autogluon.tabular 1.3.2b20250709__py3-none-any.whl → 1.3.2b20250710__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/__init__.py +3 -0
- autogluon/tabular/models/catboost/callbacks.py +3 -2
- autogluon/tabular/models/catboost/catboost_model.py +2 -2
- autogluon/tabular/models/catboost/catboost_utils.py +7 -3
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +3 -3
- autogluon/tabular/models/lgb/lgb_model.py +2 -2
- autogluon/tabular/models/realmlp/__init__.py +0 -0
- autogluon/tabular/models/realmlp/realmlp_model.py +347 -0
- autogluon/tabular/models/rf/rf_model.py +2 -1
- autogluon/tabular/models/tabicl/__init__.py +0 -0
- autogluon/tabular/models/tabicl/tabicl_model.py +174 -0
- autogluon/tabular/models/tabm/__init__.py +0 -0
- autogluon/tabular/models/tabm/_tabm_internal.py +544 -0
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +807 -0
- autogluon/tabular/models/tabm/tabm_model.py +275 -0
- autogluon/tabular/models/tabm/tabm_reference.py +627 -0
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +3 -3
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +2 -2
- autogluon/tabular/predictor/predictor.py +5 -3
- autogluon/tabular/registry/_ag_model_registry.py +6 -0
- autogluon/tabular/testing/fit_helper.py +27 -25
- autogluon/tabular/testing/generate_datasets.py +7 -0
- autogluon/tabular/trainer/abstract_trainer.py +1 -1
- autogluon/tabular/trainer/model_presets/presets.py +10 -1
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/METADATA +21 -13
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/RECORD +35 -26
- /autogluon.tabular-1.3.2b20250709-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250710-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250710.dist-info}/zip-safe +0 -0
@@ -0,0 +1,275 @@
|
|
1
|
+
"""
|
2
|
+
Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/tabm/tabm_model.py
|
3
|
+
Note: This is a custom implementation of TabM based on TabArena. Because the AutoGluon 1.4 release occurred at nearly
|
4
|
+
the same time as TabM became available on PyPi, we chose to use TabArena's implementation
|
5
|
+
for the AutoGluon 1.4 release as it has already been benchmarked.
|
6
|
+
|
7
|
+
Model: TabM
|
8
|
+
Paper: TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
|
9
|
+
Authors: Yury Gorishniy, Akim Kotelnikov, Artem Babenko
|
10
|
+
Codebase: https://github.com/yandex-research/tabm
|
11
|
+
License: Apache-2.0
|
12
|
+
|
13
|
+
Partially adapted from pytabkit's TabM implementation.
|
14
|
+
"""
|
15
|
+
|
16
|
+
from __future__ import annotations
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import time
|
20
|
+
|
21
|
+
import pandas as pd
|
22
|
+
from autogluon.common.utils.resource_utils import ResourceManager
|
23
|
+
from autogluon.core.models import AbstractModel
|
24
|
+
from autogluon.tabular import __version__
|
25
|
+
|
26
|
+
logger = logging.getLogger(__name__)
|
27
|
+
|
28
|
+
|
29
|
+
class TabMModel(AbstractModel):
|
30
|
+
ag_key = "TABM"
|
31
|
+
ag_name = "TabM"
|
32
|
+
ag_priority = 85
|
33
|
+
|
34
|
+
def __init__(self, **kwargs):
|
35
|
+
super().__init__(**kwargs)
|
36
|
+
self._imputer = None
|
37
|
+
self._features_to_impute = None
|
38
|
+
self._features_to_keep = None
|
39
|
+
self._indicator_columns = None
|
40
|
+
self._features_bool = None
|
41
|
+
self._bool_to_cat = None
|
42
|
+
|
43
|
+
def _fit(
|
44
|
+
self,
|
45
|
+
X: pd.DataFrame,
|
46
|
+
y: pd.Series,
|
47
|
+
X_val: pd.DataFrame = None,
|
48
|
+
y_val: pd.Series = None,
|
49
|
+
time_limit: float | None = None,
|
50
|
+
num_cpus: int = 1,
|
51
|
+
num_gpus: float = 0,
|
52
|
+
**kwargs,
|
53
|
+
):
|
54
|
+
start_time = time.time()
|
55
|
+
|
56
|
+
try:
|
57
|
+
# imports various dependencies such as torch
|
58
|
+
from ._tabm_internal import TabMImplementation
|
59
|
+
from torch.cuda import is_available
|
60
|
+
except ImportError as err:
|
61
|
+
logger.log(
|
62
|
+
40,
|
63
|
+
f"\tFailed to import tabm! To use the TabM model, "
|
64
|
+
f"do: `pip install autogluon.tabular[tabm]=={__version__}`.",
|
65
|
+
)
|
66
|
+
raise err
|
67
|
+
|
68
|
+
device = "cpu" if num_gpus == 0 else "cuda"
|
69
|
+
if (device == "cuda") and (not is_available()):
