autogluon.tabular 1.3.2b20250723__py3-none-any.whl → 1.4.0b20250725__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (31) hide show
  1. autogluon/tabular/configs/hyperparameter_configs.py +2 -265
  2. autogluon/tabular/configs/presets_configs.py +51 -23
  3. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -1
  4. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +309 -0
  5. autogluon/tabular/models/automm/automm_model.py +2 -0
  6. autogluon/tabular/models/automm/ft_transformer.py +4 -1
  7. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +18 -6
  8. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +8 -4
  9. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +5 -1
  10. autogluon/tabular/models/mitra/_internal/models/tab2d.py +3 -0
  11. autogluon/tabular/models/mitra/mitra_model.py +85 -21
  12. autogluon/tabular/models/mitra/sklearn_interface.py +15 -13
  13. autogluon/tabular/models/realmlp/realmlp_model.py +13 -6
  14. autogluon/tabular/models/tabicl/tabicl_model.py +17 -8
  15. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +3 -0
  16. autogluon/tabular/models/tabm/tabm_model.py +14 -6
  17. autogluon/tabular/models/tabm/tabm_reference.py +2 -0
  18. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
  19. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +29 -12
  20. autogluon/tabular/predictor/predictor.py +45 -5
  21. autogluon/tabular/trainer/abstract_trainer.py +2 -0
  22. autogluon/tabular/version.py +1 -1
  23. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/METADATA +40 -18
  24. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/RECORD +31 -30
  25. /autogluon.tabular-1.3.2b20250723-py3.9-nspkg.pth → /autogluon.tabular-1.4.0b20250725-py3.9-nspkg.pth +0 -0
  26. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/LICENSE +0 -0
  27. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/NOTICE +0 -0
  28. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/WHEEL +0 -0
  29. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/namespace_packages.txt +0 -0
  30. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/top_level.txt +0 -0
  31. {autogluon.tabular-1.3.2b20250723.dist-info → autogluon.tabular-1.4.0b20250725.dist-info}/zip-safe +0 -0
@@ -1,6 +1,7 @@
1
1
  import copy
2
2
 
3
3
  from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
4
+ from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
4
5
 
5
6
  # Dictionary of preset hyperparameter configurations.
6
7
  hyperparameter_config_dict = dict(
@@ -31,10 +32,6 @@ hyperparameter_config_dict = dict(
31
32
  {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
32
33
  {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
33
34
  ],
34
- "KNN": [
35
- {"weights": "uniform", "ag_args": {"name_suffix": "Unif"}},
36
- {"weights": "distance", "ag_args": {"name_suffix": "Dist"}},
37
- ],
38
35
  },
39
36
  # Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy.
40
37
  light={
@@ -117,269 +114,9 @@ hyperparameter_config_dict = dict(
117
114
  # 'IM_BOOSTEDRULES': [{'n_estimators': 5}, {'n_estimators': 10}],
118
115
  # 'IM_HSTREE': [{'max_rules': 6}, {'max_rules': 12}, {'max_rules': 18}],
119
116
  },
120
- zeroshot_hpo={
121
- "XT": [{"min_samples_leaf": 1, "max_leaf_nodes": 15000, "max_features": 0.5, "ag_args": {"name_suffix": "_r19", "priority": 20}}],
