autofuzzts 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,129 +0,0 @@
1
- ## Functions for fuzzy clustering
2
- import numpy as np
3
- import pandas as pd
4
-
5
-
6
- def fuzzy_partition_cosine(X: pd.Series, n:float):
7
- '''
8
-
9
- Midsteps of the calculation:
10
-
11
- D - distance vector (D) represents the relative position of each data point within the partition
12
- h - height, spread of the fuzzy sets
13
-
14
- '''
15
-
16
- n_rows = len(X)
17
- x_spread = X.max() - X.min() # spread of the data
18
-
19
- D = np.zeros((n,1))
20
- for i in range(0,n):
21
- D[i] = i/(n-1)*x_spread # D is adjusted by the x_spread
22
- h = (D[-1]-D[0])/(n-1)
23
-
24
- A = np.zeros((n_rows,n))
25
-
26
- x_sorted = np.sort(X) # sort the data
27
-
28
- for k in range(0,n_rows):
29
- if (D[0] <= x_sorted[k]) and (x_sorted[k] <= D[1]):
30
- A[k, 0] = 0.5*(np.cos(np.pi*(x_sorted[k]-D[0])/h)+1)
31
- else:
32
- if (D[n - 2] <= x_sorted[k]) and (x_sorted[k] <= D[n-1]):
33
- A[k, n-1] = 0.5*(np.cos(np.pi*(x_sorted[k]-D[n-1])/h)+1)
34
- for j in range(1,n-1):
35
- if (D[j - 1] <= x_sorted[k]) and (x_sorted[k] <= D[j+1]):
36
- A[k,j]=0.5*(np.cos(np.pi*(x_sorted[k]-D[j])/h)+1)
37
-
38
- return D,A
39
-
40
-
41
-
42
-
43
-
44
- def fuzzy_partition_triangle(X: pd.Series, n:float):
45
- '''
46
-
47
- Midsteps of the calculation:
48
-
49
- D - distance vector (D) represents the relative position of each data point within the partition
50
- h - height, spread of the fuzzy sets
51
-
52
- '''
53
-
54
- n_rows = len(X)
55
- x_spread = X.max() - X.min() # spread of the data
56
-
57
- D = np.zeros((n,1))
58
- for i in range(0,n):
59
- D[i] = i/(n-1)*x_spread # D is adjusted by the x_spread
60
- h = (D[-1]-D[0])/(n-1)
61
-
62
- A = np.zeros((n_rows,n))
63
-
64
- x_sorted = np.sort(X) # sort the data
65
-
66
- for k in range(0,n_rows):
67
-
68
- # First column
69
- if (D[0] <= x_sorted[k]) and (x_sorted[k] <= D[1]):
70
- A[k, 0] = (D[1]-x_sorted[k])/h
71
-
72
- # Last column
73
- else:
74
- if (D[n - 2] <= x_sorted[k]) and (x_sorted[k] <= D[n-1]):
75
- A[k, n-1] = (x_sorted[k]-D[n-2])/h
76
-
77
- # All other columns
78
- for j in range(1,n-1):
79
- if (D[j - 1] <= x_sorted[k]) and (x_sorted[k]<= D[j]):
80
- A[k,j] = (x_sorted[k]-D[j-1])/h
81
-
82
- if (D[j] <= x_sorted[k]) and (x_sorted[k] <= D[j+1]):
83
- A[k,j] = (D[j+1]-x_sorted[k])/h
84
-
85
- return D,A
86
-
87
-
88
- def fuzzy_partition_gauss(X: pd.Series, n:float, sigma:float = 1):
89
- '''
90
-
91
- Midsteps of the calculation:
92
-
93
- D - distance vector (D) represents the relative position of each data point within the partition
94
- h - height, spread of the fuzzy sets
95
-
96
- '''
97
-
98
- n_rows = len(X)
99
- x_spread = X.max() - X.min() # spread of the data
100
-
101
- D = np.zeros((n,1))
102
- for i in range(0,n):
103
- D[i] = i/(n-1)*x_spread # D is adjusted by the x_spread
104
- h = (D[-1]-D[0])/(n-1)
105
-
106
