autofuzzts 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,70 +1,70 @@
1
- import pandas as pd
2
- import warnings
3
- from sklearn.preprocessing import LabelEncoder
4
-
5
- def prepare_for_model(df: pd.DataFrame, number_of_lags: int):
6
- """
7
- Prepare clustering data for modeling.
8
-
9
- Parameters:
10
- - df (pd.DataFrame): The input DataFrame containing clustering data.
11
- - number_of_lags (int): The number of lag features to create.
12
-
13
- Returns:
14
- - X_train (pd.DataFrame): Features for training the model.
15
- - y_train (np.ndarray): Target variable for training the model.
16
- """
17
-
18
- # Prepare the 'cluster' column
19
- df.loc[:, "cluster"] = df["cluster"].str.replace("set_", "").astype(int).copy()
20
-
21
- # Create lagged features
22
- for i in range(1, number_of_lags + 1):
23
- df.loc[:, "cluster_lag" + str(i)] = df["cluster"].shift(i).copy()
24
- df.loc[:, "membership_value_lag" + str(i)] = df["membership_value"].shift(i).copy()
25
- df.loc[:, "left_lag" + str(i)] = df["left"].shift(i).copy()
26
-
27
- # Reset warning filter
28
- warnings.filterwarnings("default", category=pd.errors.SettingWithCopyWarning)
29
-
30
- # Prepare the model DataFrame
31
- df_model = df.copy()
32
- df_model.drop(columns=["membership_value", "left"], inplace=True)
33
- df_model.rename(columns={"X_value": "Y"}, inplace=True)
34
-
35
- numeric_cols = df_model.select_dtypes(include=['float64', 'int64']).columns
36
- df_model[numeric_cols] = df_model[numeric_cols].fillna(0)
37
-
38
-
39
- # Separate target and features
40
- y_train = df_model["cluster"]
41
- X_train = df_model.drop(columns=["Y", "cluster"])
42
-
43
- # Encode categorical columns
44
- label_encoder = LabelEncoder()
45
- encoded_cols = []
46
-
47
- # Loop through columns and encode if they start with 'cluster_'
48
- for col in X_train.columns:
49
- if col.startswith("cluster_"):
50
- X_train[col] = label_encoder.fit_transform(X_train[col])
51
- encoded_cols.append(col)
52
-
53
- # Label encode y_train
54
- y_train = label_encoder.fit_transform(y_train)
55
-
56
- return X_train, y_train
57
-
58
- def prepare_for_model_val_set(df_val_fp: pd.DataFrame, df_train_fp: pd.DataFrame, n_lags: pd.DataFrame):
59
- '''
60
- Prepare validation set. Attach to the begginning of val set rows from the end of the train set (based on numbef of lags). In the end remove the attached rows.
61
- '''
62
- df_concat = pd.concat([df_train_fp.tail(n_lags), df_val_fp], axis=0).reset_index(drop=True)
63
-
64
-
65
- X_val, y_val = prepare_for_model(df=df_concat, number_of_lags=n_lags)
66
-
67
- X_val = X_val.iloc[n_lags:]
68
- y_val = y_val[n_lags:]
69
-
70
- return X_val, y_val
1
+ import pandas as pd
2
+ import warnings
3
+ from sklearn.preprocessing import LabelEncoder
4
+
5
+ def prepare_for_model(df: pd.DataFrame, number_of_lags: int):
6
+ """
7
+ Prepare fuzzy partitioned data for modeling.
8
+
9
+ Parameters:
10
+ - df (pd.DataFrame): The input DataFrame containing fuzzy partitioned data.
11
+ - number_of_lags (int): The number of lag features to create.
12
+
13
+ Returns:
14
+ - X_train (pd.DataFrame): Features for training the model.
15
+ - y_train (np.ndarray): Target variable for training the model.