122
- "RF": [{"min_samples_leaf": 5, "max_leaf_nodes": 50000, "max_features": 0.5, "ag_args": {"name_suffix": "_r5", "priority": 19}}],
123
- "GBM": [
124
- {
125
- "extra_trees": False,
126
- "feature_fraction": 0.7248284762542815,
127
- "learning_rate": 0.07947286942946127,
128
- "min_data_in_leaf": 50,
129
- "num_leaves": 89,
130
- "ag_args": {"name_suffix": "_r158", "priority": 18},
131
- },
132
- {
133
- "extra_trees": True,
134
- "feature_fraction": 0.7832570544199176,
135
- "learning_rate": 0.021720607471727896,
136
- "min_data_in_leaf": 3,
137
- "num_leaves": 21,
138
- "ag_args": {"name_suffix": "_r118", "priority": 17},
139
- },
140
- {
141
- "extra_trees": True,
142
- "feature_fraction": 0.7113010892989156,
143
- "learning_rate": 0.012535427424259274,
144
- "min_data_in_leaf": 16,
145
- "num_leaves": 48,
146
- "ag_args": {"name_suffix": "_r97", "priority": 16},
147
- },
148
- {
149
- "extra_trees": True,
150
- "feature_fraction": 0.45555769907110816,
151
- "learning_rate": 0.009591347321206594,
152
- "min_data_in_leaf": 50,
153
- "num_leaves": 110,
154
- "ag_args": {"name_suffix": "_r71", "priority": 15},
155
- },
156
- {
157
- "extra_trees": False,
158
- "feature_fraction": 0.40979710161022476,
159
- "learning_rate": 0.008708890211023034,
160
- "min_data_in_leaf": 3,
161
- "num_leaves": 80,
162
- "ag_args": {"name_suffix": "_r111", "priority": 14},
163
- },
164
- ],
165
- "FASTAI": [
166
- {
167
- "bs": 1024,
168
- "emb_drop": 0.6167722379778131,
169
- "epochs": 44,
170
- "layers": [200, 100, 50],
171
- "lr": 0.053440377855629266,
172
- "ps": 0.48477211305443607,
173
- "ag_args": {"name_suffix": "_r25", "priority": 13},
174
- },
175
- {
176
- "bs": 1024,
177
- "emb_drop": 0.6046989241462619,
178
- "epochs": 48,
179
- "layers": [200, 100, 50],
180
- "lr": 0.00775309042164966,
181
- "ps": 0.09244767444160731,
182
- "ag_args": {"name_suffix": "_r51", "priority": 12},
183
- },
184
- {
185
- "bs": 512,
186
- "emb_drop": 0.6557225316526186,
187
- "epochs": 49,
188
- "layers": [200, 100],
189
- "lr": 0.023627682025564638,
190
- "ps": 0.519566584552178,
191
- "ag_args": {"name_suffix": "_r82", "priority": 11},
192
- },
193
- {
194
- "bs": 2048,
195
- "emb_drop": 0.4066210919034579,
196
- "epochs": 43,
197
- "layers": [400, 200],
198
- "lr": 0.0029598312717673434,
199
- "ps": 0.4378695797438974,
200
- "ag_args": {"name_suffix": "_r121", "priority": 10},
201
- },
202
- {
203
- "bs": 128,
204
- "emb_drop": 0.44339037504795686,
205
- "epochs": 31,
206
- "layers": [400, 200, 100],
207
- "lr": 0.008615195908919904,
208
- "ps": 0.19220253419114286,
209
- "ag_args": {"name_suffix": "_r145", "priority": 9},
210
- },
211
- {
212
- "bs": 128,
213
- "emb_drop": 0.12106594798980945,
214
- "epochs": 38,
215
- "layers": [200, 100, 50],
216
- "lr": 0.037991970245029975,
217
- "ps": 0.33120008492595093,
218
- "ag_args": {"name_suffix": "_r173", "priority": 8},
219
- },
220
- {
221
- "bs": 128,
222
- "emb_drop": 0.4599138419358,
223
- "epochs": 47,
224
- "layers": [200, 100],
225
- "lr": 0.03888383281136287,
226
- "ps": 0.28193673177122863,
227
- "ag_args": {"name_suffix": "_r128", "priority": 7},
228
- },
229
- ],
230
- "CAT": [
231
- {"depth": 5, "l2_leaf_reg": 4.774992314058497, "learning_rate": 0.038551267822920274, "ag_args": {"name_suffix": "_r16", "priority": 6}},
232
