analyser_hj3415 2.9.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- analyser_hj3415/.DS_Store +0 -0
- analyser_hj3415/__init__.py +0 -0
- analyser_hj3415/cli.py +234 -0
- analyser_hj3415/eval.py +960 -0
- analyser_hj3415/tsa.py +620 -0
- analyser_hj3415/workroom/__init__.py +0 -0
- analyser_hj3415/workroom/mysklearn.py +50 -0
- analyser_hj3415/workroom/mysklearn2.py +39 -0
- analyser_hj3415/workroom/score.py +342 -0
- analyser_hj3415/workroom/trash.py +289 -0
- analyser_hj3415-2.9.3.dist-info/METADATA +232 -0
- analyser_hj3415-2.9.3.dist-info/RECORD +14 -0
- analyser_hj3415-2.9.3.dist-info/WHEEL +4 -0
- analyser_hj3415-2.9.3.dist-info/entry_points.txt +3 -0
@@ -0,0 +1,232 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: analyser_hj3415
|
3
|
+
Version: 2.9.3
|
4
|
+
Summary: Stock analyser and database processing programs
|
5
|
+
Requires-Python: >=3.6
|
6
|
+
Description-Content-Type: text/markdown
|
7
|
+
Requires-Dist: utils-hj3415>=2.9.2
|
8
|
+
Requires-Dist: db-hj3415>=4.0.3
|
9
|
+
Requires-Dist: scikit-learn>=1.5.2
|
10
|
+
Requires-Dist: plotly>=5.24.1
|
11
|
+
Requires-Dist: yfinance>=0.2.44
|
12
|
+
Requires-Dist: prophet>=1.1.6
|
13
|
+
Requires-Dist: kaleido>=0.2.1
|
14
|
+
Requires-Dist: matplotlib>=3.9.2
|
15
|
+
|
16
|
+
### analyser-hj3415
|
17
|
+
|
18
|
+
#### Introduction
|
19
|
+
analyser_hj3415 manage the database.
|
20
|
+
|
21
|
+
---
|
22
|
+
#### Requirements
|
23
|
+
|
24
|
+
pandas>=2.2.2
|
25
|
+
pymongo>=4.8.0
|
26
|
+
sqlalchemy>=2.0.31
|
27
|
+
utils-hj3415>=2.0.1
|
28
|
+
scraper-hj3415>=2.0.0
|
29
|
+
|
30
|
+
---
|
31
|
+
#### API
|
32
|
+
|
33
|
+
---
|
34
|
+
#### Install
|
35
|
+
|
36
|
+
|
37
|
+
---
|
38
|
+
#### Composition
|
39
|
+
analyser_hj3415 모듈은 세가지 파트로 구성되어 있습니다.
|
40
|
+
|
41
|
+
1. setting 모듈
|
42
|
+
setting 모듈은 데이터베이스를 활성화하고 주소를 설정하는 역할을 합니다.
|
43
|
+
데이터베이스의 주소와 활성화 여부를 파일에 저장합니다.
|
44
|
+
|
45
|
+
```python
|
46
|
+
from analyser_hj3415 import setting
|
47
|
+
|
48
|
+
# 현재 데이터 베이스 상태를 DbSetting 클래스 형식으로 반환한다.
|
49
|
+
db_setting = setting.load_df()
|
50
|
+
|
51
|
+
# 현재 데이터베이스 상태 출력
|
52
|
+
print(db_setting)
|
53
|
+
|
54
|
+
# 몽고db 주소 변경 (2가지 방식)
|
55
|
+
setting.chg_mongo_addr('mongodb://192.168.0.173:27017')
|
56
|
+
db_setting.mongo_addr = 'mongodb://192.168.0.173:27017'
|
57
|
+
|
58
|
+
# sqlite3 주소 변경 (2가지 방식)
|
59
|
+
setting.chg_sqlite3_path('/home/hj3415/Stock/_db')
|
60
|
+
db_setting.sqlite3_path = '/home/hj3415/Stock/_db'
|
61
|
+
|
62
|
+
# 데이터베이스를 기본값으로 설정합니다.
|
63
|
+
# DEF_MONGO_ADDR = 'mongodb://localhost:27017'
|
64
|
+
# DEF_WIN_SQLITE3_PATH = 'C:\\_db'
|
65
|
+
# DEF_LINUX_SQLITE3_PATH = '/home/hj3415/Stock/_db'
|
66
|
+
setting.set_default()
|
67
|
+
|
68
|
+
# 각 데이터베이스 사용 설정
|
69
|
+
setting.turn_on_mongo()
|
70
|
+
setting.turn_off_mongo()
|
71
|
+
setting.turn_off_sqlite3()
|
72
|
+
setting.turn_on_sqlite3()
|
73
|
+
```
|
74
|
+
|
75
|
+
2. mongo 모듈
|
76
|
+
몽고db를 데이터베이스로 사용할 경우를 위한 함수들의 모듈입니다.
|
77
|
+
현재는 몽고db를 비활성화 할 경우 올바로 작동하지 않기 때문에 디폴트 데이터베이스 입니다.