16
+ """
17
+
18
+ # Prepare the 'fuzzy_set' column
19
+ df.loc[:, "fuzzy_set"] = df["fuzzy_set"].str.replace("set_", "").astype(int).copy()
20
+
21
+ # Create lagged features
22
+ for i in range(1, number_of_lags + 1):
23
+ df.loc[:, "fuzzy_set_lag" + str(i)] = df["fuzzy_set"].shift(i).copy()
24
+ df.loc[:, "membership_value_lag" + str(i)] = df["membership_value"].shift(i).copy()
25
+ df.loc[:, "left_lag" + str(i)] = df["left"].shift(i).copy()
26
+
27
+ # Reset warning filter
28
+ warnings.filterwarnings("default", category=pd.errors.SettingWithCopyWarning)
29
+
30
+ # Prepare the model DataFrame
31
+ df_model = df.copy()
32
+ df_model.drop(columns=["membership_value", "left"], inplace=True)
33
+ df_model.rename(columns={"X_value": "Y"}, inplace=True)
34
+
35
+ numeric_cols = df_model.select_dtypes(include=['float64', 'int64']).columns
36
+ df_model[numeric_cols] = df_model[numeric_cols].fillna(0)
37
+
38
+
39
+ # Separate target and features
40
+ y_train = df_model["fuzzy_set"]
41
+ X_train = df_model.drop(columns=["Y", "fuzzy_set"])
42
+
43
+ # Encode categorical columns
44
+ label_encoder = LabelEncoder()
45
+ encoded_cols = []
46
+
47
+ # Loop through columns and encode if they start with 'fuzzy_set_'
48
+ for col in X_train.columns:
49
+ if col.startswith("fuzzy_set_"):
50
+ X_train[col] = label_encoder.fit_transform(X_train[col])
51
+ encoded_cols.append(col)
52
+
53
+ # Label encode y_train
54
+ y_train = label_encoder.fit_transform(y_train)
55
+
56
+ return X_train, y_train
57
+
58
+ def prepare_for_model_val_set(df_val_fp: pd.DataFrame, df_train_fp: pd.DataFrame, n_lags: pd.DataFrame):
59
+ '''
60
+ Prepare validation set. Attach to the begginning of val set rows from the end of the train set (based on numbef of lags). In the end remove the attached rows.
61
+ '''
62
+ df_concat = pd.concat([df_train_fp.tail(n_lags), df_val_fp], axis=0).reset_index(drop=True)
63
+
64
+
65
+ X_val, y_val = prepare_for_model(df=df_concat, number_of_lags=n_lags)
66
+
67
+ X_val = X_val.iloc[n_lags:]
68
+ y_val = y_val[n_lags:]
69
+
70
+ return X_val, y_val
@@ -1,63 +1,63 @@
1
- import pandas as pd
2
- import numpy as np
3
- from sklearn.preprocessing import MinMaxScaler
4
- from typing import Literal
5
-
6
-
7
- def preprocess_data(df: pd.DataFrame, diff_type: Literal['perc', 'abs'] = 'perc', scaler: MinMaxScaler = None) -> pd.DataFrame:
8
- """
9
- Prepares time series data by calculating differences, scaling, and selecting rows.
10
-
11
- Parameters:
12
- df (pd.DataFrame): Input DataFrame with a single column named 'Y' containing the time series data.
13
- diff_type (str): Type of difference to calculate ('perc' for percentage, 'abs' for absolute). Default is 'perc'.
14
- n_rows (int): Number of rows to retain from the end. If -1, use all rows.
15
-
16
- Returns:
17
- np.ndarray: The preprocessed data, scaled and ready for further processing.
18
- MinMaxScaler: The scaler used for scaling, useful for inverse transformation.
19
- """
20
-
21
- # Step 1: Calculate the difference based on user choice
22
- if diff_type == 'perc':
23
- df['diff'] = df['Y'].pct_change() # Percentage difference
24
- elif diff_type == 'abs':
25
- df['diff'] = df['Y'].diff() # Absolute difference
26
- else:
27
- raise ValueError("Invalid diff_type. Choose 'perc' for percentage or 'abs' for absolute.")
