzqsZuij7nE,232527
185
186
  autogluon/tabular/trainer/auto_trainer.py,sha256=ZQgQKFT1iHzzun5o5ojdq5pSQmr9ctTkNhe2r9OPOr0,8731
186
187
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
187
188
  autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju1OWi7EJwHay4jjljqt_E0,16546
188
189
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
189
190
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
190
191
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
191
- autogluon.tabular-1.3.2b20250723.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
192
- autogluon.tabular-1.3.2b20250723.dist-info/METADATA,sha256=fkvW5HAyMBXKcY4VqpMJDlJORVwspLpxQHDIkgUxsXM,14875
193
- autogluon.tabular-1.3.2b20250723.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
194
- autogluon.tabular-1.3.2b20250723.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
195
- autogluon.tabular-1.3.2b20250723.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
196
- autogluon.tabular-1.3.2b20250723.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.3.2b20250723.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
198
- autogluon.tabular-1.3.2b20250723.dist-info/RECORD,,
192
+ autogluon.tabular-1.4.0b20250725.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
+ autogluon.tabular-1.4.0b20250725.dist-info/METADATA,sha256=n_wcsTvwtMvOXv7eIkWRc9qVKukcl0NhzUihuv4ZwCI,16087
194
+ autogluon.tabular-1.4.0b20250725.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
+ autogluon.tabular-1.4.0b20250725.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
+ autogluon.tabular-1.4.0b20250725.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.4.0b20250725.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
+ autogluon.tabular-1.4.0b20250725.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
+ autogluon.tabular-1.4.0b20250725.dist-info/RECORD,,