autogluon.tabular 1.3.2b20250709__py3-none-any.whl → 1.3.2b20250710__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. autogluon/tabular/models/__init__.py +3 -0
  2. autogluon/tabular/models/catboost/callbacks.py +3 -2
  3. autogluon/tabular/models/catboost/catboost_model.py +2 -2
  4. autogluon/tabular/models/catboost/catboost_utils.py +7 -3
  5. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +3 -3
  6. autogluon/tabular/models/lgb/lgb_model.py +2 -2
  7. autogluon/tabular/models/realmlp/__init__.py +0 -0
  8. autogluon/tabular/models/realmlp/realmlp_model.py +347 -0
  9. autogluon/tabular/models/rf/rf_model.py +2 -1
  10. autogluon/tabular/models/tabicl/__init__.py +0 -0
  11. autogluon/tabular/models/tabicl/tabicl_model.py +174 -0
  12. autogluon/tabular/models/tabm/__init__.py +0 -0
  13. autogluon/tabular/models/tabm/_tabm_internal.py +544 -0
  14. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +807 -0
  15. autogluon/tabular/models/tabm/tabm_model.py +275 -0
  16. autogluon/tabular/models/tabm/tabm_reference.py +627 -0
  17. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +3 -3
  18. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -3
  19. autogluon/tabular/models/xgboost/xgboost_model.py +2 -2
  20. autogluon/tabular/predictor/predictor.py +5 -3
  21. autogluon/tabular/registry/_ag_model_registry.py +6 -0
  22. autogluon/tabular/testing/fit_helper.py +27 -25
  23. autogluon/tabular/testing/generate_datasets.py +7 -0
  24. autogluon/tabular/trainer/abstract_trainer.py +1 -1
  25. autogluon/tabular/trainer/model_presets/presets.py +10 -1
  26. autogluon/tabular/version.py +1 -1
  27. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/METADATA +21 -13
  28. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/RECORD +35 -26
  29. /autogluon.tabular-1.3.2b20250709-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250710-py3.9-nspkg.pth +0 -0
  30. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/LICENSE +0 -0
  31. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/NOTICE +0 -0
  32. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/WHEEL +0 -0
  33. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/namespace_packages.txt +0 -0
  34. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/top_level.txt +0 -0
  35. {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/zip-safe +0 -0
@@ -401,7 +401,7 @@ class TabularPredictor:
401
401
  time_limit: float = None,
402
402
  presets: list[str] | str = None,
403
403
  hyperparameters: dict | str = None,
404
- feature_metadata="infer",
404
+ feature_metadata: str | FeatureMetadata = "infer",
405
405
  infer_limit: float = None,
406
406
  infer_limit_batch_size: int = None,
407
407
  fit_weighted_ensemble: bool = True,
@@ -591,6 +591,8 @@ class TabularPredictor:
591
591
  Advanced functionality: Custom AutoGluon model arguments
592
592
  These arguments are optional and can be specified in any model's hyperparameters.
593
593
  Example: `hyperparameters = {'RF': {..., 'ag_args': {'name_suffix': 'CustomModelSuffix', 'disable_in_hpo': True}}`
594
+ Individual arguments can be passed for ag_args_fit by adding the prefix `ag.`: `hyperparameters = {'RF': {..., 'ag.num_cpus': 1}}`
595
+ Individual arguments can be passed for ag_args_ensemble by adding the prefix `ag.ens`: `hyperparameters = {'RF': {..., 'ag.ens.fold_fitting_strategy': 'sequential_local'}}`
594
596
  ag_args: Dictionary of customization options related to meta properties of the model such as its name, the order it is trained, the problem types it is valid for, and the type of HPO it utilizes.
595
597
  Valid keys:
596
598
  name: (str) The name of the model. This overrides AutoGluon's naming logic and all other name arguments if present.
@@ -659,10 +661,10 @@ class TabularPredictor:
659
661
  num_folds_parallel: (int or str, default='auto') Number of folds to be trained in parallel if using ParallelLocalFoldFittingStrategy. Consider lowering this value if you encounter either out of memory issue or CUDA out of memory issue(when trained on gpu).
660
662
  if 'auto', will try to train all folds in parallel.