28
-
29
-
30
- ## Replace infinite values with 1 or -1
31
- df['diff'] = np.where(df['diff'] == np.inf, 1, df['diff'])
32
- df['diff'] = np.where(df['diff'] == -np.inf, -1, df['diff'])
33
-
34
- ## If diff is bellow 0.01 quantile or 0.99 quantile, replace with 0.01 or 0.99 quantile
35
- df['diff'] = np.where(df['diff'] < df['diff'].quantile(0.01), df['diff'].quantile(0.01), df['diff'])
36
- df['diff'] = np.where(df['diff'] > df['diff'].quantile(0.99), df['diff'].quantile(0.99), df['diff'])
37
-
38
-
39
- ## Relace NaNs with 0
40
- df['diff'] = df['diff'].fillna(0) # Replace NaNs with 0, or adjust as needed
41
-
42
- # Step 2: Scale only the 'diff' column
43
- if scaler is None: # If no scaler is provided, create a new one (otherwise use the existing one)
44
- scaler = MinMaxScaler()
45
-
46
- df_scaled = df.copy()
47
- df_scaled['diff_scaled'] = scaler.fit_transform(df[['diff']]) # Scale 'diff' column only
48
-
49
-
50
-
51
-
52
- return df_scaled, scaler # Return scaled data and scaler for possible inverse transform
53
-
54
- def preprocess_data_val(df: pd.DataFrame,df_train: pd.DataFrame, diff_type: Literal['perc', 'abs'] = 'perc', scaler: MinMaxScaler = None):
55
- '''
56
- Attach last row of train set to the beginnig of the val set and preprocess the data. In the end remove the attached row.
57
- '''
58
- df_concat = pd.concat([df_train.tail(1), df], axis=0)
59
- df_preprocessed, scaler = preprocess_data(df=df_concat, diff_type=diff_type, scaler=scaler)
60
- df_preprocessed = df_preprocessed.iloc[1:]
61
- return df_preprocessed
62
-
1
+ import pandas as pd
2
+ import numpy as np
3
+ from sklearn.preprocessing import MinMaxScaler
4
+ from typing import Literal
5
+
6
+
7
+ def preprocess_data(df: pd.DataFrame, diff_type: Literal['perc', 'abs'] = 'perc', scaler: MinMaxScaler = None) -> pd.DataFrame:
8
+ """
9
+ Prepares time series data by calculating differences, scaling, and selecting rows.
10
+
11
+ Parameters:
12
+ df (pd.DataFrame): Input DataFrame with a single column named 'Y' containing the time series data.
13
+ diff_type (str): Type of difference to calculate ('perc' for percentage, 'abs' for absolute). Default is 'perc'.
14
+ n_rows (int): Number of rows to retain from the end. If -1, use all rows.
15
+
16
+ Returns:
17
+ np.ndarray: The preprocessed data, scaled and ready for further processing.
18
+ MinMaxScaler: The scaler used for scaling, useful for inverse transformation.
19
+ """
20
+
21
+ # Step 1: Calculate the difference based on user choice
22
+ if diff_type == 'perc':
23
+ df['diff'] = df['Y'].pct_change() # Percentage difference
24
+ elif diff_type == 'abs':
25
+ df['diff'] = df['Y'].diff() # Absolute difference
26
+ else:
27
+ raise ValueError("Invalid diff_type. Choose 'perc' for percentage or 'abs' for absolute.")