|
78
|
+
|
79
|
+
1) Base 클래스
|
80
|
+
|
81
|
+
모든 데이터베이스 클래스의 기반 클래스로 실제 직접 사용하지 않음.
|
82
|
+
|
83
|
+
```python
|
84
|
+
from analyser_hj3415.mongo import Base
|
85
|
+
base = Base(db='mi', col='kospi')
|
86
|
+
|
87
|
+
# db 주소를 변경함. 단 파일에 저장되는 것이 아니라 클래스 내부에서 일시적으로 설정하는 것임
|
88
|
+
base.chg_addr('mongodb://192.168.0.173:27017')
|
89
|
+
|
90
|
+
# 현재 설정된 db 주소, db 명, 컬렉션을 반환함.
|
91
|
+
base.get_status()
|
92
|
+
# ('mongodb://192.168.0.173:27017', 'mi', 'kospi')
|
93
|
+
|
94
|
+
# 데이터 베이스 관리 함수
|
95
|
+
base.get_all_db()
|
96
|
+
```
|
97
|
+
|
98
|
+
2 - 1) Corps 클래스
|
99
|
+
|
100
|
+
DB 내에서 종목에 관련된 기반클래스로 db명은 6자리 숫자 코드명임.
|
101
|
+
|
102
|
+
```python
|
103
|
+
from analyser_hj3415.mongo import Corps
|
104
|
+
|
105
|
+
corps = Corps(code='005930', page='c101')
|
106
|
+
|
107
|
+
# 코드를 변경함. 6자리 숫자인지 확인 후 설정함.
|
108
|
+
corps.chg_code('005490')
|
109
|
+
|
110
|
+
# 페이지를 변경함. 페이지명의 유효성 확인 후 설정함.
|
111
|
+
# ('c101', 'c104y', 'c104q', 'c106', 'c108', 'c103손익계산서q', 'c103재무상태표q', 'c103현금흐름표q', 'c103손익계산서y', 'c103재무상태표y', 'c103현금흐름표y', 'dart')
|
112
|
+
corps.chg_page(page='c108')
|
113
|
+
|
114
|
+
# 데이터 베이스 관리 함수
|
115
|
+
corps.get_all_codes()
|
116
|
+
corps.del_all_codes()
|
117
|
+
corps.drop_corp(code='005930')
|
118
|
+
corps.get_all_pages()
|
119
|
+
corps.drop_all_pages(code='005930')
|
120
|
+
corps.drop_page(code='005930', page='c101')
|
121
|
+
corps.get_all_item()
|
122
|
+
```
|
123
|
+
|
124
|
+
2 - 2) MI 클래스
|
125
|
+
|
126
|
+
DB 내에서 Market index 관련 클래스
|
127
|
+
|
128
|
+
```python
|
129
|
+
from analyser_hj3415.mongo import MI
|
130
|
+
mi = MI(index='kospi')
|
131
|
+
|
132
|
+
# 인덱스를 변경함. 인덱스명의 유효성 확인 후 설정
|
133
|
+
# ('aud', 'chf', 'gbond3y', 'gold', 'silver', 'kosdaq', 'kospi', 'sp500', 'usdkrw', 'wti', 'avgper', 'yieldgap', 'usdidx')
|
134
|
+
mi.chg_index(index='gold')
|
135
|
+
|
136
|
+
# 저장된 가장 최근 값 반환
|
137
|
+
mi.get_recent()
|
138
|
+
|
139
|
+
# 데이터를 저장함.
|
140
|
+
mi.save(mi_dict={'date': '2021.07.21', 'value': '1154.50'})
|
141
|
+
|
142
|
+
# 데이터 베이스 관리 함수
|
143
|
+
mi.get_all_indexes()
|
144
|
+
mi.drop_all_indexes()
|
145
|
+
mi.drop_index(index='silver')
|
146
|
+
mi.get_all_item()
|
147
|
+
```
|
148
|
+
|
149
|
+
2 - 3) DartByDate 클래스
|
150
|
+
|
151
|
+
dart_hj3415의 dart 모듈에서 dart 데이터프레임을 추출하면 각 날짜별 컬렉션으로 저장하는 클래스
|
152
|
+
|
153
|
+
```python
|
154
|
+
from dart_hj3415 import dart
|
155
|
+
from analyser_hj3415.mongo import DartByDate
|
156
|
+
|
157
|
+
date = '20210812'
|
158
|
+
dart_db = DartByDate(date=date)
|
159
|
+
|
160
|
+
# 오늘 날짜의 dart 데이터프레임을 추출하여 데이터베이스에 저장
|
161
|
+
df = dart.get_df(edate=date)
|
162
|
+
dart_db.save(df)
|
163
|
+
|
164
|
+
# 공시 데이터를 데이터프레임으로 반환한다.
|
165
|
+
dart_db.get_data()
|
166
|
+
dart_db.get_data(title='임원ㆍ주요주주특정증권등소유상황보고서')
|
167
|
+
```
|
168
|
+
|
169
|
+
2 - 4) EvalByDate 클래스
|
170
|
+
|
171
|
+
eval_hj3415의 eval 모듈에서 eval 데이터프레임을 추출하여 저장하거나 불러올때 사용.
