autogluon.tabular 1.2.1b20250413__py3-none-any.whl → 1.2.1b20250415__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +3 -0
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +1 -1
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +43 -2
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/METADATA +12 -12
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/RECORD +13 -13
- /autogluon.tabular-1.2.1b20250413-py3.9-nspkg.pth → /autogluon.tabular-1.2.1b20250415-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/zip-safe +0 -0
@@ -41,6 +41,8 @@ from autogluon.tabular.models.tabular_nn.utils.nn_architecture_utils import infe
|
|
41
41
|
from .hyperparameters.parameters import get_param_baseline
|
42
42
|
from .hyperparameters.searchspaces import get_default_searchspace
|
43
43
|
|
44
|
+
warnings.filterwarnings("ignore", message="load_learner` uses Python's insecure pickle module")
|
45
|
+
|
44
46
|
# FIXME: Has a leak somewhere, training additional models in a single python script will slow down training for each additional model. Gets very slow after 20+ models (10x+ slowdown)
|
45
47
|
# Slowdown does not appear to impact Mac OS
|
46
48
|
# Reproduced with raw torch: https://github.com/pytorch/pytorch/issues/31867
|
@@ -536,6 +538,7 @@ class NNFastAiTabularModel(AbstractModel):
|
|
536
538
|
|
537
539
|
@classmethod
|
538
540
|
def load(cls, path: str, reset_paths=True, verbose=True):
|
541
|
+
|
539
542
|
from fastai.learner import load_learner
|
540
543
|
|
541
544
|
model = super().load(path, reset_paths=reset_paths, verbose=verbose)
|
@@ -64,4 +64,4 @@ class TabPFNMixClassifier(BaseEstimator, ClassifierMixin):
|
|
64
64
|
# FIXME: Avoid preprocessing self.X_ and self.y_ each predict_proba call
|
65
65
|
def predict_proba(self, X):
|
66
66
|
logits = self.trainer.predict(self.X_, self.y_, X)
|
67
|
-
return np.exp(logits) / np.exp(logits).sum(axis=1)[:, None]
|
67
|
+
return np.exp(logits) / np.exp(logits).sum(axis=1)[:, None]
|
@@ -6,9 +6,11 @@ Unknown categories are returned as None in inverse transforms. Always converts i
|
|
6
6
|
|
7
7
|
import copy
|
8
8
|
from numbers import Integral
|
9
|
+
from packaging.version import parse as parse_version
|
9
10
|
|
10
11
|
import numpy as np
|
11
12
|
from scipy import sparse
|
13
|
+
from sklearn import __version__ as _sklearn_version
|
12
14
|
from sklearn.base import BaseEstimator, TransformerMixin
|
13
15
|
from sklearn.utils import check_array
|
14
16
|
from sklearn.utils.validation import check_is_fitted
|
@@ -162,7 +164,10 @@ class _BaseEncoder(BaseEstimator, TransformerMixin):
|
|
162
164
|
"""
|
163
165
|
if not (hasattr(X, "iloc") and getattr(X, "ndim", 0) == 2):
|
164
166
|
# if not a dataframe, do normal check_array validation
|
165
|
-
|
167
|
+
if parse_version(_sklearn_version) >= parse_version("1.6.0"):
|
168
|
+
X_temp = check_array(X, dtype=None, ensure_all_finite=False)
|
169
|
+
else:
|
170
|
+
X_temp = check_array(X, dtype=None, force_all_finite=False)
|
166
171
|
if not hasattr(X, "dtype") and np.issubdtype(X_temp.dtype, np.str_):
|
167
172
|
X = check_array(X, dtype=object)
|
168
173
|
else:
|
@@ -178,7 +183,10 @@ class _BaseEncoder(BaseEstimator, TransformerMixin):
|
|
178
183
|
|
179
184
|
for i in range(n_features):
|
180
185
|
Xi = self._get_feature(X, feature_idx=i)
|
181
|
-
|
186
|
+
if parse_version(_sklearn_version) >= parse_version("1.6.0"):
|
187
|
+
Xi = check_array(Xi, ensure_2d=False, dtype=None, ensure_all_finite=needs_validation)
|
188
|
+
else:
|
189
|
+
Xi = check_array(Xi, ensure_2d=False, dtype=None, force_all_finite=needs_validation)
|
182
190
|
X_columns.append(Xi)
|
183
191
|
|
184
192
|
return X_columns, n_samples, n_features
|
@@ -304,6 +312,39 @@ class _BaseEncoder(BaseEstimator, TransformerMixin):
|
|
304
312
|
def _more_tags(self):
|
305
313
|
return {"X_types": ["categorical"]}
|
306
314
|
|
315
|
+
def __sklearn_tags__(self):
|
316
|
+
"""
|
317
|
+
Returns a Tags object with scikit-learn estimator tags.
|
318
|
+
|
319
|
+
This is the scikit-learn 1.6+ compatible way to define estimator tags,
|
320
|
+
replacing the deprecated _more_tags method.
|
321
|
+
|
322
|
+
Returns
|
323
|
+
-------
|
324
|
+
tags : sklearn.utils.Tags
|
325
|
+
A Tags object containing all tag information.
|
326
|
+
"""
|
327
|
+
# lazily import to avoid crashing if sklearn<1.6
|
328
|
+
from sklearn.utils import Tags, InputTags, TargetTags
|
329
|
+
|
330
|
+
# Create the Tags object with appropriate settings
|
331
|
+
tags = Tags(
|
332
|
+
estimator_type=None, # This is a transformer, not a classifier/regressor
|
333
|
+
target_tags=TargetTags(
|
334
|
+
required=False # Target is not required for transformers
|
335
|
+
),
|
336
|
+
input_tags=InputTags(
|
337
|
+
categorical=True,
|
338
|
+
string=True,
|
339
|
+
),
|
340
|
+
array_api_support=False,
|
341
|
+
no_validation=False,
|
342
|
+
non_deterministic=False,
|
343
|
+
requires_fit=True,
|
344
|
+
)
|
345
|
+
|
346
|
+
return tags
|
347
|
+
|
307
348
|
|
308
349
|
class OneHotMergeRaresHandleUnknownEncoder(_BaseEncoder):
|
309
350
|
"""Encode categorical integer features as a one-hot numeric array.