28
+
29
+
30
+ ## Replace infinite values with 1 or -1
31
+ df['diff'] = np.where(df['diff'] == np.inf, 1, df['diff'])
32
+ df['diff'] = np.where(df['diff'] == -np.inf, -1, df['diff'])
33
+
34
+ ## If diff is bellow 0.01 quantile or 0.99 quantile, replace with 0.01 or 0.99 quantile
35
+ df['diff'] = np.where(df['diff'] < df['diff'].quantile(0.01), df['diff'].quantile(0.01), df['diff'])
36
+ df['diff'] = np.where(df['diff'] > df['diff'].quantile(0.99), df['diff'].quantile(0.99), df['diff'])
37
+
38
+
39
+ ## Relace NaNs with 0
40
+ df['diff'] = df['diff'].fillna(0) # Replace NaNs with 0, or adjust as needed
41
+
42
+ # Step 2: Scale only the 'diff' column
43
+ if scaler is None: # If no scaler is provided, create a new one (otherwise use the existing one)
44
+ scaler = MinMaxScaler()
45
+
46
+ df_scaled = df.copy()
47
+ df_scaled['diff_scaled'] = scaler.fit_transform(df[['diff']]) # Scale 'diff' column only
48
+
49
+
50
+
51
+
52
+ return df_scaled, scaler # Return scaled data and scaler for possible inverse transform
53
+
54
+ def preprocess_data_val(df: pd.DataFrame,df_train: pd.DataFrame, diff_type: Literal['perc', 'abs'] = 'perc', scaler: MinMaxScaler = None):
55
+ '''
56
+ Attach last row of train set to the beginnig of the val set and preprocess the data. In the end remove the attached row.
57
+ '''
58
+ df_concat = pd.concat([df_train.tail(1), df], axis=0)
59
+ df_preprocessed, scaler = preprocess_data(df=df_concat, diff_type=diff_type, scaler=scaler)
60
+ df_preprocessed = df_preprocessed.iloc[1:]
61
+ return df_preprocessed
62
+
63
63
 
@@ -1,146 +1,161 @@
1
- Metadata-Version: 2.4
2
- Name: autofuzzts
3
- Version: 0.1.1
4
- Summary: 'Time series forecasting using fuzzy logic and AutoML'
5
- Author-email: Jan Timko <jantimko16@gmail.com>
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/yourusername/autofuzzts
8
- Project-URL: Repository, https://github.com/yourusername/autofuzzts
9
- Requires-Python: >=3.11
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
- Requires-Dist: numpy>=1.26.0
13
- Requires-Dist: pandas>=2.2.0
14
- Requires-Dist: scikit-learn>=1.5.0
15
- Requires-Dist: scipy>=1.15.0
16
- Requires-Dist: xgboost>=3.0.0
17
- Requires-Dist: lightgbm>=4.6.0
18
- Requires-Dist: tpot>=1.0.0
19
- Requires-Dist: optuna>=4.3.0
20
- Requires-Dist: matplotlib>=3.10.0
21
- Requires-Dist: seaborn>=0.13.0
22
- Requires-Dist: requests>=2.32.0
23
- Requires-Dist: PyYAML>=6.0.0
24
- Requires-Dist: joblib>=1.4.0
25
- Requires-Dist: tqdm>=4.67.0
26
- Dynamic: license-file
27
-
28
- # AutoFuzzTS
29
-
30
- Time series forecasting library using fuzzy logic and automated machine learning.
31
- Build and evaluate time series models automatically using fuzzy logic and AutoML techniques.