- {"depth": 4, "l2_leaf_reg": 1.9950125740798321, "learning_rate": 0.028091050379971633, "ag_args": {"name_suffix": "_r42", "priority": 5}},
233
- {"depth": 6, "l2_leaf_reg": 1.8298803017644376, "learning_rate": 0.017844259810823604, "ag_args": {"name_suffix": "_r93", "priority": 4}},
234
- {"depth": 7, "l2_leaf_reg": 4.81099604606794, "learning_rate": 0.019085060180573103, "ag_args": {"name_suffix": "_r44", "priority": 3}},
235
- ],
236
- },
237
- zeroshot_hpo_hybrid={
238
- "NN_TORCH": {},
239
- "XT": [
240
- {"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
241
- {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
242
- {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
243
- {"min_samples_leaf": 1, "max_leaf_nodes": 15000, "max_features": 0.5, "ag_args": {"name_suffix": "_r19", "priority": 20}},
244
- ],
245
- "RF": [
246
- {"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
247
- {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
248
- {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
249
- {"min_samples_leaf": 5, "max_leaf_nodes": 50000, "max_features": 0.5, "ag_args": {"name_suffix": "_r5", "priority": 19}},
250
- ],
251
- "GBM": [
252
- {"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
253
- {},
254
- {
255
- "learning_rate": 0.03,
256
- "num_leaves": 128,
257
- "feature_fraction": 0.9,
258
- "min_data_in_leaf": 3,
259
- "ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
260
- },
261
- {
262
- "extra_trees": False,
263
- "feature_fraction": 0.7248284762542815,
264
- "learning_rate": 0.07947286942946127,
265
- "min_data_in_leaf": 50,
266
- "num_leaves": 89,
267
- "ag_args": {"name_suffix": "_r158", "priority": 18},
268
- },
269
- {
270
- "extra_trees": True,
271
- "feature_fraction": 0.7832570544199176,
272
- "learning_rate": 0.021720607471727896,
273
- "min_data_in_leaf": 3,
274
- "num_leaves": 21,
275
- "ag_args": {"name_suffix": "_r118", "priority": 17},
276
- },
277
- {
278
- "extra_trees": True,
279
- "feature_fraction": 0.7113010892989156,
280
- "learning_rate": 0.012535427424259274,
281
- "min_data_in_leaf": 16,
282
- "num_leaves": 48,
283
- "ag_args": {"name_suffix": "_r97", "priority": 16},
284
- },
285
- {
286
- "extra_trees": True,
287
- "feature_fraction": 0.45555769907110816,
288
- "learning_rate": 0.009591347321206594,
289
- "min_data_in_leaf": 50,
290
- "num_leaves": 110,
291
- "ag_args": {"name_suffix": "_r71", "priority": 15},
292
- },
293
- {
294
- "extra_trees": False,
295
- "feature_fraction": 0.40979710161022476,
296
- "learning_rate": 0.008708890211023034,
297
- "min_data_in_leaf": 3,
298
- "num_leaves": 80,
299
- "ag_args": {"name_suffix": "_r111", "priority": 14},
300
- },
301
- ],
302
- "XGB": {},
303
- "FASTAI": [
304
- {},
305
- {
306
- "bs": 1024,
307
- "emb_drop": 0.6167722379778131,
308
- "epochs": 44,
309
- "layers": [200, 100, 50],
310
- "lr": 0.053440377855629266,
311
- "ps": 0.48477211305443607,
312
- "ag_args": {"name_suffix": "_r25", "priority": 13},
313
- },
314
- {
315
- "bs": 1024,
316
- "emb_drop": 0.6046989241462619,
317
- "epochs": 48,
318
- "layers": [200, 100, 50],
319
- "lr": 0.00775309042164966,
320
- "ps": 0.09244767444160731,
321
- "ag_args": {"name_suffix": "_r51", "priority": 12},
322
- },
323
- {
324
- "bs": 512,
325
- "emb_drop": 0.6557225316526186,
326
- "epochs": 49,
327