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250415
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -39,21 +39,21 @@ License-File: ../NOTICE
|
|
39
39
|
Requires-Dist: numpy<2.3.0,>=1.25.0
|
40
40
|
Requires-Dist: scipy<1.16,>=1.5.4
|
41
41
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
42
|
-
Requires-Dist: scikit-learn<1.
|
42
|
+
Requires-Dist: scikit-learn<1.7.0,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.2.
|
45
|
-
Requires-Dist: autogluon.features==1.2.
|
44
|
+
Requires-Dist: autogluon.core==1.2.1b20250415
|
45
|
+
Requires-Dist: autogluon.features==1.2.1b20250415
|
46
46
|
Provides-Extra: all
|
47
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
48
|
-
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
49
|
-
Requires-Dist: torch<2.7,>=2.2; extra == "all"
|
50
|
-
Requires-Dist: spacy<3.8; extra == "all"
|
51
|
-
Requires-Dist: autogluon.core[all]==1.2.1b20250413; extra == "all"
|
52
|
-
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
53
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
54
47
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
55
48
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
49
|
+
Requires-Dist: spacy<3.8; extra == "all"
|
50
|
+
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
51
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
52
|
+
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
53
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
54
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250415; extra == "all"
|
56
55
|
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
56
|
+
Requires-Dist: torch<2.7,>=2.2; extra == "all"
|
57
57
|
Provides-Extra: catboost
|
58
58
|
Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
|
59
59
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
66
66
|
Provides-Extra: lightgbm
|
67
67
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
68
68
|
Provides-Extra: ray
|
69
|
-
Requires-Dist: autogluon.core[all]==1.2.
|
69
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250415; extra == "ray"
|
70
70
|
Provides-Extra: skex
|
71
71
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
72
72
|
Provides-Extra: skl2onnx
|
{autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.2.
|
1
|
+
autogluon.tabular-1.2.1b20250415-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256
|
3
|
+
autogluon/tabular/version.py,sha256=b5iA_UuQQbMm77xD8yblOR_jEE8jGtdLXDEMT2oS0Lk,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -36,7 +36,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
|
|
36
36
|
autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
|
37
37
|
autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
|
38
38
|
autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
|
39
|
-
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=
|
39
|
+
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=wtvs2VclaEvt-DDtTAxteVpDTXTAYPBp72jGxlGQwgE,29522
|
40
40
|
autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
41
41
|
autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
|
42
42
|
autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
|
@@ -79,7 +79,7 @@ autogluon/tabular/models/tabpfn/tabpfn_model.py,sha256=PEYMuIh5TFLIDy3hcjfz1DcvD
|
|
79
79
|
autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
80
80
|
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=Bo-JMnNgI0fYXXTHy3zLAE1OHZv9ikgH4bFBaVSa79g,16174
|
81
81
|
autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
82
|
-
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=
|
82
|
+
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
|
83
83
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
|
84
84
|
autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
85
85
|
autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py,sha256=dnyEBOIS3QX4_JsjepLMxsK8Qv-CTsE1gEIG-0v1YCU,232
|
@@ -114,7 +114,7 @@ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=tDxWg4SLUjB
|
|
114
114
|
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
|
115
115
|
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
|
116
116
|
autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
117
|
-
autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=
|
117
|
+
autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=2B5SrSN5nlCUGSsn2hrZNM5m4FswDKRxs_08CVB42js,35759
|
118
118
|
autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=ypXqtxdt1qH6la1hcq-BJ0dzQBNtgKY-BjXmIWxPjCg,5237
|
119
119
|
autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=tttzR5EtYcFa6sIrUG9wyegdYmYE5DPK_CiLF1-L3c8,2875
|
120
120
|
autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -146,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=bTPGPyz07a7GG6327yO6ry
|
|
146
146
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
147
147
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
148
148
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
149
|
-
autogluon.tabular-1.2.
|
150
|
-
autogluon.tabular-1.2.
|
151
|
-
autogluon.tabular-1.2.
|
152
|
-
autogluon.tabular-1.2.
|
153
|
-
autogluon.tabular-1.2.
|
154
|
-
autogluon.tabular-1.2.
|
155
|
-
autogluon.tabular-1.2.
|
156
|
-
autogluon.tabular-1.2.
|
149
|
+
autogluon.tabular-1.2.1b20250415.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
150
|
+
autogluon.tabular-1.2.1b20250415.dist-info/METADATA,sha256=mHmkIllgm_ZuWiRKAgT_ONufsSEo3mYbwpooHQo5Yjg,14069
|
151
|
+
autogluon.tabular-1.2.1b20250415.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
152
|
+
autogluon.tabular-1.2.1b20250415.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
153
|
+
autogluon.tabular-1.2.1b20250415.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
154
|
+
autogluon.tabular-1.2.1b20250415.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
155
|
+
autogluon.tabular-1.2.1b20250415.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
156
|
+
autogluon.tabular-1.2.1b20250415.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.2.1b20250413.dist-info → autogluon.tabular-1.2.1b20250415.dist-info}/zip-safe
RENAMED
File without changes
|