32
-
33
- ## Installation
34
-
35
- ```bash
36
- pip install autofuzzts
37
- ```
38
-
39
- ## 🚀 Quick Start
40
-
41
- ### Load and prepare your time series data
42
- ```python
43
- import pandas as pd
44
-
45
- # Load dataset into a pandas DataFrame
46
- data = pd.read_csv("../clean_data/ADBE_yf_hourly_cleaned.csv").head(240)
47
-
48
- # Select the target column to forecast
49
- data_column_name = "close_price"
50
- df = data[[data_column_name]].copy()
51
-
52
- # Split into train, validation, and test sets
53
- test_len = len(df) // 5
54
- val_len = len(df) // 5
55
- train_len = len(df) - test_len - val_len
56
-
57
- df_train = df[:train_len]
58
- df_val = df[train_len:(train_len + val_len)]
59
- df_test = df[(train_len + val_len):]
60
- ```
61
-
62
- ---
63
-
64
- ### Tune hyperparameters using Bayesian search
65
- ```python
66
- from autofuzzts import pipeline
67
-
68
- # Run Bayesian optimization for fuzzy pipeline configuration
69
- best_config, best_rmse = pipeline.tune_hyperparameters_bayes(
70
- train_set=df_train,
71
- val_set=df_val,
72
- n_trials=20,
73
- metric="rmse"
74
- )
75
-
76
- print(f"Best configuration: {best_config}")
77
- ```
78
-
79
- **Example output:**
80
- ```
81
- Best configuration: {'n_clusters': 19, 'number_of_lags': 2, 'fuzzy_part_func': 'Triangle'}
82
- ```
83
-
84
- ---
85
-
86
- ### Train, calibrate, and predict
87
- ```python
88
- from autofuzzts import fit_calibrate_predict
89
-
90
- # Train model, calibrate, and make one-step-ahead predictions
91
- pred_set, pred_center_points, pred_test = fit_calibrate_predict(
92
- train_set=df_train,
93
- test_set=df_test,
94
- config=best_config,
95
- model_type="xgb"
96
- )
97
- ```
98
-
99
- This returns:
100
- - `pred_set`: predicted fuzzy sets
101
- - `pred_center_points`: corresponding fuzzy center values
102
- - `pred_test`: crisp numeric predictions (one-step-ahead forecast)
103
-
104
- ---
105
-
106
- ## Function Overview
107
-
108
- ### `fit_calibrate_predict()`
109
-
110
- ```python
111
- fit_calibrate_predict(
112
- train_set: pd.DataFrame,
113
- test_set: pd.DataFrame,
114
- config: dict,
115
- model_type: Literal['xgb', 'mlp', 'tpot'] = 'xgb',
116
- number_cv_calib: int = 5,
117
- diff_type: Literal['perc', 'abs'] = 'perc',
118
- covariates: list[str] | None = None,
119
- exclude_bool: bool = False
120
- ) -> float
121
- ```
122
-
123
- Trains and calibrates a fuzzy time series model on the training set using
124
- cross-validation, then predicts on the test set and returns performance metrics.
125
-
126
- ---
127
-
128
- ## Description
129
-
130
- AutoFuzzTS automates the process of fuzzy time series modeling by:
131
- - building and testing multiple fuzzy pipelines,
132
- - tuning hyperparameters using Bayesian optimization, and
133
- - integrating tuned classification models - **XGBoost**, **MLP**, or **TPOT**.
134
-
135
- This allows for rapid experimentation and selection of optimal configurations
136
- for forecasting tasks.
137
-
138
- ---
139
-
140
-
141
- ---
142
-
143
- ## 📄 License
144
-
145
- This project is licensed under the MIT License.
146
-
1
+ Metadata-Version: 2.4
2
+ Name: autofuzzts
3
+ Version: 0.1.3
4
+ Summary: 'Time series forecasting using fuzzy logic and AutoML'
5
+ Author-email: Jan Timko <jantimko16@gmail.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/jtimko16/AutoFuzzTS
8
+ Project-URL: Repository, https://github.com/jtimko16/AutoFuzzTS
9
+ Requires-Python: >=3.11
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: numpy>=1.26.0
13
+ Requires-Dist: pandas>=2.2.0
14
+ Requires-Dist: scikit-learn>=1.5.0
15
+ Requires-Dist: scipy>=1.15.0
16
+ Requires-Dist: xgboost>=3.0.0
17
+ Requires-Dist: lightgbm>=4.6.0
18
+ Requires-Dist: tpot>=1.0.0
19
+ Requires-Dist: optuna>=4.3.0
20
+ Requires-Dist: matplotlib>=3.10.0
21
+ Requires-Dist: seaborn>=0.13.0
22
+ Requires-Dist: requests>=2.32.0
23
+ Requires-Dist: PyYAML>=6.0.0
24
+ Requires-Dist: joblib>=1.4.0
25
+ Requires-Dist: tqdm>=4.67.0
26
+ Dynamic: license-file
27
+
28
+ # AutoFuzzTS
29
+
30
+ Time series forecasting library using fuzzy logic and automated machine learning.