661
663
 
662
- feature_metadata : :class:`autogluon.tabular.FeatureMetadata` or str, default = 'infer'
664
+ feature_metadata : :class:`autogluon.common.FeatureMetadata` or str, default = 'infer'
663
665
  The feature metadata used in various inner logic in feature preprocessing.
664
666
  If 'infer', will automatically construct a FeatureMetadata object based on the properties of `train_data`.
665
- In this case, `train_data` is input into :meth:`autogluon.tabular.FeatureMetadata.from_df` to infer `feature_metadata`.
667
+ In this case, `train_data` is input into :meth:`autogluon.common.FeatureMetadata.from_df` to infer `feature_metadata`.
666
668
  If 'infer' incorrectly assumes the dtypes of features, consider explicitly specifying `feature_metadata`.
667
669
  infer_limit : float, default = None
668
670
  The inference time limit in seconds per row to adhere to during fit.
@@ -19,8 +19,11 @@ from ..models import (
19
19
  LinearModel,
20
20
  MultiModalPredictorModel,
21
21
  NNFastAiTabularModel,
22
+ RealMLPModel,
22
23
  RFModel,
23
24
  RuleFitModel,
25
+ TabICLModel,
26
+ TabMModel,
24
27
  TabPFNMixModel,
25
28
  TabPFNModel,
26
29
  TabularNeuralNetTorchModel,
@@ -38,6 +41,7 @@ REGISTERED_MODEL_CLS_LST = [
38
41
  LGBModel,
39
42
  CatBoostModel,
40
43
  XGBoostModel,
44
+ RealMLPModel,
41
45
  TabularNeuralNetTorchModel,
42
46
  LinearModel,
43
47
  NNFastAiTabularModel,
@@ -45,6 +49,8 @@ REGISTERED_MODEL_CLS_LST = [
45
49
  ImagePredictorModel,
46
50
  MultiModalPredictorModel,
47
51
  FTTransformerModel,
52
+ TabICLModel,
53
+ TabMModel,
48
54
  TabPFNModel,
49
55
  TabPFNMixModel,
50
56
  FastTextModel,
@@ -21,6 +21,7 @@ from autogluon.tabular.testing.generate_datasets import (
21
21
  generate_toy_multiclass_dataset,
22
22
  generate_toy_regression_dataset,
23
23
  generate_toy_quantile_dataset,
24
+ generate_toy_quantile_single_level_dataset,
24
25
  generate_toy_multiclass_10_dataset,
25
26
  generate_toy_regression_10_dataset,
26
27
  generate_toy_quantile_10_dataset,
@@ -72,6 +73,7 @@ class DatasetLoaderHelper:
72
73
  toy_multiclass=generate_toy_multiclass_dataset,
73
74
  toy_regression=generate_toy_regression_dataset,
74
75
  toy_quantile=generate_toy_quantile_dataset,
76
+ toy_quantile_single_level=generate_toy_quantile_single_level_dataset,
75
77
  toy_binary_10=generate_toy_binary_10_dataset,
76
78
  toy_multiclass_10=generate_toy_multiclass_10_dataset,
77
79
  toy_regression_10=generate_toy_regression_10_dataset,
@@ -393,10 +395,10 @@ class FitHelper:
393
395
  )
394
396
 
395
397
  problem_type_dataset_map = {
396
- "binary": "toy_binary",
397
- "multiclass": "toy_multiclass",
398
- "regression": "toy_regression",
399
- "quantile": "toy_quantile",
398
+ "binary": ["toy_binary"],
399
+ "multiclass": ["toy_multiclass"],
400
+ "regression": ["toy_regression"],
401
+ "quantile": ["toy_quantile", "toy_quantile_single_level"],
400
402
  }
401
403
 
402
404
  problem_types_refit_full = []
@@ -419,20 +421,20 @@ class FitHelper:
419
421
  if extra_metrics:
420
422
  _extra_metrics = METRICS.get(problem_type, None)
421
423
  refit_full = problem_type in problem_types_refit_full
422
- dataset_name = problem_type_dataset_map[problem_type]
423
- FitHelper.fit_and_validate_dataset(
424
- dataset_name=dataset_name,
425
