autogluon.tabular 1.2.1b20250413__py3-none-any.whl → 1.2.1b20250415__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -41,6 +41,8 @@ from autogluon.tabular.models.tabular_nn.utils.nn_architecture_utils import infe
41
41
  from .hyperparameters.parameters import get_param_baseline
42
42
  from .hyperparameters.searchspaces import get_default_searchspace
43
43
 
44
+ warnings.filterwarnings("ignore", message="load_learner` uses Python's insecure pickle module")
45
+
44
46
  # FIXME: Has a leak somewhere, training additional models in a single python script will slow down training for each additional model. Gets very slow after 20+ models (10x+ slowdown)
45
47
  # Slowdown does not appear to impact Mac OS
46
48
  # Reproduced with raw torch: https://github.com/pytorch/pytorch/issues/31867
@@ -536,6 +538,7 @@ class NNFastAiTabularModel(AbstractModel):
536
538
 
537
539
  @classmethod
538
540
  def load(cls, path: str, reset_paths=True, verbose=True):
541
+
539
542
  from fastai.learner import load_learner
540
543
 
541
544
  model = super().load(path, reset_paths=reset_paths, verbose=verbose)
@@ -64,4 +64,4 @@ class TabPFNMixClassifier(BaseEstimator, ClassifierMixin):
64
64
  # FIXME: Avoid preprocessing self.X_ and self.y_ each predict_proba call
65
65
  def predict_proba(self, X):
66
66
  logits = self.trainer.predict(self.X_, self.y_, X)
67
- return np.exp(logits) / np.exp(logits).sum(axis=1)[:, None]
67
+ return np.exp(logits) / np.exp(logits).sum(axis=1)[:, None]
@@ -6,9 +6,11 @@ Unknown categories are returned as None in inverse transforms. Always converts i
6
6
 
7
7
  import copy
8
8
  from numbers import Integral
9
+ from packaging.version import parse as parse_version
9
10
 
10
11
  import numpy as np
11
12
  from scipy import sparse
13
+ from sklearn import __version__ as _sklearn_version
12
14
  from sklearn.base import BaseEstimator, TransformerMixin
13
15
  from sklearn.utils import check_array
14
16
  from sklearn.utils.validation import check_is_fitted
@@ -162,7 +164,10 @@ class _BaseEncoder(BaseEstimator, TransformerMixin):
162
164
  """
163
165
  if not (hasattr(X, "iloc") and getattr(X, "ndim", 0) == 2):
164
166
  # if not a dataframe, do normal check_array validation
165
- X_temp = check_array(X, dtype=None, force_all_finite=False)
167
+ if parse_version(_sklearn_version) >= parse_version("1.6.0"):
168
+ X_temp = check_array(X, dtype=None, ensure_all_finite=False)
169
+ else:
170
+ X_temp = check_array(X, dtype=None, force_all_finite=False)
166
171
  if not hasattr(X, "dtype") and np.issubdtype(X_temp.dtype, np.str_):
167
172
  X = check_array(X, dtype=object)
168
173
  else:
@@ -178,7 +183,10 @@ class _BaseEncoder(BaseEstimator, TransformerMixin):
178
183
 
179
184
  for i in range(n_features):
180
185
  Xi = self._get_feature(X, feature_idx=i)
181
- Xi = check_array(Xi, ensure_2d=False, dtype=None, force_all_finite=needs_validation)
186
+ if parse_version(_sklearn_version) >= parse_version("1.6.0"):
187
+ Xi = check_array(Xi, ensure_2d=False, dtype=None, ensure_all_finite=needs_validation)
188
+ else:
189
+ Xi = check_array(Xi, ensure_2d=False, dtype=None, force_all_finite=needs_validation)
182
190
  X_columns.append(Xi)
183
191
 
184
192
  return X_columns, n_samples, n_features
@@ -304,6 +312,39 @@ class _BaseEncoder(BaseEstimator, TransformerMixin):
304
312
  def _more_tags(self):
305
313
  return {"X_types": ["categorical"]}
306
314
 
315
+ def __sklearn_tags__(self):
316
+ """
317
+ Returns a Tags object with scikit-learn estimator tags.
318
+
319
+ This is the scikit-learn 1.6+ compatible way to define estimator tags,
320
+ replacing the deprecated _more_tags method.
321
+
322
+ Returns
323
+ -------
324
+ tags : sklearn.utils.Tags
325
+ A Tags object containing all tag information.
326
+ """
327
+ # lazily import to avoid crashing if sklearn<1.6
328
+ from sklearn.utils import Tags, InputTags, TargetTags
329
+
330
+ # Create the Tags object with appropriate settings
331
+ tags = Tags(
332
+ estimator_type=None, # This is a transformer, not a classifier/regressor
333
+ target_tags=TargetTags(
334
+ required=False # Target is not required for transformers
335
+ ),
336
+ input_tags=InputTags(
337
+ categorical=True,
338
+ string=True,
339
+ ),
340
+ array_api_support=False,
341
+ no_validation=False,
342
+ non_deterministic=False,
343
+ requires_fit=True,
344
+ )
345
+
346
+ return tags
347
+
307
348
 