|
70
|
+
# FIXME: warn instead and switch to CPU.
|
71
|
+
raise AssertionError(
|
72
|
+
"Fit specified to use GPU, but CUDA is not available on this machine. "
|
73
|
+
"Please switch to CPU usage instead.",
|
74
|
+
)
|
75
|
+
|
76
|
+
if X_val is None:
|
77
|
+
from autogluon.core.utils import generate_train_test_split
|
78
|
+
|
79
|
+
X_train, X_val, y_train, y_val = generate_train_test_split(
|
80
|
+
X=X,
|
81
|
+
y=y,
|
82
|
+
problem_type=self.problem_type,
|
83
|
+
test_size=0.2,
|
84
|
+
random_state=0,
|
85
|
+
)
|
86
|
+
|
87
|
+
hyp = self._get_model_params()
|
88
|
+
bool_to_cat = hyp.pop("bool_to_cat", True)
|
89
|
+
|
90
|
+
X = self.preprocess(X, is_train=True, bool_to_cat=bool_to_cat)
|
91
|
+
if X_val is not None:
|
92
|
+
X_val = self.preprocess(X_val)
|
93
|
+
|
94
|
+
self.model = TabMImplementation(
|
95
|
+
n_threads=num_cpus,
|
96
|
+
device=device,
|
97
|
+
problem_type=self.problem_type,
|
98
|
+
early_stopping_metric=self.stopping_metric,
|
99
|
+
**hyp,
|
100
|
+
)
|
101
|
+
|
102
|
+
self.model.fit(
|
103
|
+
X_train=X,
|
104
|
+
y_train=y,
|
105
|
+
X_val=X_val,
|
106
|
+
y_val=y_val,
|
107
|
+
cat_col_names=X.select_dtypes(include="category").columns.tolist(),
|
108
|
+
time_to_fit_in_seconds=time_limit - (time.time() - start_time) if time_limit is not None else None,
|
109
|
+
)
|
110
|
+
|
111
|
+
# FIXME: bool_to_cat is a hack: Maybe move to abstract model?
|
112
|
+
def _preprocess(
|
113
|
+
self,
|
114
|
+
X: pd.DataFrame,
|
115
|
+
is_train: bool = False,
|
116
|
+
bool_to_cat: bool = False,
|
117
|
+
**kwargs,
|
118
|
+
) -> pd.DataFrame:
|
119
|
+
"""Imputes missing values via the mean and adds indicator columns for numerical features.
|
120
|
+
Converts indicator columns to categorical features to avoid them being treated as numerical by RealMLP.