- "layers": [200, 100],
328
- "lr": 0.023627682025564638,
329
- "ps": 0.519566584552178,
330
- "ag_args": {"name_suffix": "_r82", "priority": 11},
331
- },
332
- {
333
- "bs": 2048,
334
- "emb_drop": 0.4066210919034579,
335
- "epochs": 43,
336
- "layers": [400, 200],
337
- "lr": 0.0029598312717673434,
338
- "ps": 0.4378695797438974,
339
- "ag_args": {"name_suffix": "_r121", "priority": 10},
340
- },
341
- {
342
- "bs": 128,
343
- "emb_drop": 0.44339037504795686,
344
- "epochs": 31,
345
- "layers": [400, 200, 100],
346
- "lr": 0.008615195908919904,
347
- "ps": 0.19220253419114286,
348
- "ag_args": {"name_suffix": "_r145", "priority": 9},
349
- },
350
- {
351
- "bs": 128,
352
- "emb_drop": 0.12106594798980945,
353
- "epochs": 38,
354
- "layers": [200, 100, 50],
355
- "lr": 0.037991970245029975,
356
- "ps": 0.33120008492595093,
357
- "ag_args": {"name_suffix": "_r173", "priority": 8},
358
- },
359
- {
360
- "bs": 128,
361
- "emb_drop": 0.4599138419358,
362
- "epochs": 47,
363
- "layers": [200, 100],
364
- "lr": 0.03888383281136287,
365
- "ps": 0.28193673177122863,
366
- "ag_args": {"name_suffix": "_r128", "priority": 7},
367
- },
368
- ],
369
- "CAT": [
370
- {},
371
- {"depth": 5, "l2_leaf_reg": 4.774992314058497, "learning_rate": 0.038551267822920274, "ag_args": {"name_suffix": "_r16", "priority": 6}},
372
- {"depth": 4, "l2_leaf_reg": 1.9950125740798321, "learning_rate": 0.028091050379971633, "ag_args": {"name_suffix": "_r42", "priority": 5}},
373
- {"depth": 6, "l2_leaf_reg": 1.8298803017644376, "learning_rate": 0.017844259810823604, "ag_args": {"name_suffix": "_r93", "priority": 4}},
374
- {"depth": 7, "l2_leaf_reg": 4.81099604606794, "learning_rate": 0.019085060180573103, "ag_args": {"name_suffix": "_r44", "priority": 3}},
375
- ],
376
- "KNN": [
377
- {"weights": "uniform", "ag_args": {"name_suffix": "Unif"}},
378
- {"weights": "distance", "ag_args": {"name_suffix": "Dist"}},
379
- ],
380
- },
381
117
  zeroshot=hyperparameter_portfolio_zeroshot_2023,
382
118
  zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
119
+ zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
383
120
  )
384
121
 
385
122
  tabpfnmix_default = {
@@ -1,25 +1,5 @@
1
1
  # Dictionary of preset fit() parameter configurations.
2
2
  tabular_presets_dict = dict(
3
- # [EXPERIMENTAL PRESET] The `experimental_quality` preset may be changed or removed without warning.
4
- # This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
5
- # Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
6
- # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
7
- # Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
8
- # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
9
- # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
10
- # For best results, use as large of an instance as possible with as many CPU cores as possible (ideally 64+ cores)
11
- # DOES NOT SUPPORT GPU.
12
- # Aliases: experimental
13
- experimental_quality={
14
- "auto_stack": True,
15
- "dynamic_stacking": "auto",
16
- "num_bag_sets": 1,
17
- "hyperparameters": "experimental",
18
- "fit_strategy": "parallel",
19
- "num_gpus": 0,
20
- "time_limit": 3600,
21
- },
22
-
23
3
  # Best predictive accuracy with little consideration to inference time or disk usage. Achieve even better results by specifying a large time_limit value.