- A = np.zeros((n_rows,n))
107
-
108
- x_sorted = np.sort(X) # sort the data
109
-
110
- for k in range(0,n_rows):
111
-
112
- # First column
113
- if (D[0] <= x_sorted[k]) and (x_sorted[k] <= D[1]):
114
- A[k, 0] = np.exp(-(x_sorted[k] - D[0]) ** 2 / (2 * sigma ** 2))
115
-
116
- # Last column
117
- else:
118
- if (D[n - 2] <= k) and (x_sorted[k] <= D[n-1]):
119
- A[k, n-1] = np.exp(-(x_sorted[k] - D[n-1]) ** 2 / (2 * sigma ** 2))
120
-
121
-
122
- # All other columns
123
- for j in range(1,n-1):
124
- if (D[j - 1] <= x_sorted[k]) and (x_sorted[k] <= D[j+1]):
125
- A[k,j] = np.exp(-(x_sorted[k] - D[j]) ** 2 / (2 * sigma ** 2))
126
-
127
-
128
- return D,A
129
-
autofuzzts/utils.py DELETED
@@ -1 +0,0 @@
1
- # utils.py
@@ -1,25 +0,0 @@
1
- autofuzzts/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
2
- autofuzzts/config.py,sha256=rzwULHfKKtf5Rdpm8pk-zwuXrkKc0dckF-xIfz1UVcY,392
3
- autofuzzts/pipeline.py,sha256=wwaVXBvnoAvd3MDvEaj4xKqPlBWMSyOHSR5TOTP2jTo,16189
4
- autofuzzts/utils.py,sha256=lywC_KhHuYgjUmXjj-ay9vZYTKUSxFgWXY2q6EdWf9s,10
5
- autofuzzts/data/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
6
- autofuzzts/data/data_loader.py,sha256=VO8V9O3WgXffyktUMSmbGTiXWBJ2kgN5wLqgFgvkE6w,266
7
- autofuzzts/data_validation/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
8
- autofuzzts/data_validation/validate.py,sha256=ttK3nnvfTfxFF_GKyfxuU168oqmA6MEemB1dP06mL7g,1453
9
- autofuzzts/evaluation/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
10
- autofuzzts/models/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
11
- autofuzzts/models/fuzzy_classifier.py,sha256=mU0t91n-8mTJQs-_XDYbrix9oa6EQP_3UvGDCw-GmJY,3363
12
- autofuzzts/models/mlp_nas.py,sha256=OCFtrd47IhesAqtaHpBTOwKPdFly9yjl7O-25msXXGE,3048
13
- autofuzzts/partition/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
14
- autofuzzts/partition/fuzzy_clust_fun.py,sha256=NlpkI8s7N4ebdHWbGECsQZqk1Xf8v0c15cA27JEMJ-A,3097
15
- autofuzzts/partition/fuzzy_clust_fun_orig.py,sha256=JlXYw-MxiNAcIasYTyWiQHaHhJuY8h_BRy3jLo2efOA,3653
16
- autofuzzts/partition/partition.py,sha256=f5nTHjrJJYKjtzMFxsdfPL_CGBb12HOR0hkGi4L_WLY,4410
17
- autofuzzts/partition/visualize_partition.py,sha256=F31yovGfosqa-EmtuQdIIuF61XejHEGGdALfHHAtDu0,909
18
- autofuzzts/preprocess/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
19
- autofuzzts/preprocess/prep_for_model.py,sha256=mp19PGo_p8YWezSny__qKnuTREhAldSlxCzIutrisGk,2565
20
- autofuzzts/preprocess/preprocess.py,sha256=QZ0h4bZslwOrjTUyvPQaXDT_lBlnL8nKdp545Qy3xdk,2786
21
- autofuzzts-0.1.1.dist-info/licenses/LICENSE,sha256=bjnZy7iTBVYeRcAPI9NVlXeQGx62R13_t8xwoLq44Ms,1087
22
- autofuzzts-0.1.1.dist-info/METADATA,sha256=w0xQBlHDFAtI-uIg3dA7frd1MrjRih2z18Ke9nBYlp0,3772
23
- autofuzzts-0.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
24
- autofuzzts-0.1.1.dist-info/top_level.txt,sha256=YHgbVRUPg-x2WX7FKyJMUAeI9o46c8XFiR_eYKtXIxc,11
25
- autofuzzts-0.1.1.dist-info/RECORD,,