- fit_args=fit_args,
426
- fit_weighted_ensemble=False,
427
- refit_full=refit_full,
428
- extra_metrics=_extra_metrics,
429
- raise_on_model_failure=raise_on_model_failure,
430
- **kwargs,
431
- )
424
+ for dataset_name in problem_type_dataset_map[problem_type]:
425
+ FitHelper.fit_and_validate_dataset(
426
+ dataset_name=dataset_name,
427
+ fit_args=fit_args,
428
+ fit_weighted_ensemble=False,
429
+ refit_full=refit_full,
430
+ extra_metrics=_extra_metrics,
431
+ raise_on_model_failure=raise_on_model_failure,
432
+ **kwargs,
433
+ )
432
434
 
433
435
  if bag:
434
436
  model_params_bag = copy.deepcopy(model_hyperparameters)
435
- model_params_bag["ag_args_ensemble"] = {"fold_fitting_strategy": "sequential_local"}
437
+ model_params_bag["ag.ens.fold_fitting_strategy"] = "sequential_local"
436
438
  fit_args_bag = dict(
437
439
  hyperparameters={model_cls: model_params_bag},
438
440
  num_bag_folds=2,
@@ -450,16 +452,16 @@ class FitHelper:
450
452
  if extra_metrics:
451
453
  _extra_metrics = METRICS.get(problem_type, None)
452
454
  refit_full = problem_type in problem_types_refit_full
453
- dataset_name = problem_type_dataset_map[problem_type]
454
- FitHelper.fit_and_validate_dataset(
455
- dataset_name=dataset_name,
456
- fit_args=fit_args_bag,
457
- fit_weighted_ensemble=False,
458
- refit_full=refit_full,
459
- extra_metrics=_extra_metrics,
460
- raise_on_model_failure=raise_on_model_failure,
461
- **kwargs,
462
- )
455
+ for dataset_name in problem_type_dataset_map[problem_type]:
456
+ FitHelper.fit_and_validate_dataset(
457
+ dataset_name=dataset_name,
458
+ fit_args=fit_args_bag,
459
+ fit_weighted_ensemble=False,
460
+ refit_full=refit_full,
461
+ extra_metrics=_extra_metrics,
462
+ raise_on_model_failure=raise_on_model_failure,
463
+ **kwargs,
464
+ )
463
465
 
464
466
 
465
467
  def stacked_overfitting_assert(
@@ -64,6 +64,13 @@ def generate_toy_quantile_dataset():
64
64
  return train_data, test_data, dataset_info
65
65
 
66
66
 
67
+ def generate_toy_quantile_single_level_dataset():
68
+ train_data, test_data, dataset_info = generate_toy_regression_dataset()
69
+ dataset_info["problem_type"] = QUANTILE
70
+ dataset_info["init_kwargs"] = {"quantile_levels": [0.71]}
71
+ return train_data, test_data, dataset_info
72
+
73
+
67
74
  def generate_toy_binary_10_dataset():
68
75
  label = "label"
69
76
  dummy_dataset = {
@@ -2950,7 +2950,7 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
2950
2950
  if fit_strategy == "parallel":
2951
2951
  num_cpus = kwargs.get("total_resources", {}).get("num_cpus", "auto")
2952
2952
  if isinstance(num_cpus, str) and num_cpus == "auto":
2953
- num_cpus = get_resource_manager().get_cpu_count_psutil()
2953
+ num_cpus = get_resource_manager().get_cpu_count()
2954
2954
  if num_cpus < 12:
2955
2955
  force_parallel = os.environ.get("AG_FORCE_PARALLEL", "False") == "True"
2956
2956
  if not force_parallel:
@@ -311,6 +311,16 @@ def model_factory(
311
311
  model_params.pop(AG_ARGS, None)
312
312
  model_params.pop(AG_ARGS_ENSEMBLE, None)
313
313
 
314
+ extra_ensemble_hyperparameters = copy.deepcopy(model.get(AG_ARGS_ENSEMBLE, dict()))
315
+
316
+ # Enable user to pass ensemble hyperparameters via `"ag.ens.fold_fitting_strategy": "sequential_local"`
317
+ ag_args_ensemble_prefix = "ag.ens."