31
+ Build and evaluate time series models automatically using fuzzy logic and AutoML techniques.
32
+
33
+ The package is designed for academic benchmarking and controlled experimentation in one-step-ahead time-series forecasting. It assumes a fixed train/validation/test split and focuses on reproducible model comparison rather than real-time deployment.
34
+
35
+ ## Installation
36
+
37
+ ```bash
38
+ pip install autofuzzts
39
+ ```
40
+
41
+ ## 🚀 Quick Start
42
+
43
+ ### Load and prepare your time series data
44
+ ```python
45
+ import pandas as pd
46
+
47
+ # Load dataset into a pandas DataFrame
48
+ data = pd.read_csv('../../data/sample_datasets/NYSE.csv')
49
+ data.head(10)
50
+ ```
51
+
52
+ ```python
53
+ # Select the target column to forecast
54
+ data_column_name = "Close"
55
+ df = data[[data_column_name]].copy()
56
+
57
+ # Split into train, validation, and test sets
58
+ test_len = len(df) // 5
59
+ val_len = len(df) // 5
60
+ train_len = len(df) - test_len - val_len
61
+
62
+ df_train = df[:train_len]
63
+ df_val = df[train_len:(train_len + val_len)]
64
+ df_test = df[(train_len + val_len):]
65
+ ```
66
+
67
+ ---
68
+
69
+ ### Tune hyperparameters using Bayesian search
70
+ ```python
71
+ from autofuzzts import pipeline
72
+
73
+ # Run Bayesian optimization for fuzzy pipeline configuration
74
+ best_config, best_rmse = pipeline.tune_hyperparameters_bayes(
75
+ train_set=df_train,
76
+ val_set=df_val,
77
+ n_trials=20,
78
+ metric="rmse"
79
+ )
80
+
81
+ print(f"Best configuration: {best_config}")
82
+ ```
83
+
84
+ **Example output:**
85
+ ```
86
+ Best configuration: {'n_fuzzy_sets': 13, 'number_of_lags': 6, 'fuzzy_part_func': 'Cosine'}
87
+ ```
88
+
89
+ ---
90
+
91
+ ### Train, calibrate, and predict
92
+ ```python
93
+ from autofuzzts import fit_calibrate_predict
94
+
95
+ # Train model, calibrate, and make one-step-ahead predictions
96
+ pred_set, pred_center_points, pred_test = fit_calibrate_predict(
97
+ train_set=df_train,
98
+ test_set=df_test,
99
+ config=best_config,
100
+ model_type="xgb"
101
+ )
102
+ ```
103
+
104
+ This returns:
105
+ - `pred_set`: predicted fuzzy sets
106
+ - `pred_center_points`: corresponding fuzzy center values
107
+ - `pred_test`: crisp numeric predictions (one-step-ahead forecast)
108
+
109
+ ---
110
+
111
+ ## Function Overview
112
+
113
+ ### `fit_calibrate_predict()`
114
+
115
+ ```python
116
+ fit_calibrate_predict(
117
+ train_set: pd.DataFrame,
118
+ test_set: pd.DataFrame,
119
+ config: dict,
120
+ model_type: Literal['xgb', 'mlp', 'tpot'] = 'xgb',
121
+ number_cv_calib: int = 5,
122
+ diff_type: Literal['perc', 'abs'] = 'perc',
123
+ covariates: list[str] | None = None,
124
+ exclude_bool: bool = False
125
+ ) -> float
126
+ ```
127
+
128
+ Trains and calibrates a fuzzy time series model on the training set using
129
+ cross-validation, then predicts on the test set and returns performance metrics.
130
+
131
+ ---
132
+
133
+ ## Description
134
+
135
+ AutoFuzzTS automates the process of fuzzy time series modeling by:
136
+ - building and testing multiple fuzzy pipelines,
137
+ - tuning hyperparameters using Bayesian optimization, and
138
+ - integrating tuned classification models - **XGBoost**, **MLP**, or **TPOT**.