|
121
|
+
"""
|
122
|
+
X = super()._preprocess(X, **kwargs)
|
123
|
+
|
124
|
+
if is_train:
|
125
|
+
self._bool_to_cat = bool_to_cat
|
126
|
+
self._features_bool = self._feature_metadata.get_features(required_special_types=["bool"])
|
127
|
+
if self._bool_to_cat and self._features_bool:
|
128
|
+
# FIXME: Use CategoryFeatureGenerator? Or tell the model which is category
|
129
|
+
X = X.copy(deep=True)
|
130
|
+
X[self._features_bool] = X[self._features_bool].astype("category")
|
131
|
+
|
132
|
+
return X
|
133
|
+
|
134
|
+
def _set_default_params(self):
|
135
|
+
default_params = dict(
|
136
|
+
random_state=0,
|
137
|
+
)
|
138
|
+
for param, val in default_params.items():
|
139
|
+
self._set_default_param_value(param, val)
|
140
|
+
|
141
|
+
@classmethod
|
142
|
+
def supported_problem_types(cls) -> list[str] | None:
|
143
|
+
return ["binary", "multiclass", "regression"]
|
144
|
+
|
145
|
+
def _get_default_stopping_metric(self):
|
146
|
+
return self.eval_metric
|
147
|
+
|
148
|
+
def _get_default_resources(self) -> tuple[int, int]:
|
149
|
+
# only_physical_cores=True is faster in training
|
150
|
+
num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
|
151
|
+
num_gpus = min(ResourceManager.get_gpu_count_torch(), 1)
|
152
|
+
return num_cpus, num_gpus
|
153
|
+
|
154
|
+
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
|
155
|
+
hyperparameters = self._get_model_params()
|
156
|
+
return self.estimate_memory_usage_static(
|
157
|
+
X=X,
|
158
|
+
problem_type=self.problem_type,
|
159
|
+
num_classes=self.num_classes,
|
160
|
+
hyperparameters=hyperparameters,
|
161
|
+
**kwargs,
|
162
|
+
)
|
163
|
+
|
164
|
+
@classmethod
|
165
|
+
def _estimate_memory_usage_static(
|
166
|
+
cls,
|
167
|
+
*,
|
168
|
+
X: pd.DataFrame,
|
169
|
+
hyperparameters: dict = None,
|
170
|
+
num_classes: int | None = 1,
|
171
|
+
**kwargs,
|
172
|
+
) -> int:
|
173
|
+
"""
|
174
|
+
Heuristic memory estimate that correlates strongly with RealMLP
|
175
|
+
"""
|
176
|
+
if num_classes is None:
|
177
|
+
num_classes = 1
|
178
|
+
if hyperparameters is None:
|
179
|
+
hyperparameters = {}
|
180
|
+
|
181
|
+
cat_sizes = []
|
182
|
+
for col in X.select_dtypes(include=["category", "object"]):
|
183
|
+
if isinstance(X[col], pd.CategoricalDtype):
|
184
|
+
# Use .cat.codes for category dtype
|
185
|
+
unique_codes = X[col].cat.codes.unique()
|
186
|
+
else:
|
187
|
+
# For object dtype, treat unique strings as codes
|
188
|
+
unique_codes = X[col].astype("category").cat.codes.unique()
|
189
|
+
cat_sizes.append(len(unique_codes))
|
190
|
+
|
191
|
+
n_numerical = len(X.select_dtypes(include=["number"]).columns)
|
192
|
+
|
193
|
+
# TODO: This estimates very high memory usage,
|
194
|
+
# we probably need to adjust batch size automatically to compensate
|
195
|
+
mem_estimate_bytes = cls._estimate_tabm_ram(
|
196
|
+
hyperparameters=hyperparameters,
|
197
|
+
n_numerical=n_numerical,
|
198
|
+
cat_sizes=cat_sizes,
|
199
|
+
n_classes=num_classes,
|
200
|
+
n_samples=len(X),
|
201
|
+
)
|
202
|
+
|
203
|
+
return mem_estimate_bytes
|
204
|
+
|
205
|
+
@classmethod
|
206
|
+
def _estimate_tabm_ram(
|
207
|
+
cls,
|
208
|
+
hyperparameters: dict,
|
209
|
+