318
+ model_param_keys = list(model_params.keys())
319
+ for key in model_param_keys:
320
+ if key.startswith(ag_args_ensemble_prefix):
321
+ key_suffix = key.split(ag_args_ensemble_prefix, 1)[-1]
322
+ extra_ensemble_hyperparameters[key_suffix] = model_params.pop(key)
323
+
314
324
  model_init_kwargs = dict(
315
325
  path=path,
316
326
  name=name,
@@ -321,7 +331,6 @@ def model_factory(
321
331
 
322
332
  if ensemble_kwargs is not None:
323
333
  ensemble_kwargs_model = copy.deepcopy(ensemble_kwargs)
324
- extra_ensemble_hyperparameters = copy.deepcopy(model.get(AG_ARGS_ENSEMBLE, dict()))
325
334
  ensemble_kwargs_model["hyperparameters"] = ensemble_kwargs_model.get("hyperparameters", {})
326
335
  if ensemble_kwargs_model["hyperparameters"] is None:
327
336
  ensemble_kwargs_model["hyperparameters"] = {}
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250709"
3
+ __version__ = "1.3.2b20250710"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250709
3
+ Version: 1.3.2b20250710
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -37,23 +37,24 @@ Description-Content-Type: text/markdown
37
37
  License-File: ../LICENSE
38
38
  License-File: ../NOTICE
39
39
  Requires-Dist: numpy<2.4.0,>=1.25.0
40
- Requires-Dist: scipy<1.16,>=1.5.4
41
- Requires-Dist: pandas<2.3.0,>=2.0.0
42
- Requires-Dist: scikit-learn<1.7.0,>=1.4.0
40
+ Requires-Dist: scipy<1.17,>=1.5.4
41
+ Requires-Dist: pandas<2.4.0,>=2.0.0
42
+ Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.2b20250709
45
- Requires-Dist: autogluon.features==1.3.2b20250709
44
+ Requires-Dist: autogluon.core==1.3.2b20250710
45
+ Requires-Dist: autogluon.features==1.3.2b20250710
46
46
  Provides-Extra: all
47
- Requires-Dist: torch<2.8,>=2.2; extra == "all"
48
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
49
- Requires-Dist: autogluon.core[all]==1.3.2b20250709; extra == "all"
50
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
47
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
48
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
52
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
53
49
  Requires-Dist: spacy<3.9; extra == "all"
54
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
50
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
51
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
52
+ Requires-Dist: autogluon.core[all]==1.3.2b20250710; extra == "all"
55
53
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
56
54
  Requires-Dist: huggingface-hub[torch]; extra == "all"
55
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
56
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
57
+ Requires-Dist: torch<2.8,>=2.2; extra == "all"
57
58
  Provides-Extra: catboost
58
59
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
59
60
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +67,9 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
66
67
  Provides-Extra: lightgbm
67
68
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
69
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.3.2b20250709; extra == "ray"
70
+ Requires-Dist: autogluon.core[all]==1.3.2b20250710; extra == "ray"
71
+ Provides-Extra: realmlp
72
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
70
73
  Provides-Extra: skex
71
74
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
72
75
  Provides-Extra: skl2onnx
@@ -75,6 +78,10 @@ Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
75
78
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
76
79
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
77
80
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
81
+ Provides-Extra: tabicl
82
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
83
+ Provides-Extra: tabm
84
+ Requires-Dist: torch<2.8,>=2.2; extra == "tabm"
78
85
  Provides-Extra: tabpfn
79
86
  Requires-Dist: tabpfn<2.0,>=0.1.11; extra == "tabpfn"
80
87
  Provides-Extra: tabpfnmix
@@ -89,6 +96,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
89
96
  Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
90
97
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
91
98
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
99
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
92
100
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
93
101
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
94
102
  Provides-Extra: xgboost
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.3.2b20250709-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.2b20250710-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=i94MnHj0mC5hagl5l62VVr1Yvo-TQ1K7Kjtpqfc_cYk,91
3
+ autogluon/tabular/version.py,sha256=7DTsh87cIM0xS67uB9g3eKGKiM6QqP2Gr5W3n-lwcfU,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -16,7 +16,7 @@ autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF6
16
16
  autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
17
17
  autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
18
18
  autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
19
- autogluon/tabular/models/__init__.py,sha256=fZDKUKiD9hDzEyFXXbt7_b4yADK9peREdP8QoukWukQ,1036
19
+ autogluon/tabular/models/__init__.py,sha256=yxyjo4hzfpSR42swWVcT-4iDh24H-5lctafb2_P1zuY,1168
20
20
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
22
22
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
@@ -24,10 +24,10 @@ autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
24
24
  autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYMmQ4Jp5hINJa_fSm-j8,11322
25
25
  autogluon/tabular/models/automm/ft_transformer.py,sha256=yZ9-TTA4GbtutHhz0Djkrl-rIFNxc7A2LBOFOXYOxVY,3886
26
26
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
- autogluon/tabular/models/catboost/callbacks.py,sha256=l8x17n_w7oEFs-iDECSdBKZ89yW5g1z-zvj4XLgQPkw,7098
28
- autogluon/tabular/models/catboost/catboost_model.py,sha256=Dv62XDuJ_sFvU95xeY1gHuV_F2RoYDGaFa6-4XNwnnU,17849
27
+ autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
28
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=BxdFGX51S9SH_C5k12AYP3McdGJvfib4F5pw2U3xaj8,17864
29
29
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
30
- autogluon/tabular/models/catboost/catboost_utils.py,sha256=YSc94V4DjrwbmkeUM8306zV7z21oq-K-qGCOj0UE_wg,3167
30
+ autogluon/tabular/models/catboost/catboost_utils.py,sha256=UFEvLbG52USXmwGuKty-7BLqjLKZftvKN3yKJ0FCpK4,3428
31
31
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
32
  autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
33
33
  autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
@@ -36,7 +36,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
36
36
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
37
37
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
38
38
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
39
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=wtvs2VclaEvt-DDtTAxteVpDTXTAYPBp72jGxlGQwgE,29522
39
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=km-8gM7i_pCYggde0M7xysp3jMn811W-dI0aYK_8o5Y,29541
40
40
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
41
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
42
42
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -55,7 +55,7 @@ autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-
55
55
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
56
56
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
57
  autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
58
- autogluon/tabular/models/lgb/lgb_model.py,sha256=yCCro6D--vyQSFQBow9jnsUhbAp5iRkSV0TcLrPgqQM,25756
58
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=BZ9aCfjny9_RnwVizW1wD3WxJBZ-4z4L1qQ2d4-I2x0,25771
59
59
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
60
60
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
61
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
@@ -67,17 +67,26 @@ autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NT
67
67
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
69
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
+ autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=9GD9iL0R9Z0zfW-26Ay7Agh172AdhiZqQlUr96BlbaU,14215
70
72
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/rf/rf_model.py,sha256=2iG45F0k17No7ycrfVMWBfU_WqJwC4MTehaFGsguLzE,21598
73
+ autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
72
74
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
73
75
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
74
76
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
77
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
76
78
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
79
+ autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
80
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=fby1lsElh0EdVtYBSpEDiUBM57BF20JuROc0Cy0AIBk,5946
81
+ autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
+ autogluon/tabular/models/tabm/_tabm_internal.py,sha256=LbIohrZYnXiKbD1ZnXWDJQMBLdQTaL90Fag6fkrF3GI,21093
83
+ autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
84
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=43I8429yTq5U2IDp6ATZB27lyewAW20VzdbPxS-01sA,10115
85
+ autogluon/tabular/models/tabm/tabm_reference.py,sha256=h9FXzyeu6b4vXg9nnM3L2I8dYbcE39USr9C4uMnt4Ek,21788
77
86
  autogluon/tabular/models/tabpfn/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
78
87
  autogluon/tabular/models/tabpfn/tabpfn_model.py,sha256=PEYMuIh5TFLIDy3hcjfz1DcvDu77rbwRq0pKWyuUR04,6787
79
88
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
80
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=Bo-JMnNgI0fYXXTHy3zLAE1OHZv9ikgH4bFBaVSa79g,16174
89
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
81
90
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
91
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
83
92