139
+
140
+ This allows for rapid experimentation and selection of optimal configurations
141
+ for forecasting tasks.
142
+
143
+ ---
144
+ ## 📄 Reference
145
+
146
+ This code is based on the research:
147
+
148
+ **Optimizing stock price forecasting: a hybrid approach using fuzziness and automated machine learning**
149
+ *Jan Timko, Radwa El Shawi, Stefania Tomasiello*
150
+ *Expert Systems with Applications*, Volume 259, 2025, 128844
151
+
152
+ [Read on ScienceDirect](https://www.sciencedirect.com/science/article/pii/S0957417425024613)
153
+
154
+ If you use this code in your research or projects, please cite the paper.
155
+
156
+ ---
157
+
158
+ ## 📄 License
159
+
160
+ This project is licensed under the MIT License.
161
+
@@ -0,0 +1,23 @@
1
+ autofuzzts/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
2
+ autofuzzts/config.py,sha256=IheqZ8IH2Y7n2KZT_kYs9hVNJAWyY0zZo039TgXoFko,377
3
+ autofuzzts/pipeline.py,sha256=Y6AqYpPNuOLqfTO6Mt7NOvwXnZ_VY1pKPcIfWcD5kgg,15772
4
+ autofuzzts/data/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
5
+ autofuzzts/data/data_loader.py,sha256=UxpIyeerMGDeFlblWVSdfVdzQc_rv7IHh1M4BqwzxHk,259
6
+ autofuzzts/data_validation/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
7
+ autofuzzts/data_validation/validate.py,sha256=Z1YPGr_muFFfyLv3DG32a74Am7IBIeMrwjglxJKN1vg,1412
8
+ autofuzzts/evaluation/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
9
+ autofuzzts/models/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
10
+ autofuzzts/models/fuzzy_classifier.py,sha256=0b_EG1y90gn4ped1Zm4QMeJzRuQnxabB865vVW0lCZk,3289
11
+ autofuzzts/models/mlp_nas.py,sha256=-N550H7nNtZJL9d72MPVTLpFGWq7DH4QmKkh7gJMDxw,2958
12
+ autofuzzts/partition/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
13
+ autofuzzts/partition/fuzzy_part_fun.py,sha256=t3uZba9-QiKwMb9kfU-7fLJqfKT9aKmPZ7cqpqvt_lE,2992
14
+ autofuzzts/partition/partition.py,sha256=ih-3ulRz24JoHlpGCbTxJrmL2DdylSXWMnlzTO6zTpY,4334
15
+ autofuzzts/partition/visualize_partition.py,sha256=vCEefgyPuP4Jr6uL9VfrdWE80Q0StGGaPyiIrs-vUt8,879
16
+ autofuzzts/preprocess/__init__.py,sha256=2k_ZeqU7FvqZMFqGm-EYRiV98uxUxmiy5wXygvIobPU,13
17
+ autofuzzts/preprocess/prep_for_model.py,sha256=8U3VxVLi0eIOHaNQGcGVweq2V0g497cCHm4dVFX2PdE,2527
18
+ autofuzzts/preprocess/preprocess.py,sha256=hC_Y84JKB030dCsnTKhJVaZLy7ARlqwxpKdT7ioyET4,2724
19
+ autofuzzts-0.1.3.dist-info/licenses/LICENSE,sha256=0YpXiCONotJkGz-eE74pd-R3hInmIyMJ-buT7NwiLxI,1066
20
+ autofuzzts-0.1.3.dist-info/METADATA,sha256=ajA7jHEbk-BMM_iqe1hQXVdlcGHmfpjfk8J-R6yTStg,4321
21
+ autofuzzts-0.1.3.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
22
+ autofuzzts-0.1.3.dist-info/top_level.txt,sha256=YHgbVRUPg-x2WX7FKyJMUAeI9o46c8XFiR_eYKtXIxc,11
23
+ autofuzzts-0.1.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 Jan Timko
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Jan Timko
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.