|
172
|
+
(실제로 eval_hj3415.eval.make_today_eval_df()에서 오늘자 데이터프레임을 항상 저장한다)
|
173
|
+
|
174
|
+
```python
|
175
|
+
import pandas as pd
|
176
|
+
import datetime
|
177
|
+
from analyser_hj3415.mongo import EvalByDate
|
178
|
+
|
179
|
+
today_str = datetime.datetime.today().strftime('%Y%m%d')
|
180
|
+
eval_db = EvalByDate(date=today_str)
|
181
|
+
|
182
|
+
# 오늘 날짜의 dart 데이터프레임을 추출하여 데이터베이스에 저장
|
183
|
+
eval_db.save(pd.DataFrame())
|
184
|
+
|
185
|
+
# 공시 데이터를 데이터프레임으로 반환한다.
|
186
|
+
eval_db.get_data()
|
187
|
+
```
|
188
|
+
|
189
|
+
2 - 5) Noti 클래스
|
190
|
+
|
191
|
+
dart_hj3415의 analysis 모듈에서 공시를 분석하여 의미있는 공시를 노티하고 노티한 기록을 저장하는 클래스
|
192
|
+
|
193
|
+
```python
|
194
|
+
from analyser_hj3415.mongo import Noti
|
195
|
+
noti_db = Noti()
|
196
|
+
|
197
|
+
# 저장이 필요한 노티 데이터를 딕셔너리로 전달하여 데이터베이스에 저장
|
198
|
+
data = {'code': '005930',
|
199
|
+
'rcept_no': '20210514000624',
|
200
|
+
'rcept_dt': '20210514',
|
201
|
+
'report_nm': '임원ㆍ주요주주특정증권등소유상황보고서',
|
202
|
+
'point': 2,
|
203
|
+
'text': '등기임원이 1.0억 이상 구매하지 않음.'}
|
204
|
+
noti_db.save(noti_dict=data)
|
205
|
+
|
206
|
+
# 오래된 노티 데이터를 정리하는 함수
|
207
|
+
noti_db.cleaning_data(days_ago=15)
|
208
|
+
```
|
209
|
+
|
210
|
+
3) Corps
|
211
|
+
|
212
|
+
C101 페이지 관리 클래스
|
213
|
+
|
214
|
+
```python
|
215
|
+
from analyser_hj3415.mongo import C101
|
216
|
+
c101 = C101(code='005930')
|
217
|
+
...
|
218
|
+
```
|
219
|
+
|
220
|
+
구현 클래스는 C101, C108, C106, C103, C104
|
221
|
+
|
222
|
+
3. sqlite 모듈
|
223
|
+
sqlite3를 데이테베이스로 사용할 경우를 위한 함수들의 모듈입니다.
|
224
|
+
현재 sqlite3는 사용하지 않기 때문에 작동하지 않습니다.
|
225
|
+
|
226
|
+
```python
|
227
|
+
from analyser_hj3415 import sqlite
|
228
|
+
|
229
|
+
```
|
230
|
+
---
|
231
|
+
|
232
|
+
|
@@ -0,0 +1,14 @@
|
|
1
|
+
analyser_hj3415/.DS_Store,sha256=S5yjTP1issWmV5kF2CFjGHm5OJHgkuTaZHuxjIwSkfc,6148
|
2
|
+
analyser_hj3415/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
+
analyser_hj3415/cli.py,sha256=EW0-lIrpZHNNeDKksxC4qDBCiHPkYMGMHsZhAg6VsS8,12870
|
4
|
+
analyser_hj3415/eval.py,sha256=WWIvB4BebjW9GNGcF8rMd-MLL-lPXUBOH01_FpSq95I,38811
|
5
|
+
analyser_hj3415/tsa.py,sha256=rjhQ-JOXXQaTm8xY6o1KNkuycVGtxLPp3X1Z5jcSE14,25249
|
6
|
+
analyser_hj3415/workroom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
|
+
analyser_hj3415/workroom/mysklearn.py,sha256=wJXKz5MqqTzADdG2mqRMMzc_G9RzwYjj5_j4gyOopxQ,2030
|
8
|
+
analyser_hj3415/workroom/mysklearn2.py,sha256=1lIy6EWEQHkOzDS-av8U0zQH6DuCLKWMI73dnJx5KRs,1495
|
9
|
+
analyser_hj3415/workroom/score.py,sha256=P6nHBJYmyhigGtT4qna4BmNtvt4B93b7SKyzdstJK24,17376
|
10
|
+
analyser_hj3415/workroom/trash.py,sha256=zF-W0piqkGr66UP6-iybo9EXh2gO0RP6R1FnIpsGkl8,12262
|
11
|
+
analyser_hj3415-2.9.3.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
|
12
|
+
analyser_hj3415-2.9.3.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
13
|
+
analyser_hj3415-2.9.3.dist-info/METADATA,sha256=t3Efk2jKXtwR33FsmRkOw6Fr6jZ7Vj0zXkGJ-ZOnrhM,6490
|
14
|
+
analyser_hj3415-2.9.3.dist-info/RECORD,,
|