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
@@ -110,7 +119,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
110
119
  autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
111
120
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
112
121
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=enCnQYN9yNkcTEoPirQZ-NkGbLSZdguiilGn5ASDyEE,42997
122
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=zO2-3oe3T4QgPQCSirXzo8QxrHPqTln39CwbgwXDtsk,43016
114
123
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
115
124
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
116
125
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -121,7 +130,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
121
130
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
122
131
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
123
132
  autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
124
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=_HFwfEbAg0CllEUEk9HVLsXXVBcuC_qsGd7z7arJYPs,15220
133
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=MCzZv3ty2p7N9-4qGPaCUha2VnLBm-vY2KA23Xny0ag,15235
125
134
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
126
135
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
127
136
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
@@ -130,27 +139,27 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
130
139
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
131
140
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
132
141
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
133
- autogluon/tabular/predictor/predictor.py,sha256=j-ymKlk3O5wBHF60mh_flx2k2A1KvFAkANy32XzeYME,356173
142
+ autogluon/tabular/predictor/predictor.py,sha256=cjszntXs6k5BZMOaLGaMiC1e2sGkCsnXrH9rVI972-0,356548
134
143
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
135
- autogluon/tabular/registry/_ag_model_registry.py,sha256=m39NrbsmKjzxAVLrzQBS2dlDJk_t0jwXRb-gM5ROyr8,1414
144
+ autogluon/tabular/registry/_ag_model_registry.py,sha256=Jz9V7IGBosbYCjDmkgUhGvAVXQ6fVwSuB23OB4txSMo,1514
136
145
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
137
146
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
138
- autogluon/tabular/testing/fit_helper.py,sha256=gVHTdAsp_lSZ_qbwjXM7aA5fI32zHj3_zXwEXC9C_ds,19586
139
- autogluon/tabular/testing/generate_datasets.py,sha256=UXPNfviUNZqGcx4mTYIloJxRED6DRMxAgHqbOvjEUCs,3603
147
+ autogluon/tabular/testing/fit_helper.py,sha256=dzyzIBD9s7Ekb_inoAE6sep3bW9QKeYqO4WcDzAhAwg,19818
148
+ autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
140
149
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
141
150
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
142
- autogluon/tabular/trainer/abstract_trainer.py,sha256=F9bT78KHyQi96FbPs6ufaswVQJBzxoK3sTXyRXXpK_g,232416
151
+ autogluon/tabular/trainer/abstract_trainer.py,sha256=8uP3DNJCgmQuDWG0zGJnSNrMCVyMbe8mm11hA8GSP98,232409
143
152
  autogluon/tabular/trainer/auto_trainer.py,sha256=ZQgQKFT1iHzzun5o5ojdq5pSQmr9ctTkNhe2r9OPOr0,8731
144
153
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
145
- autogluon/tabular/trainer/model_presets/presets.py,sha256=3gM_QFpG_BaVFIf8T0nCd-GFMQHhRJU3WrD563AcouY,16120
154
+ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju1OWi7EJwHay4jjljqt_E0,16546
146
155
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
147
156
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
157
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
149
- autogluon.tabular-1.3.2b20250709.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
- autogluon.tabular-1.3.2b20250709.dist-info/METADATA,sha256=_nDctEAD8Nqk0VZ31mthxpr_Ng7WL53oTiC0Yd2X8hU,14069
151
- autogluon.tabular-1.3.2b20250709.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
- autogluon.tabular-1.3.2b20250709.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
- autogluon.tabular-1.3.2b20250709.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
- autogluon.tabular-1.3.2b20250709.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
- autogluon.tabular-1.3.2b20250709.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
- autogluon.tabular-1.3.2b20250709.dist-info/RECORD,,
158
+ autogluon.tabular-1.3.2b20250710.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
159
+ autogluon.tabular-1.3.2b20250710.dist-info/METADATA,sha256=lh-nIixVoTQVDCIk9_oMpYB2Sggw9JMRNx8RxGJG-kY,14394
160
+ autogluon.tabular-1.3.2b20250710.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
161
+ autogluon.tabular-1.3.2b20250710.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
162
+ autogluon.tabular-1.3.2b20250710.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
163
+ autogluon.tabular-1.3.2b20250710.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
164
+ autogluon.tabular-1.3.2b20250710.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
165
+ autogluon.tabular-1.3.2b20250710.dist-info/RECORD,,