24
4
  # Recommended for applications that benefit from the best possible model accuracy.
25
5
  # Aliases: best
@@ -94,7 +74,52 @@ tabular_presets_dict = dict(
94
74
  # ------------------------------------------
95
75
  # Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
96
76
  # Experimental presets can be removed or changed without warning.
97
- # No Experimental Presets in v1.0
77
+
78
+ # [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
79
+ # This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
80
+ # Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
81
+ # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
82
+ # Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
83
+ # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
84
+ # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
85
+ # For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
86
+ # Aliases: extreme, experimental, experimental_quality
87
+ # GPU STRONGLY RECOMMENDED
88
+ extreme_quality={
89
+ "auto_stack": True,
90
+ "dynamic_stacking": "auto",
91
+ "num_bag_sets": 1,
92
+ "_experimental_dynamic_hyperparameters": True,
93
+ "hyperparameters": None,
94
+ "time_limit": 3600,
95
+ },
96
+
97
+ # Preset with a portfolio learned from TabArena v0.1: https://tabarena.ai/
98
+ # Uses tabular foundation models: TabPFNv2, TabICL, Mitra
99
+ # Uses deep learning model: TabM
100
+ # Uses tree models: LightGBM, CatBoost, XGBoost
101
+ # Extremely powerful on small datasets with <= 10000 training samples.
102
+ # Requires a GPU for best results.
103
+ tabarena={
104
+ "auto_stack": True,
105
+ "dynamic_stacking": "auto",
106
+ "num_bag_sets": 1,
107
+ "num_stack_levels": 0,
108
+ "hyperparameters": "zeroshot_2025_tabfm",
109
+ "time_limit": 3600,
110
+ },
111
+
112
+ # DOES NOT SUPPORT GPU.
113
+ experimental_quality_v120={
114
+ "auto_stack": True,
115
+ "dynamic_stacking": "auto",
116
+ "num_bag_sets": 1,
117
+ "hyperparameters": "experimental",
118
+ "fit_strategy": "parallel",
119
+ "num_gpus": 0,
120
+ "time_limit": 3600,
121
+ },
122
+
98
123
  # ------------------------------------------
99
124
  # ------------------------------------------
100
125
  # ------------------------------------------
@@ -103,7 +128,7 @@ tabular_presets_dict = dict(
103
128
 
104
129
  # Alias preset name alternatives
105
130
  tabular_presets_alias = dict(
106
- experimental="experimental_quality",
131
+ extreme="extreme_quality",
107
132
  best="best_quality",
108
133
  high="high_quality",
109
134
  high_quality_fast_inference_only_refit="high_quality",
@@ -111,9 +136,12 @@ tabular_presets_alias = dict(
111
136
  good_quality_faster_inference_only_refit="good_quality",
112
137
  medium="medium_quality",
113
138
  medium_quality_faster_train="medium_quality",
114
- eq="experimental_quality",
139
+ eq="extreme_quality",
115
140
  bq="best_quality",
116
141
  hq="high_quality",
117
142
  gq="good_quality",
118
143
  mq="medium_quality",
144
+ experimental="extreme_quality",
145
+ experimental_quality="extreme_quality",
146
+ experimental_quality_v140="extreme_quality",
119
147
  )
@@ -793,5 +793,4 @@ hyperparameter_portfolio_zeroshot_2023 = {
793
793
  {"max_features": 1.0, "max_leaf_nodes": 40459, "min_samples_leaf": 1, "ag_args": {"name_suffix": "_r197", "priority": -78}},
794
794
  {"max_features": "sqrt", "max_leaf_nodes": 29702, "min_samples_leaf": 2, "ag_args": {"name_suffix": "_r126", "priority": -86}},
795
795
  ],
796
- "KNN": [{"weights": "uniform", "ag_args": {"name_suffix": "Unif"}}, {"weights": "distance", "ag_args": {"name_suffix": "Dist"}}],
797
796
  }