n_numerical: int,
|
210
|
+
cat_sizes: list[int],
|
211
|
+
n_classes: int,
|
212
|
+
n_samples: int,
|
213
|
+
) -> int:
|
214
|
+
num_emb_n_bins = hyperparameters.get("num_emb_n_bins", 48)
|
215
|
+
d_embedding = hyperparameters.get("d_embedding", 16)
|
216
|
+
d_block = hyperparameters.get("d_block", 512)
|
217
|
+
# not completely sure if this is hidden blocks or all blocks, taking the safe option below
|
218
|
+
n_blocks = hyperparameters.get("n_blocks", "auto")
|
219
|
+
if isinstance(n_blocks, str) and n_blocks == "auto":
|
220
|
+
n_blocks = 3
|
221
|
+
batch_size = hyperparameters.get("batch_size", "auto")
|
222
|
+
if isinstance(batch_size, str) and batch_size == "auto":
|
223
|
+
batch_size = cls.get_tabm_auto_batch_size(n_samples=n_samples)
|
224
|
+
tabm_k = hyperparameters.get("tabm_k", 32)
|
225
|
+
predict_batch_size = hyperparameters.get("eval_batch_size", 1024)
|
226
|
+
|
227
|
+
# not completely sure
|
228
|
+
n_params_num_emb = n_numerical * (num_emb_n_bins + 1) * d_embedding
|
229
|
+
n_params_mlp = (n_numerical + sum(cat_sizes)) * d_embedding * (d_block + tabm_k) \
|
230
|
+
+ (n_blocks - 1) * d_block ** 2 \
|
231
|
+
+ n_blocks * d_block + d_block * (1 + max(1, n_classes))
|
232
|
+
# 4 bytes per float, up to 5 copies of parameters (1 standard, 1 .grad, 2 adam, 1 best_epoch)
|
233
|
+
mem_params = 4 * 5 * (n_params_num_emb + n_params_mlp)
|
234
|
+
|
235
|
+
# compute number of floats in forward pass (per batch element)
|
236
|
+
# todo: numerical embedding layer (not sure if this is entirely correct)
|
237
|
+
n_floats_forward = n_numerical * (num_emb_n_bins + d_embedding)
|
238
|
+
# before and after scale
|
239
|
+
n_floats_forward += 2 * (sum(cat_sizes) + n_numerical * d_embedding)
|
240
|
+
# 2 for pre-act, post-act
|
241
|
+
n_floats_forward += n_blocks * 2 * d_block + 2 * max(1, n_classes)
|
242
|
+
# 2 for forward and backward, 4 bytes per float
|
243
|
+
mem_forward_backward = 4 * max(batch_size * 2, predict_batch_size) * n_floats_forward * tabm_k
|
244
|
+
# * 8 is pessimistic for the long tensors in the forward pass, 4 would probably suffice
|
245
|
+
|
246
|
+
mem_ds = n_samples * (4 * n_numerical + 8 * len(cat_sizes))
|
247
|
+
|
248
|
+
# some safety constants and offsets (the 5 is probably excessive)
|
249
|
+
mem_total = 5 * mem_ds + 1.2 * mem_forward_backward + 1.2 * mem_params + 0.3 * (1024 ** 3)
|
250
|
+
|
251
|
+
return mem_total
|
252
|
+
|
253
|
+
@classmethod
|
254
|
+
def get_tabm_auto_batch_size(cls, n_samples: int) -> int:
|
255
|
+
# by Yury Gorishniy, inferred from the choices in the TabM paper.
|
256
|
+
if n_samples < 2_800:
|
257
|
+
return 32
|
258
|
+
if n_samples < 4_500:
|
259
|
+
return 64
|
260
|
+
if n_samples < 6_400:
|
261
|
+
return 128
|
262
|
+
if n_samples < 32_000:
|
263
|
+
return 256
|
264
|
+
if n_samples < 108_000:
|
265
|
+
return 512
|
266
|
+
return 1024
|
267
|
+
|
268
|
+
@classmethod
|
269
|
+
def _class_tags(cls):
|
270
|
+
return {"can_estimate_memory_usage_static": True}
|
271
|
+
|
272
|
+
def _more_tags(self) -> dict:
|
273
|
+
# TODO: Need to add train params support, track best epoch
|
274
|
+
# How to force stopping at a specific epoch?
|
275
|
+
return {"can_refit_full": False}
|