308
349
  class OneHotMergeRaresHandleUnknownEncoder(_BaseEncoder):
309
350
  """Encode categorical integer features as a one-hot numeric array.
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250413"
3
+ __version__ = "1.2.1b20250415"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250413
3
+ Version: 1.2.1b20250415
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -39,21 +39,21 @@ License-File: ../NOTICE
39
39
  Requires-Dist: numpy<2.3.0,>=1.25.0
40
40
  Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
- Requires-Dist: scikit-learn<1.6.0,>=1.4.0
42
+ Requires-Dist: scikit-learn<1.7.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250413
45
- Requires-Dist: autogluon.features==1.2.1b20250413
44
+ Requires-Dist: autogluon.core==1.2.1b20250415
45
+ Requires-Dist: autogluon.features==1.2.1b20250415
46
46
  Provides-Extra: all
47
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
48
- Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
49
- Requires-Dist: torch<2.7,>=2.2; extra == "all"
50
- Requires-Dist: spacy<3.8; extra == "all"
51
- Requires-Dist: autogluon.core[all]==1.2.1b20250413; extra == "all"
52
- Requires-Dist: huggingface-hub[torch]; extra == "all"
53
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
54
47
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
55
48
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
49
+ Requires-Dist: spacy<3.8; extra == "all"
50
+ Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
51
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
52
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
53
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
54
+ Requires-Dist: autogluon.core[all]==1.2.1b20250415; extra == "all"
56
55
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
56
+ Requires-Dist: torch<2.7,>=2.2; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250413; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.2.1b20250415; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.2.1b20250413-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.2.1b20250415-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=-0zBgl90kQhkR8VGoVQR1GnZlG3Y5dZpwyqECIWshWc,91
3
+ autogluon/tabular/version.py,sha256=b5iA_UuQQbMm77xD8yblOR_jEE8jGtdLXDEMT2oS0Lk,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -36,7 +36,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
36
36
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
37
37
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
38
38
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
39
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=OqiOP3dw9HsZCw9AXvJqlTNwheupkuhaMiKWDnVLpjc,29424
39
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=wtvs2VclaEvt-DDtTAxteVpDTXTAYPBp72jGxlGQwgE,29522
40
40
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
41
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
42
42
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -79,7 +79,7 @@ autogluon/tabular/models/tabpfn/tabpfn_model.py,sha256=PEYMuIh5TFLIDy3hcjfz1DcvD
79
79
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
80
80
  autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=Bo-JMnNgI0fYXXTHy3zLAE1OHZv9ikgH4bFBaVSa79g,16174
81
81
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=U3DAhtSLpHUu-22GgR3QCZJnpRYpOW95XoTV7tE9J5Y,3425
82
+ autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
83
83
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
84
84
  autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
85
85
  autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py,sha256=dnyEBOIS3QX4_JsjepLMxsK8Qv-CTsE1gEIG-0v1YCU,232
@@ -114,7 +114,7 @@ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=tDxWg4SLUjB
114
114
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
115
115
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
116
116
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=uLQaHkudg8AS2jFwNv4FyQ9KzO_F-dj6hIJe8R2t4aw,34213
117
+ autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=2B5SrSN5nlCUGSsn2hrZNM5m4FswDKRxs_08CVB42js,35759
118
118
  autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=ypXqtxdt1qH6la1hcq-BJ0dzQBNtgKY-BjXmIWxPjCg,5237
119
119
  autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=tttzR5EtYcFa6sIrUG9wyegdYmYE5DPK_CiLF1-L3c8,2875
120
120
  autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -146,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=bTPGPyz07a7GG6327yO6ry
146
146
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
147
147
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
148
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
149
- autogluon.tabular-1.2.1b20250413.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
- autogluon.tabular-1.2.1b20250413.dist-info/METADATA,sha256=F59f-WrfTSDKiRwWaA7clkfB0svB3iRK3Jw44H7GP9U,14069
151
- autogluon.tabular-1.2.1b20250413.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
- autogluon.tabular-1.2.1b20250413.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
- autogluon.tabular-1.2.1b20250413.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
- autogluon.tabular-1.2.1b20250413.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
- autogluon.tabular-1.2.1b20250413.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
- autogluon.tabular-1.2.1b20250413.dist-info/RECORD,,
149
+ autogluon.tabular-1.2.1b20250415.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
+ autogluon.tabular-1.2.1b20250415.dist-info/METADATA,sha256=mHmkIllgm_ZuWiRKAgT_ONufsSEo3mYbwpooHQo5Yjg,14069
151
+ autogluon.tabular-1.2.1b20250415.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
+ autogluon.tabular-1.2.1b20250415.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
+ autogluon.tabular-1.2.1b20250415.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
+ autogluon.tabular-1.2.1b20250415.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
+ autogluon.tabular-1.2.1b20250415.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
+ autogluon.tabular-1.2.1b20250415.dist-info/RECORD,,